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Abstract

We prove that for X a quasi-compact F,-scheme with affine diagonal (e.g. X quasi-compact and
separated) there is a t-exact equivalence D(Frob(QCoh(X), Fy)) — Frob(D(QCoh(X)), D(Fy)) of stable
oo-categories. Here, Frob(—, —) denotes the co-category of generalized Frobenius modules as introduced
in [MW24]. This generalizes our result from [MW24], where we proved the above for regular Noetherian
Fp-schemes. As a byproduct we prove that the derived oo-category of Frobenius (and Cartier) modules
satisfies Zariski descent.
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1 Introduction

A crucial aspect of algebraic geometry over a field of positive characteristic p > 0 is the presence of the
Frobenius endomorphism. In particular, the study of modules with an action of the Frobenius has lead to
deep structural results.

If X is an Fp-scheme, then a (quasi-coherent) Oy-module with a left action of the absolute Frobenius
F: X — X is called a Frobenius module. Equivalently, a Frobenius module is given by a pair (M, kps) of
an Ox-module M and an Ox-linear morphism kp;: M — F,M. Examples of Frobenius modules include
the structure sheaf Ox and local cohomology modules, both equipped with their natural left action by
the Frobenius. They have been used to prove important finiteness results, cf. [HS77, [Lyu97]. Moreover,
Frobenius modules are related via a Riemann—Hilbert-type correspondence to p-torsion étale sheaves, cf.
[EK04] BL17, BP09].

There is also a dual notion of Cartier modules, which are related to Frobenius modules via Grothendieck—
Serre duality by a result of Baudin [Bau25, Theorem 4.2.7]. They are (quasi-coherent) Ox-modules with
a right action of the Frobenius. Their category was first considered by Anderson in [And00] and more
thoroughly studied by Blickle and Bockle in [BB11l, [BB13]. Both Frobenius modules and Cartier modules
are important tools in positive characteristic commutative algebra and algebraic geometry, and have been
studied by many authors [LS01, [Sch09, [Pat16, [HP16].

In our previous article [MW24], we introduced an oo-categorical framework for Cartier and Frobenius
modules. Recall that for any (co-)category C with an endofunctor G: C — C, we defined Frob(C,G) =
LEq(id¢, G) as the lax equalizer of the identity with G, cf. [MW24] Definition 2.4], and similarly Cart(C, G) :=
LEq(G,ide). If X is an Fp-scheme for some prime p, C = QCoh(X) and G = F, is the pushforward along
the absolute Frobenius, one recovers the classical categories of Frobenius and Cartier modules on X, see the
explanation above or e.g. [BL17, Remark 1.3.2] and [BB11l Definition 2.1] for definitions of these categories.

In the following, we write D(A) € Prk for the (presentable stable) derived oo-category of a Grothendieck
abelian category A. In [MW24] we proved the following;:

Theorem ([MW24, Corollaries 6.2 and 6.3]). Let X be an Fj,-scheme. Then there is a canonical t-ezact
equivalence of presentable stable co-categories

D(Cart(QCoh(X), F,)) =+ Cart(D(QCoh(X)), D(F,)).

If X is moreover regular Noetherian, then there is a canonical t-exact equivalence of presentable stable co-
categories

D(Frob(QCoh(X), F,)) = Frob(D(QCoh(X)), D(F.)).

Note that for this theorem to hold true, it is crucial to work with the derived oco-category. In fact, the
proclaimed equivalences in the theorem do not hold if we replace the derived oo-category by the ordinary
derived category hD(—): In this case, the target categories would not even admit a triangulated structure,
as the category Fun(A!, hD(QCoh(X))) does not do so.

We needed the assumption that X is regular Noetherian so that the Frobenius F' is flat by Kunz’ theorem
[Kun69, Theorem 2.1], and hence F* is an exact functor. If X is arbitrary, then this is no longer the case,
and the proof strategy of [MW24] does no longer work. The goal of this paper is a version of the above
result, where we essentially remove the regularity and Noetherian hypothesis. For this, we need the following
definition:

Definition. Let X be a scheme. We say that X is geometric if X is quasi-compact and has affine diagonal
(the latter is also called semi-separated in the literature).

Example. Since closed immersions are affine, and affine morphisms are quasi-compact, we see that quasi-
compact separated schemes are geometric, and geometric schemes are qcqgs. In particular, any affine scheme
18 geometric.

Theorem A (Theorem . Let X be a geometric F,-scheme. Then the canonical map
D(Frob(QCoh(X), Fy)) — Frob(D(QCoh(X)), D(F}))

is a t-exact equivalence of presentable stable co-categories.



Outline of the proof

We now explain how we prove Theorem |Al Both sides of the proclaimed equivalence are left-complete (this
follows from Proposition Lemma and Corollary [5.4)), hence (using Lemma it suffices to show
the following theorem:

Theorem B (Theorem [4.16)). Let X be o geometric Fp,-scheme. Then the canonical map
D (Frob(QCoh(X), F,)) — Frob(D*(QCoh(X)), D (F.))

is a t-eract equivalence of stable oo-categories. Here, DT denotes the full subcategory of bounded above
objects.

In Proposition and (the proof of) Theorem we show that both sides of the equivalence are
Zariski sheaves in X, and that there is a canonical morphism between them, cf. Lemma At this point,
we heavily use that we are working with the derived oo-category instead of the ordinary derived category.
Hence, it suffices to prove the statement for X = Spec(R) an affine scheme. On affines, it boils down to
the Schwede—Shipley recognition theorem for stable module categories [Lurl?, Theorem 7.1.2.1], which is
an oo-categorical version of Gabriel’s theorem [Gab62, Corollaire V.1.1]: If one has a stable oo-category
C with a compact projective generator M, then C is equivalent to the stable oo-category of A-module
spectra, where A = End(M) is the endomorphism ring spectrum of M. Hence, in order to show Theorem
on affines, it therefore suffices to show that both categories admit a compact projective generator (for
this see Lemmas [3.18 and [3.22)), and that the endomorphism ring spectra of the generators are equivalent
(Proposition [3.27). In fact, as expected, the endomorphism ring spectra on both sides are equivalent to the
discrete (non-commutative) ring R[F]°P of e.g. [BP0Y, Definition 3.2.1].

Remark. Note that we cannot directly show that both sides of Theorem [A]are Zariski sheaves, as we a priori do
not know that they are left-complete. Indeed, for the proof of the left-completeness of D(Frob(QCoh(X), Fy)),
we need to know that Frob(QCoh(X), F,) satisfies a weaker version of axiom AB4*. In order to show this,
we first establish Theorem [B] as this axiom only depends on the bounded above objects of the derived
oo-category, and hence can then be deduced from the fact that already QCoh(X) satisfies it.

Zariski descent

As already mentioned above, one step in the proof of the main theorem is a reduction to affine schemes via
Zariski descent. In particular, we get the following result:

Theorem C (Proposition [4.12). Let X be a geometric Fp,-scheme and write X,ax for the small (quasi-
compact) Zariski site of X, cf. Definition[{.9 Then D*(Frob(QCoh(—), F\)) defines a Zariski sheaf on X,ax
with values in Cato.

As explained above, all involved oco-categories are already left-complete. Hence, one also gets via an
analogous proof (using that then already D(—) preserves certain limits as in the proof of Proposition [£.10}
see [HM24], Proposition A.4.23]) the following:

Theorem D. Let X be a geometric F,-scheme. Then D(Frob(QCoh(—), F)) defines a Zariski sheaf on
Xyar with values in Prk,.

Essentially dualizing the proof, we also get

Corollary E. Let X be a geometric Fp-scheme. Then D(Cart(QCoh(—), Fy)) defines a Zariski sheaf on
Xyar with values in PTSLt.

Remark. One can use similar techniques to show stronger descent statements for the derived oco-categories
of Frobenius and Cartier modules.



Use of the co-category of spectra

As explained above, our proof reduces to the affine case X = Spec(R), and then identifies both sides with the
category of R[F]-module spectra, i.e. working over the absolute base S € Sp. This is mostly for convenience
of reference, as the oo-categorical Schwede—Shipley theorem is formulated in this setting. Since all our
categories are (limits of) derived categories of rings and schemes, they are all Z-linear. Hence, one could
avoid the co-category of spectra by proving a Z-linear version of Schwede—Shipley, which then would identify
both sides of the equivalence with the category Modgp)(D(Z)) (which in turn is of course equivalent to
Modg(r)(Sp), since the E;-morphism S — R[F] canonically factors through HZ, and D(Z) = Modgz(Sp)).

Notations and Conventions

This article is written in the language of co-categories, as developed by Lurie in [Lur09, Lurl7, Lurl8]. We
fix four universes, small, large, huge and very huge. By default, i.e. if not specified otherwise, any co-category
will be large, and any scheme will be small. We will employ the following notations:

D A prime number
Catso | The huge oco-category of large oo-categories
Cato, | The very huge oo-category of huge oco-categories

Prk The huge co-category of large presentable co-categories,
with small colimit-preserving functors
Prk, The huge oo-category of large presentable stable co-categories,

with small colimit-preserving functors

Groth | The huge oco-category of large Grothendieck abelian categories,
with small colimit-preserving exact functors

Sp The stable co-category of small spectra

S € Sp | The sphere spectrum

In particular, note that Sp € PrL, and that Cat.,, Pr¥, Prk, Groth € 62;500.

We always use homological notation for a t-structure on a stable co-category. If D is a stable oo-category
with a t-structure (Do, D<), we write H: DY < D for the inclusion of the heart.

If D is a stable oco-category, it is in particular enriched in the oco-category of spectra Sp, cf. [GHI15,
Example 7.4.14]. We write mapp(—, —): D°P x D — Sp for the mapping spectrum. If L: D 2 £ :R is
an adjunction between stable oco-categories, we will use without mention that it upgrades to a spectrally
enriched adjunction. In particular, there is a natural equivalence mapg (L—, —) = mappy(—, R—).
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2 Functoriality of Frobenius modules

In this section, we show that the construction of (generalized) Frobenius modules from [MW24 Definition
2.4] is functorial in the oo-category and its endofunctor. Moreover, we prove that the resulting functor is
limit-preserving, cf. Proposition [2.5] and Lemma [2.8]

Definition 2.1. We define a functor End(—): Cats, — Cates as the pullback in the following diagram in
Fun(Cateo, Cateo):



U .
Fnd(~) —Y—— idgs _
”i - l(id,id)
Fun(Al, 7) W ld(fa\tm X ldé;}oo

If C is a (huge) oco-category, we call End(C) the co-category of endomorphisms in C.

Remark 2.2. Let C be a huge oco-category. Then End(C) = LEq(id¢,ide) is the lax equalizer of the identity
with the identity on C, see e.g. [MW24l Definition 2.1] for a definition. In other words, it fits in a pullback
square in Catqo:

End(C) —2— ¢

,ﬂcl J J{(idc ide)

FUH(A17C) W C X C

This holds since limits of functors are computed pointwise. A similar statement is true for morphisms, see
also the diagram in the next lemma.

Lemma 2.3. Let F: C — D be a functor of huge oco-categories (i.e. a morphism in 6a\too). Moreover, let
p: K — End(C) be a diagram in End(C) admitting a limit and assume that F' preserves the limit of the
diagram Uc o p. Then End(F): End(C) — End(D) preserves the limit of the diagram p. In particular, if F
preserves limits, then so does End(F).

Proof. By construction (as limits of functors are computed pointwise), we know that End(F') is the dashed
diagonal arrow in the following diagram:

Uc

End(C) C
s End(F)
. i} ™
End(D) —2 D
e RDJ - l(id,id) (id id)
FUH(AI, D) W D X D
F. ’
FxF
Fun(A,C) C xC.

(st)

Thus, since Uz and Up are limit-preserving and conservative functors by [MW24, Proposition 2.6 (b) and
(c)], and since F preserves the limit of the diagram U¢ o p, the lemma follows from the commutativity of the
top quadrilateral. O

We now construct the co-category of (generalized) Frobenius modules as a functor End(Caty,) — Catoo-

Proposition 2.4. There is a functor Frob(—,—): End(Cate,) — Cate, such that for every endofunctor
F: C — C, we have that Frob(C, F) is the category of generalized Frobenius modules from [MW24), Definition
2.4].

Moreover, on morphisms f: (C,F) — (D, G) the functor Frob(f) is given by the dashed morphism induced
by the following diagram:

Uc

Frob(C, F)

ke



Here, the commutativity of the outer diagram is witnessed by
idp fUc & fskc & sfkc

and
GfUc = fFUc = ftre = tfikc.

Proof. Write Ucas,, : End(Cats,) — Cate and kcap,, : End(Cats,) — Fun(Al, Caty) for the canoni-
cal forgetful functors (i.e. the projections out of the limit). By adjunction (and the identification of
S0 KCate, = Ucat,, = 10 Kcat,, via the defining diagram of End(Cats)), this can be seen as a natural
transformation kcat_. : Ucat., — Ucat.,- We let Frob(—, —) be the pullback in the diagram of functors in
Fun(End(Cate ), Cato ):

Frob(—,—) ——— Ucat.,

l - l(id,nc“oo)

Fun(Al, Ucas..) oy Ucat., X Ucat., -

If (C, F) € End(Cats), then we see that (as limits of functors are computed pointwise) there is a pullback
square

Frob(C, F) Y e

Kcl . l(idc,m

FU.H(Al,C) W C x C,

i.e. we see that Frob(C, F') agrees with the co-category from [MW24l Definition 2.4]. A similar argument
gives us the description on morphisms. O

Proposition 2.5. The functor Frob(—, —): End(Cats,) — Cateo from Propositz'on preserves limits.

Proof. Since Frob(—, —) is itself a limit of functors, it suffices to show that Uga;. and Fun(Al, —) preserve
limits. The first statement is [MW24, Proposition 2.6 (c)], and the second holds e.g. because Fun(Al, —) is
right adjoint to the functor — x Al: Caty, — Cate. O

Lemma 2.6. Let f: (C,F) — (D,G) be a morphism in End(Cate). If the underlying functor f: C — D is
fully faithful, then also the induced functor Frob(C, F') — Frob(D, G) is fully faithful.

Proof. The induced functor is the limit of the fully faithful functors f:C — D, f x f: C? — D? and
f«: Fun(Al,C) — Fun(Al, D), and thus itself fully faithful. O

Proposition 2.7. Let C be either Groth € (/JEROO or Pré S (/]z;coo. Write v: C — Caty, for the obvious
inclusion. Then there exists the dashed functor making the following diagram commute:

End(Cato) 275 Cat.,

End(ﬂ TL

End(C) --------------- s C.

We write again Frob(—,—) for the dashed functor. In other words, the functor Frob(—, —) o End(¢) factors
over C.

Proof. We first prove the result if C = Groth. It suffices to show that for every (A, F) € End(Groth)
we have that Frob(A, F') is again Grothendieck abelian, and that if ¢: (A, F) — (B,G) € End(Groth) is
a colimit-preserving exact functor commuting with F' and G, then also Frob(¢) is colimit-preserving and
exact.

The first statement is just [MW24, Corollary 2.8 (i)]. For the second statement, note that by definition,
there is a commutative diagram



Frob(A, F) —245 A

Frob(¢)J/ [

Frob(B, Q) o B.

Now note that U4 and Up are conservative, colimit-preserving and exact functors by [MW24], Corollary 2.8
(b) and (i)], and that ¢ is colimit-preserving and exact by assumption. Thus, the commutativity of the
above square immediately implies the result.

If C = PrL, one now uses [MW24] Corollary 2.8 (e) and (f)] to see that on objects Frob(—, —) lands again
in PrL. The argument for morphisms is analogous to the case C = Groth, again using [MW24, Corollary
2.8 (b) and (f)]. O

Lemma 2.8. Let C be either Groth € Catoo or Prh e Cateo. Then the functor Frob(—,—): End(C) — C
from Proposition [2.7] preserves limits.

Proof. By definition, there is a commutative diagram

Frob(—,—)

End(Cato) Catoo
End(L)T TL
End(C) o — C.

The top functor preserves limits by Proposition If ¢ preserves limits, then so does End(¢) by Lemma
Thus, using the commutativity of the diagram, it is enough to show that ¢ is conservative and preserves
limits. Conservativity is clear (as equivalences are always colimit-preserving and exact). For limits, in the
case of C = Groth this is [Lurl8, Proposition C.5.4.21], and if C = PrZL this follows from [Lurl7, Proposition
4.8.2.18] and [Lur09, Proposition 5.5.3.13]. O

3 Frobenius modules as modules over a ring

In this section, we show that Theorem [A] holds for affine schemes, cf. Theorem .28 To do so, we identify
both relevant oco-categories as oo-categories of module spectra over equivalent [E;-rings. For this, we use the
Schwede—Shipley theorem, which we recall in Proposition [3.9

Definition 3.1. Let S be an associative discrete ring. We write Modg9 for the abelian (ordinary) category
of (right) S-modules.

Definition 3.2. Let S be an Eq-ring spectrum (e.g. a discrete ring). Then we write Modg for the presentable
stable oo-category of (right) S-module spectra, cf. [Lurl?7, Definition 7.1.1.2]. See [Lurl7, Corollary 7.1.1.5]
and [Lurl7, Corollary 4.2.3.7] for a proof that Modg is stable and presentable.

Lemma 3.3. Let S be an Eq-ring spectrum. There is an adjunction
frees: Sp &= Modg :fgtg

such that fgtg freeg = S ®s —, where S denotes the sphere spectrum, and freegS = S. Moreover, fgtg is
conservative and preserves colimits.

If S is an Eo -ring spectrum, then the right-hand side can be equipped with a symmetric monoidal structure
such that freeg is symmetric monoidal.

Proof. That there is an adjunction with the required description of the composition was shown in [Lurl7,
Corollary 4.2.4.8]. We will defer the proof that freegS 2 S to the end. That fgtg is conservative can be seen
as follows: By stability, we only have to see that if fgtg(M) = 0, then M = 0. This is true as there is only
the trivial S-module structure on 0. In order to see that fgtq also preserves colimits, it suffices to show that
it has a right adjoint, which follows from [LurI7, Remark 4.2.3.8], since the tensor product on Sp commutes
with colimits in both variables.



If S is an E.-ring spectrum, then we equip Modg with the symmetric monoidal structure from [Lurl7,
Theorem 4.5.2.1] (here we use that the tensor product in Sp commutes with colimits in each variable). It
was shown essentially in [Lurl7, Corollary 5.1.2.6], that the unit map S — S induces a symmetric monoidal
functor Sp — Modg. As this functor is given by base change, it is clear that this functor is equivalent to
freeg, which gives us a symmetric monoidal structure on the latter.

Similarly, if S was only assumed to be E;, then [LurI7, Corollary 5.1.2.6] shows that Sp — Modg is
Ep-monoidal, i.e. preserves the unit object. This is exactly the claim that freeg S = S. O

If S is a connective E;-ring spectrum, then we equip Modg with the accessible t-structure from [Lurl7,
Proposition 7.1.1.13]. The following is immediate from the definition:

Lemma 3.4. Let S be a connective Ei-ring spectrum. Then the forgetful functor fgtg: Modg — Sp is
t-exact.

Lemma 3.5. Let S be an Ei-ring spectrum. Then there is an equivalence of functors

mapyoq, (S —) = fgtg .

Proof. By Lemma we have freeg S = S. Thus, by adjunction we get

mapMods (Sv _) = mapModS (frees Sa _) = mapSp(Sa fgtS _) = fgtSv

where we used in the last equivalence that S is the unit and mapsp(—, —) the internal mapping object of the
category of spectra. O

Recall the following lemma:

Lemma 3.6 ([Lurl? Theorem 7.1.2.13]). Let R be a commutative discrete ring. Then there is a symmetric
monoidal equivalence

D(Mod},) 22 Mody .

Lemma 3.7. There is a functor
O: Algg, (Sp) = (Priiods /
that sends an Eq-algebra R to the functor Mods — Modpg given by base change.

Proof. See the discussion right before [Lurl7, Corollary 4.8.5.13] with C = Sp, together with the canonical
equivalence Sp = Mods. O

Remark 3.8. An object F': Mods — C in (”PrSLt)MOdS/ is the same data as a presentable stable co-category
C, together with an object M = F(S) € C. This is true because Mods 2 Sp, and a colimit-preserving exact
functor Sp — C is just the data of an object (the image of S).

If R is an E;-algebra, then O(R) = (Modg, R), as S ®s R = R.

This functor has the following property:

Proposition 3.9 (Schwede-Shipley theorem). The functor © is fully faithful and has a right adjoint. An
object (C,M) € (PTsLt)ModS is in the essential image if and only if M is a stable compact generator of C in
the sense of Definition [A.5 Moreover, the right adjoint of © is given by the functor that sends (C, M) to
End(M), where End(M) denotes the endomorphism spectrum of M equipped with its Ei-ring structure.

Proof. That © is fully faithful and admits a right adjoint follows from [Lurl7, Theorem 4.8.5.11], as © is the
restriction of ©,, whereas the description of the essential image is (the proof of) [Lurl7, Theorem 7.1.2.1].
The description of the right adjoint is [Lurl7, Remark 4.8.5.12]. O

For the rest of this section, let R be a (discrete) Fp-algebra. Write F': R — R for the Frobenius
endomorphism, i.e. the ring morphism given by x — xP.

Note that the functor F.: Modg — Modg is a colimit-preserving exact functor of Grothendieck abelian
categories, as it has both a left adjoint [Sta25| Tag 05DQ)] and a right adjoint [Sta25, |Tag 08YP]. In particular,
the functor D(F,): D(Mody) — D(Mody) exists, cf. [MW24, Notation A.3).


https://stacks.math.columbia.edu/tag/05DQ
https://stacks.math.columbia.edu/tag/08YP

Proposition 3.10. The Frobenius pushforward D(F,): D(Modg) — D(Modg) has a symmetric monoidal
left adjoint LF*: D(Mod3) — D(Mod3).

Proof. We have a canonical symmetric monoidal equivalence D(Mod%) =~ Modg by Lemma Hence, the
existence of the left adjoint is [Lurl7, Proposition 4.6.2.17]. That the left adjoint is symmetric monoidal
follows essentially from [LurI7, Remark 4.5.3.2]. O

In the following we consider the category Frob(’D(Modg),’D(F*)) of (generalized) Frobenius modules.
Recall that it is defined by the pullback square

Frob(D(Mod§), D(F.)) —2— D(Mod$)
HDJ - J{(id,’D(F*))

Fun(A', D(Mod},)) o D(Mod},)2.
Proposition 3.11. The functor Up: Frob(D(Modg),D(F*)) — D(Modg) has a left adjoint Lp. The
underlying module of the left adjoint is given by UpLp = UnZO(LF*)”,

Proof. Since by Proposition m D(F,): D(Modg) — D(Modg) admits a left adjoint LF*, and since
D(Mod$,) admits all countable coproducts (as it is presentable), it follows from [MW?24, Corollary 4.4]
that Up has a left adjoint with the given description. O

Recall that the category Frob(Modg, F.,) is defined by the pullback square

Frob(Mod %, F,) ——2— Mod?

ml - l(idf*)

Fun(A', Mod$,) - (Mod,)?

in Cateo. Since the functor F, admits a left adjoint (cf. [Sta25l Tag 05DQ)]) and the category Modg admits
all countable coproducts, the forgetful functor Uo also admits a left adjoint Lo : Modg — Frob(Modg, F,)
by [MW24, Corollary 4.4].

By Proposition the category Frob(Modg,F*) is Grothendieck abelian, so we can consider its de-
rived oo-category. Note that the functors Uy and ko both are exact and colimit-preserving: For Ue this
follows from [MW?24, Corollary 2.8 (i)] as Mod}, is a Grothendieck abelian category and F, is exact and
colimit-preserving, and for ko this can be checked after applying the source and target functors where it
amounts to the fact that Uy and F, are exact and colimit-preserving. Hence, they induce derived func-
tors D(Uy): D(Frob(Mody, F.)) — D(Mody) and D(ke): D(Frob(Mody, Fy)) — D(Fun(A', Mody)) by
IMW24] Proposition A.2].

Definition 3.12. We define &: D(Frob(Modg, F,)) — Frob(D(Modz)7 D(F,)) to be the functor fitting into
the following diagram as the dashed arrow, via the universal property of the pullback:

D(Uo)

D(Frob(Mod},, F,))

D(ko) Frob(D(Mod), D(F,)) —2— D(Mod$)
HDJ{ - J{(id,’D(F*))
D(Fun(A', Mod§,)) — Fun(A', D(Mod},)) = D(Mod},)2.


https://stacks.math.columbia.edu/tag/05DQ

Here, £ is the functor from the discussion before [MW24, Theorem 5.1]. The commutativity of the outer solid
diagram can be deduced in the exact same way as the commutativity of the diagram in [MW24] Theorem
5.1], see the paragraph directly behind the statement of the theorem.

In the rest of this section, we show that ® is an equivalence.

For this, we first introduce t-structures on the source and target of ® such that ® is t-exact with respect
to these t-structures.

Recall that the derived oo-category D(A) of any Grothendieck abelian category A carries a t-structure
which is described in [Lurl7, Definition 1.3.5.16]. In particular, the co-category D(Frob(Mod},, F.)) carries
an induced t-structure as Frob(Mod§, F.) is a Grothendieck abelian category by Propositionh

Moreover, we have the following.

Lemma 3.13. Define the two full subcategories Frob(D(Modg),D(F*))Zo and Frob(D(Modg),D(F*))go of
Frob(D(Mod$,), D(F.)) as follows: For an object M € Frob(D(Mod$,), D(F,)) we have

M € Frob(D(Mod$,), D(F.))so if and only if UpM € D(Mod,)so, and
M € Frob(D(Mod},), D(F.))<o if and only if UpM € D(Mod},)<o.
These subcategories define a t-structure on Frob(’D(Modg),’D(F*)) and the forgetful functor Up is t-ezact.

Proof. Since the functor D(F,): D(Mody) — D(Mod}) is t-exact by the definition of the derived functor,
cf. [MW24, Notation A.3], this follows directly from [MW24, Proposition 3.3]. O

Lemma 3.14. The functor ® is t-exact.

Proof. By the definition of the t-structure on Frob(D(Modg), D(F,)) it suffices to show that Upo® = D(Ug)
is t-exact. This follows from the definition of the derived functor, cf. [MW24], Notation A.3]. O

Therefore, ® induces a functor Frob(Modg,F*) — Frob(D(Mod%),D(F*))o between the hearts. We
proceed by showing that this induced functor is an equivalence.

Lemma 3.15. Consider the functor
A := Frob(mg, h): Frob(D(Mod},), D(F,)) — Frob(Mod$, F)

induced by the functoriality of Frob(—, —) from Proposition and the commutative square h:

PMod?) 24 p(Mod?)

| |

Modg —F Modg ,
which exists by [MW24, Lemma A.4]. Then the composition of the inclusion of the heart
H: Frob(D(Mod},), D(F,))¥ < Frob(D(Modj,), D(F))
with A is an equivalence Frob(D(Mody), D(F.))® 2 Frob(Mody, F.).

Proof. This is done in the proof of [MW24] Proposition 3.4]. Note that the functor which is called ® in
loc. cit. is exactly the composition

Frob(D(Mod), D(F,))® < Frob(D(Mod3), D(F,)) 2 Frob(Mod®, F,). O

Lemma 3.16. Under the identification of the heart of Frob(D(Modg),D(F*)) from Lemma the fol-
lowing diagram commutes:
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Frob(D(Mod},), D(F,)) —2 Fun(A', D(Mod},))

ml lm)*

Frob(Mod$, F,) ——5— Fun(A, Mod},).

Proof. By the description of the equivalence of Lemma and of the t-structure on Fun(A', D(Mod3)),
we have to show that the following diagram commutes:

Frob(D(Mod},), D(F,)) —2— Fun(A', D(Mod},))

Frob(D(Mod$,), D(F.))® N Fun(A!, D(Mod$))¥
Frob(D(Mod3,), D(F)) ——— Fun(A!, D(Mody,))

Al l(”o)*

Frob(Mody, F.) ————— Fun(A!, Mod},).

Note that the functor kp is t-exact because both functors skp = Up and tkp = D(F,) are. This implies
that the restriction /ig appearing in the diagram is well-defined and that the two upper squares commute.
The lower square commutes by definition of A. O

Lemma 3.17. Under the identification of the heart of Frob(D(Mod3,), D(F,)) from Lemma the functor
3Y = my®H : Frob(Mod},, F,) — Frob(Mod$, F.)
is equivalent to the identity.

Proof. We first show that there is an equivalence w: ko®Y = ko. It is given by the following chain of
equivalences:

HQ?(I)O = K;(QTFOCI)H =~ (WO)*H,D(I)H — (WO)*€D(H©)H
= (WO)*fHH@ = (Wo)*H*KV@ >~ ko.

Here, the equality signs are just definitions, whereas the equivalences are given by Lemma [3.16] and since
(7T())*H* = (WoH)* = ld
Thus, we also get an equivalence 7: Uo®Y = Uy as follows:

UQ;CI)@ = Sli@q)@ % sk =2 Uog.

In particular, by construction, w and 7 are compatible in the defining diagram of Frob(Modg, F.,), and thus,
by the universal property of the pullback, we get an equivalence &% = idg, ob(Mod®, F. )" O

We now show that both relevant co-categories have a canonical stable compact generator (in the sense
of Definition |[A.3)). Using the Schwede—Shipley theorem, this will also imply that we can identify the oo-
categories with certain module categories.

Lemma 3.18. The stable co-category D(Frob(Mod}, F.)) has a stable compact generator A == HLo(R).

Proof. Using Proposition it suffices to show that Lo (R) is a compact projective generator (in the sense
of Definition of the Grothendieck abelian category Frob(Modg, F,). By [MW24 Corollary 2.8], the
forgetful functor Uy is a conservative and colimit-preserving functor between Grothendieck abelian categories.
Then Lemma shows that Lo preserves compact projective generators. Since R is a compact projective
generator of Mod}, we see that Lo(R) is a compact projective generator of Frob(Modg, E,). O
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Corollary 3.19. There is a canonical equivalence of co-categories
Modgna(a) = D(Frob(Modg7 E,)).
Proof. There is a morphism
(Modgna(a), End(A4)) — (D(Frob(Mody, F,)), A)

in (Prh)y, a5/ Which is given by the counit of the adjunction from Proposition The same result implies
that the target of this morphism is in the essential image of O, as A is a stable compact generator of
D(Frob(Mod},, F.)) by Lemma Using this, it follows from the fully faithfulness of © that the counit
above is an equivalence in this case. O

Lemma 3.20. The object LpHR € Frob(D(Modg),D(F*)) lies in the heart.

Proof. By definition of the induced t-structure it suffices to show that UpLpHR lies in the heart. By
Proposition we have UpLpHR = | |, (LF*)*HR. Since | |, -, preserves connective objects (because
connective objects are closed under colimits) and also coconnective objects (since the t-structure is stable
under filtered colimits, cf. [Lurl7, Proposition 1.3.5.21]), it suffices to show that (LF*)"HR is discrete for
all n. Since LE™ is symmetric monoidal, cf. Proposition , and since HR € D(Modg) is the tensor unit,
we know that LF*HR = HR. Inductively, we thus see that (LF*)"HR = HR, which is clearly in the
heart. O

Lemma 3.21. Under the identification of the heart of Frob(D(Modg)7 D(F)) from Lemma there is a
canonical equivalence Lo = moLpH of functors Modg — Frob(Modg, F,).

Proof. Note that the adjunction Lp - Up induces an adjunction mgLpH 4 moUpH on the heart, cf. [BBD82]
Proposition 1.3.17 (iii)]. By uniqueness of left adjoints, it suffices to provide an equivalence Uy = moUpH.
Under the identification of the heart (via the functor AH), this is immediate from the definition of A. O

Lemma 3.22. The object B :== ®(A) is a stable compact generator of Frob(D(Mody), D(F,)). Moreover,
there is a canonical equivalence B = LpHR.

Proof. We first establish the equivalence B = LpHR. 1t is given by the following chain of equivalences:
®(A) 2 PHLoR= H®WLoR~ HLoR = HrnyLpHR =~ LpHR.

Here, the first equivalence is the definition of A, the second holds because @ is t-exact by Lemma and
the third equivalence follows since ®% 2 id by Lemma The fourth equivalence is just Lemma
whereas the last equivalence holds because Lp HR is discrete by Lemma [3.20]

Hence, it suffices to show that LpH R is a stable compact generator of Frob(D(Modg), D(F.)). Note that
by [MW24, Corollary 2.8], the forgetful functor Up is a conservative and colimit-preserving functor between
presentable stable oco-categories. Then Lemma shows that Lp preserves stable compact generators.
Since HR is a stable compact generator of D(Mod) by Proposition we see that LpHR is a stable
compact generator of Frob(D(Mod3,), D(F,)). O

Corollary 3.23. There is a canonical equivalence of co-categories
Modga(zy — Frob(D(Mody,), D(F.)).
Proof. There is a morphism
(Modgna(p), End(B)) — (Frob(D(Mody,), D(F.)), B)

in (PT‘SLt)MOdS/ which is given by the counit of the adjunction from Proposition The proof is now the same
as the one of Corollary where we use that B is a stable compact generator of Frob(D(Mod3,), D(F.))
by Lemma [3:22] O

12



Combining this corollary with Corollary we see that the oco-categories D(Frob(Modg,F*)) and
Frob(D(Mod},), D(F,)) are equivalent if the E;-ring spectra End(A) and End(B) are equivalent. Next, we
show that the latter is indeed true.

Lemma 3.24. Both A € D(Frob(Mod}, F.)) and B € Frob(D(Mod},), D(F.)) lie in the heart of the respec-
tive oo-categories.

Proof. By definition, A = HLoR is in the heart. Moreover, B = ®(A) is in the heart since ® is t-exact by
Lemma B.14 O

Lemma 3.25. The mapping spectrum map (A, A) is connective (in fact discrete, i.e. in Spo).

Proof. Note that A lives in the heart by Lemma and thus it is clear that map(A4, A) is coconnective.
To see that it is also connective, note that we have

m_pmap(A, A) = Ext"(LoR, LoR),

cf. the discussion in [Lurl7, Notation 1.1.2.17]. But now note that by (the proof of) Lemma we see
that Lo R is a projective object. In particular, the Ext-groups vanish for n # 0, which immediately implies
connectivity of the mapping spectrum. O

Lemma 3.26. The mapping spectrum map (B, B) is connective (in fact discrete, i.e. in Spv).

Proof. By Lemma there is an equivalence B = LpHR. Now we have equivalences
map (B, B) 2 map(LpHR, LpHR) 2 map(HR,UpLpHR) = fgt, UpLpHR.

Here, the second equivalence holds by adjunction, whereas the last equivalence is (essentially) Lemma
Since fgtp is t-exact by Lemma [3.4] it suffices to show that UpLpHR is in the heart. This was shown in
Lemma 13.20) [

Proposition 3.27. The morphism of Ei-rings End(®): End(A) — End(B) (given by the action of ® on
the endomorphism spectra) is an equivalence.

Proof. Tt suffices to show that the underlying map is an equivalence, i.e. we have to see that the map

®
MAPD (Frob(Mod, F.)) (A, A) = MAPEy b (D(Mod),D(F.)) (B, B)
is an equivalence. Note that by Lemmas [3.25] and both mapping spectra are connective, hence it suffices
to show that ® induces an equivalence of mapping spaces
®
MapD(Frob(Modg,F*)) (4,4) = MapFrob(D(Modg),’D(F*))(B7 B).

Since both A and B are in the respective hearts, cf. Lemma[3.24] it follows that this map is actually induced
by ®“. But ®Y is an equivalence by Lemma This proves the proposition. O

Theorem 3.28. The functor ® is an equivalence.

Proof. Consider the commutative diagram

(D(Frob(Mod$, F.)), A) —2— (Frob(D(Mod$,), D(F.)), B)

[ I

(Modgna(a), End(4)) 55y (Modeaacs), End(B))

in (Prk)y, ds/» Where the vertical maps are the counits of the adjunction from Propositionw These counits

are equivalences by (the proofs of) Corollaries and As End(®) is an equivalence by Proposition
the theorem follows. O
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4 Zariski descent of Frobenius modules

In this section, we show that the functor DT (Frob(QCoh(—), F)) defines a Zariski sheaf on the small (quasi-
compact) Zariski site of a geometric scheme, cf. Proposition Combining this with our results from the
previous section, we prove Theorem [B] cf. Theorem [£.16

We start by recalling that the derived oco-category is functorial in Grothen-dieck abelian categories:

Proposition 4.1. There is a functor D: Groth — PrL, which sends a Grothen-dieck abelian category to its
derived co-category, and a colimit-preserving left exact functor to its derived functor.
Similarly, there is a functor DV : Groth — Cat, that is the restriction of D to bounded above objects.

Proof. Write PreSt” ¢ Prl for the full subcategory consisting of those presentable categories that are
prestable, cf. [Lurl8l Definition C.1.2.1]. We first construct a functor

D>¢: Groth — PreStE

which sends a Grothendieck abelian category A to the presentable prestable category D(A)s>g, i.e. the
connective part of the derived oo-category. Recall from [Lurl8, Proposition C.5.4.5] that there is a fully
faithful functor M: Groth — Groth!®*°P where the right-hand category denotes the category of separated
Grothendieck prestable categories, whose morphisms are left exact colimit-preserving functors. We let D¢
be the composition of M with the canonical forgetful functor Groth'™*® — PreSt”. It now follows from
[Lurig, Propositions C.5.4.5 and C.5.3.2] that D>( sends a Grothendieck abelian category A to the connective
part of the derived oo-category of A.

If A is a Grothendieck abelian category, then its derived co-category D(A) is the stabilization of D(A)>q
by [Lurl8, Remark C.1.2.10] since the t-structure on the derived oo-category of A is right-complete. Hence,
we can define D as the composition of D¢ with the stabilization functor Sp(—): Prf — Prk.

To get the description on morphisms, note that for each morphism F' in Groth the functor D> (F) is left
exact and colimit-preserving, and hence preserves categorical n-truncated and n-connective objects. Thus,
it is t-exact on the stabilization. Therefore, by the universal property of the derived oco-category [MW24]
Proposition A.2], it suffices to show that the restriction of D(F) to the heart is given by F, which is obvious
from the above.

To get DT, one uses that all involved derived functors are t-exact, and thus everything restricts to
bounded above objects. O

Definition 4.2. Let X be a qcgs F-scheme. We write X, for the (small) subcategory of Sch,x spanned by
those schemes Y — X that can be written as Y = U;c;Y; — X, where [ is finite, and Y; — X is the inclusion
of a quasi-compact open subset of X. In particular, since every U € X,,, is a finite disjoint union of quasi-
compact open subset of the qegs X, it is clear that U is moreover quasi-separated (as open immersions are
quasi-separated [Sta25] Tag 01L7], and quasi-separated morphisms are stable under composition). We equip
X,ar with the Grothendieck topology where covers are given by jointly surjective families {U; — U}ier. To
see that this in fact defines a Grothendieck topology, we have to check that X,,, is closed under pullbacks.
This is true since the intersection of quasi-compact opens is quasi-compact since X was assumed to be
quasi-separated.

Remark 4.3. This version of the Zariski site is nonstandard. Since affines are quasi-compact, it is still true
that equivalences of sheaves can be checked on affine opens if the scheme is geometric, see Definition [4.5
and Lemma below. If the scheme is not geometric, in order to reduce to affine schemes, one has to work
with hypercovers instead (as the intersections of affines are no longer guaranteed to be affine, and so the
Cech nerve does not only consist of affines). Therefore, it is not clear that our arguments would work with
non-geometric schemes, as one has to prove hyperdescent of the relevant module categories. This is one of
the reasons why we choose to work with geometric schemes in the following. We use this version of the site
to avoid problems with quasi-coherence and flat base change. Indeed, e.g. [Sta25l Tag 02KH] needs the
morphism f to be qcgs. Since in our case f will always be one of the open subset inclusions U < V in X,
this follows from [Sta25, Tag 01KV] and [Sta25l Tag 03GI| since U and V were assumed to be qcgs.

Remark 4.4. If X is a qcgs scheme such that any open subset of X is quasi-compact (e.g. X Noetherian),
then X, is (the finite disjoint union completion of) the usual small Zariski site of X.
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Definition 4.5. Let X be a scheme. We say that X is geometric if X is quasi-compact and has affine
diagonal (the latter is also called semi-separated in the literature).

Lemma 4.6. Let X be a geometric scheme and let C be a complete oco-category. Let F,G: X )b — C be

Zariski sheaves, and let f: F — G be a morphism. Suppose that for every affine open U C X the morphism
fu: F(U) = G(U) is an equivalence. Then f is an equivalence.

Proof. Let U = {U;}; be a finite Zariski cover of X, where the U; are affine. Since X has affine diagonal,
any intersection of the U; is also affine. In particular, the Cech nerve U® of the cover consists only of
affine schemes. Since F is a sheaf, F(X) = lima F(U*®), and similarly for G. By assumption, f induces an
equivalence on the limit diagram and therefore also on the limit. O

We now show that certain constructions like quasi-coherent sheaves satisfy Zariski descent.

Lemma 4.7. Let X be a qcgs Fp-scheme. There is a functor QCoh(—): X9P — Groth which on objects
sends an open U C X to the category of quasi-coherent Oy -modules. Similarly, the associated morphism to
an inclusion U C V' of open subsets of X is the restriction of quasi-coherent Oy -modules to U.

Moreover, QCoh(—) is a Zariski sheaf.
Proof. We let QCoh(—): X2P — Catoo be the straightening of the cartesian fibration from [Sta25l, |Tag 03YL]

zar

(restricted to X2P). Note that by construction, we have that QCoh(U) is just the Grothendieck abelian
category of quasi-coherent sheaves on U. Moreover, on inclusions of open subsets U C V', QCoh(U — V) is
the restriction of quasi-coherent sheaves. Note that these restriction functors are exact as U — V is an open
immersion and so in particular flat. Furthermore, the restriction functors are also colimit-preserving as they
have right adjoints given by pushforward (note that here we need that the morphisms U «— V are qcgs by
Remark . In particular, we see that everything factors through Groth. That the functor QCoh(—) is a
Zariski sheaf follows from [Sta25, Tag 03YM]. Note that the functor actually lands in the (2, 1)-category of

ordinary categories, hence the result from the stacks project applies. O

Lemma 4.8. Let X be a gegs Fp-scheme. The functor QCoh(—): X2 — Groth from Lemma admits a

zar

lift QCoh(—)f° to End(Groth), i.e. there exists a diagonal morphism in the diagram
QCoh(—)frop -7 End(GrOth)

-
s
/
’
/
/

op
Xob Qe ) Groth
such that for any open U C X, the underlying functor of QCoh(U)°" is the Frobenius pushforward
F.: QCoh(U) — QCoh(U).
Proof. By the universal property of End(Groth) and adjunction, this boils down to giving a natural trans-

formation QCoh(—) — QCoh(—), or, by unstraightening [Lur09, §3.2], to giving a morphism of cartesian
fibrations

/QCoh(—) R /QCoh(—).
These are both ordinary categories, so we can write down by hand what this morphism is: On objects, it
sends a pair (U, F), where U C X is open and F € QCoh(U), to the pair (U, Fi..JF). It sends a morphism
(t,0): (U, F) — (V,G), where ¢: U < V is an inclusion of open subsets, and ¢: G — ¢, F is a morphism of
quasi-coherent sheaves, to the morphism (¢, ¢'), where ¢': F.G 9, Fo.,F =1, F.F. Here, the equivalence

exists because already F'v = tF. We check that this actually defines a functor: So let (¢, ¢): (U, F) — (V,G)
and (7,v): (V,G) — (W, H) be two morphisms. We have to see that the outer diagram commutes:

Exy
F*j*¢l lj*F*¢7
F*(j*d’ow) F*]*L*JT'. T ]*F*L*./_'.
/ lEmM

Fojet F Jets Py F.

Ex. «
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Here, the small square commutes by naturality of the exchange transformation, whereas the left trapezoid
commutes by functoriality, and the right trapezoid commutes by the definition of the exchange transforma-
tions.

It suffices to show that the functor is a morphism of cartesian fibrations. So let (v, ¢): (U, F) — (V,G)
be a cartesian edge. Using the description of cartesian edges from [Sta25, Lemma 04U3] we know that the
adjoint morphism QNS: t*G — F is an equivalence, and we have to show that the same is true for the image of

(t,¢). Hence, we have to see that the adjoint of ¢': F.G ﬂ) Fo . F =21, F,F is an isomorphism. Consider
the following diagram:

G Ex, .
VF.G —— *Fo F —= 1, FF

Em:l lEmi lcounit

F*L*g ﬁ F*L*L*.F —_— F*.F
AN} counit

The left square commutes by naturality of the exchange transformation, whereas the right square commutes

by definition of the vertical exchange transformation as adjoint of the map F, W Bt 2, Fot. The
composition on the top and right is the adjoint of ¢’. The left vertical arrow is an isomorphism by [BB13|
Lemma 2.2.1], whereas the bottom composition is Fy applied to the adjoint of ¢, which is an isomorphism
by assumption. This proves the claim. O

Lemma 4.9. Let X be a qcgs F,-scheme. The functor

QCoh(—)™": X — End(Groth)

zar

from Lemmal[].§ is a Zariski sheaf.

Proof. We have seen in Lemma [4.7| that QCoh(—) is a Zariski sheaf. Since End(Groth) — Groth is conser-
vative and preserves limits, e.g. by [MW24] Proposition 2.6 (b) and (c)], it follows immediately that also
QCoh(—)f°b is a Zariski sheaf. O

Proposition 4.10 (Zariski descent of derived categories). Let X be a qcgs Fp-scheme. Let F: X2P. — Groth

zar
be a Zariski sheaf of Grothendieck abelian categories, such that F satisfies base change in the following sense:

If

’

U1L>U2

f’l - lf
U3 T> U4

is a cartesian square in X,ay (in particular, all the arrows are (disjoint unions of) qcgs open immersions),
then applying the functor DT o F (using Proposition yields a horizontally right adjointable square

DH(F(Uy)) —L— D (F(Us))

/| I

DH(F(U2) — DHF(),

i.e. the functors g* and g"* admit right adjoints Rg. and Rg., respectively, and the canonical base change
map f*Rg. — Rg.f"™* is an equivalence.
Then Dt o F: X°P — Cats, is a Zariski sheaf of stable co-categories.

zar

Proof. Tt suffices to show that for every Zariski cover U = {U; — U}, in X the functor DT preserves the
limit diagram F(U) — F(C(U)*), where C(U)* is the Cech nerve of the cover. For notational convenience,
we write A" = F(C(U)"), so that F(U) = A~ = lim,ea A". The proposition then follows from [FIM24),
Proposition A.4.23] if we can show the following statements:

(a) A" is a Grothendieck abelian category for each n € A.
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(b) For every a: [n] — [m] € A, the functor a*: A" — A™ is a left exact functor admitting a right adjoint
Q.

(c¢) For d': [n] — [n + 1] the i-th coface map, and «: [n] — [m] € A, the following diagram commutes:

D+ (A1) P gy

D (A™HY) — DF(A™),
where o is defined as idjg) xo under the identification [n 4 1] = [0] x [n] and similarly for m.

(d) The functor d**: A° — A' sends injective objects to d2-acyclic objects.

The statements (a) and (b) are clear since A® is a diagram in Groth. We proceed by showing (c). By
definition, all functors in the square are induced by open immersions of the form

U New- U N

10,eesim k=0 104eesin k=0

Hence, the result follows from our base change assumption.
We end the proof by showing (d). Let M € F(U;U;) be an injective object. We have to see that d'* M
is d-acyclic. For this, it is enough to see that the following diagram commutes:

D (A%) =5 DHAT

ol

DF(A%),

Rd®

where ¢: LU;U; — U is the canonical map. Indeed, if M € D+ (A?) is injective, we want to know that Rd(d'* M
is concentrated in degree 0. This follows from commutativity, as M is Re.-acyclic (as it is injective), and ¢*
is t-exact (since it was exact on abelian categories). But now the commutativity of the diagram is proven in
exactly the same way as in (c). O

In order to use the above proposition in the setting of Frobenius modules, we have to make sure that
they satisfy (a weak version of) flat base change. For this to make sense note that each qcqs morphism of
schemes f: X — Y induces a left exact pushforward functor

f«: Frob(QCoh(X), Fi) — Frob(QCoh(Y), Fy)

on Frobenius modules via the functoriality of Frob(—), cf. Proposition This in turn induces a right
derived functor
Rf.: Dt (Frob(QCoh(X), F.)) — DT (Frob(QCoh(Y), F,.)).

Moreover, the usual pullback functor f*: QCoh(Y) — QCoh(X) induces a functor
£ Frob(QCoh(Y), Fy) — Frob(QCoh(X), Fy)

via [BP09, Definition 4.1.1] (note that in loc. cit. Frobenius modules are called 7-sheaves, and their categories
are equivalent by [MW24, Corollary 2.10]). The proof of [BP09, Proposition 4.4.5] shows that the pullback
functor f* is left adjoint to f,.

Lemma 4.11. Let
X 25X
- lf

S’T>S
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be a cartesian diagram of geometric F,-schemes and qcgs morphisms such that g is moreover flat. Let
M € D' (Frob(QCoh(X), F\)). Then the base change map g*Rf.M — Rf.g*M is an equivalence in
DT (Frob(QCoh(S5"), Fy)).

Proof. First note that the functors g* and ¢g’* are exact because g, and therefore also ¢’, are flat, respectively,
and because the forgetful functor U is conservative and exact by [MW24], Corollary 2.8 (b) and (h)]. Thus,
[Sta25l Tag 09T5| implies that g* is left adjoint to Rg., and similarly for ¢’. Using this we can define the
base change map as being adjoint to the map Rf.M % Rf.Rg.g"*M = Rg,Rf'¢"* M, where u denotes
the unit of the adjunction and the equivalence follows from the commutativity of the diagram. We have to
show that this map is an equivalence, which we do after applying the conservative t-exact forgetful functor
Dt (U): Dt (Frob(QCoh(S’), F.)) — DT (QCoh(S")) (for the conservativity see [MW24, Corollary A.5]).

Assume first that M € D¥(Frob(QCoh(X), F,))¥. The forgetful functor commutes with the pullback
functors by definition, and with the derived pushforward functors by the version of [BP09, Proposition
6.4.2] for Frobenius modules (here we use that the schemes are geometric which implies that the derived
pushforward functors can be computed using a Cech resolution, cf. [Sta25, Tag 01XL]). This means, we have
to show that the map g* Rf .UM — Rf.g"*UM is an equivalence in D*(QCoh(S")). But this is exactly the
flat base change theorem [Sta25 Tag 02KH].

Since all the functors are exact, by a standard devissage argument, we immediately get the result for
M € D°(Frob(QCoh(X), F.)). Suppose now that M € D+ (Frob(QCoh(X), F.)). By separatedness of the
t-structures, it suffices to show that m,(¢* Rf. UM) — 7, (Rf.g"*UM) is an equivalence for all n € Z. For
this, consider the following diagram:

Tong* REUM —— 1o, Rf.g*UM

ET =]

Tong* REUTsnM ——— 75, RfLg*Ursp, M,

where the vertical arrows are equivalences since g*Rf.U and Rf.g*U are left t-exact (in fact, ¢g*, ¢’* and
U are t-exact, and Rf, and Rf. are right adjoints of t-exact functors). Indeed, this can be checked on
homotopy groups; by definition they vanish below n, and in degrees > n they agree by the long exact
sequence associated to the fiber sequence

Tzng*Rf*UTZnM — Tzng*Rf*UM — Tzng*Rf*UTgnflM,

using that ¢g*Rf.U is left t-exact, and similarly for the right vertical morphism. But the lower horizontal
arrow is an equivalence by the above, as 7>, M is bounded. This immediately implies the result. O

Proposition 4.12. Let X be a geometric Fy-scheme. The presheaf of stable co-categories

DT (Frob(QCoh(—)")): X°P — Caty,

zar

is a Zariski sheaf. Here, QCoh(—)%°" is the functor from Lemma .

Proof. By Lemma [4.9] the presheaf QCoh(—)f°P is a Zariski sheaf. Moreover, the functor Frob(—) preserves
limits by Lemma [2.8] hence also the presheaf Frob(QCoh(—)f°P) is a Zariski sheaf (as Zariski sheaves are
defined using a limit condition). Therefore, the proposition follows from Proposition using Lemmam

O

Lemma 4.13. Let X be a qcgs F-scheme. The presheaf of stable oo-categories

D+ (QCoh(—)): X% — Cate

zar
is a Zariski sheaf.

Proof. Since QCoh(—) is a Zariski sheaf by Lemma this follows from Proposition using [Sta25] |Tag
02KH)] (which applies since all involved morphisms are qcqs, cf. Remark . Note that the reference only
gives that the base change map is an equivalence on objects in the heart, but one can deduce the result for
every bounded above object by an analogous argument as in the proof of Lemma [£.11] O
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Lemma 4.14. Let X be a qcgs F,-scheme. The presheaf of stable co-categories
End(D")(QCoh(—)™P): X° — End(Cats,)

zar

is a Zariski sheaf.

Proof. By Lemma the presheaf QCoh(—)%°P is a Zariski sheaf. Thus, it suffices to show that for every
(quasi-compact) Zariski cover U = {U; < U}; in X,a,, the functor End(D™") preserves the limit diagram
QCoh(U)foP — QCoh(C(U)*)™°P, where C(U)* is the Cech nerve of the cover. By Lemma it is enough
to show that the functor DF preserves the limit diagram QCoh(U) — QCoh(C(U)*). This was shown in
Lemma (LT3 O

Lemma 4.15. Let X be a qcgs F,-scheme. There is a morphism of presheaves on X,y
®: D (Frob(QCoh(—)TP)) — Frob(End(D*)(QCoh(—)TP))

such that for each (quasi-compact) open U C X, the map ®y can be identified with a t-exact functor
@ : DT (Frob(QCoh(U), Fy)) — Frob(DT(QCoh(U)), Dt (F,)),

where the target is equipped with the induced t-structure from [MW2], Proposition 3.3]. If U = Spec(R) is
affine, then this map can be identified with a map

®p: D (Frob(Mod§, F.)) — Frob(DT (Mody), D*(F.)),
which is the restriction of the equivalence from Theorem [3.28

Proof. We will construct a map from the bottom-left to the top-right composition of the below square. Then
precomposition with QCoh(—)°P gives the desired map.

n +
End(Groth) —2227) , End(Cata)

Frob(—,—)J{ lmob(fﬁ)
Groth Catoo

Dt

Let A € Groth, and let F': A — A be a colimit-preserving, left exact endofunctor. Hence, unwinding the
definitions, we have to find a map

®(4,r): DT (Frob(A, F)) — Frob(D" (A), D" (F))

natural in the pair (A, F). Using the universal property of the pullback, we let ®(4 ) be the dashed
morphism in the following diagram:

DF(U)

DT (Frob(A, F))
T ®Pam

DH () F;;b(D*(A),D*(F)) — Y DA

“l - l(id,DﬂF))

Dt (Fun(A', A)) ——— Fun(Al, D*(A)) o DY (A) x D (A).

The bottom left functor is the restriction of the functor from the discussion before [MW24] Theorem 5.1] to
the subcategories of bounded above objects. The commutativity of the outer solid diagram can be deduced
in the exact same way as the commutativity of the diagram in [MW24, Theorem 5.1], see the paragraph
directly behind the statement of the theorem. As everything in this diagram is natural in (A, F'), the same is
true for ®( 4 ). Moreover, the t-exactness of ®(4 ) follows immediately from the definition of the induced
t-structure [MW24, Proposition 3.3], and the fact that D*(U) is t-exact.

Tt is clear from the construction that on affine U = Spec(R) the functor @y is exactly the restriction of
the equivalence from Theorem [3.28 O
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Theorem 4.16. Let X be a geometric F,-scheme. Then the canonical morphism
®x: DY (Frob(QCoh(X), F,)) = Frob(D*(QCoh(X)), DT (F,))
from Lemma is a t-exact equivalence.

Proof. By Lemma [£.15] there is even a morphism of presheaves on X5,
@: Dt (Frob(QCoh(—)™")) — Frob(End(D*)(QCoh(—)°P)),

that is sectionwise t-exact. We have to show that this morphism is an equivalence on global sections.
The source of ® is a Zariski sheaf by Proposition [4.12] Similarly, the target of ® is also a Zariski sheaf:
Indeed, the composition End(D*) o QCoh(—)f°" is a Zariski sheaf by Lemma and the functor
Frob(—, —): End(Cats,) — Catoo preserves limits by Proposition [2.5] Thus, it follows that also the compo-
sition Frob(—, —) o End(D*) o QCoh(—)f°P is a Zariski sheaf.

Hence, in order to see that ® is an equivalence on global sections, it suffices to see that it is an equivalence
on affine opens U C X, cf. Lemma Now note that this case was shown in Theorem [3.28 (as we have
identified the morphism @y with the restriction of the morphism in loc. cit. by Lemma [4.15)). O

5 Left-completeness on geometric schemes

In this section, we show that the derived categories of quasi-coherent modules and Frobenius modules,
respectively, over a geometric scheme are already left-complete. This will imply our main theorem, cf.
Theorem 5.7

Recall from [Ant18, Definition 8.3 (d)] the axiom AB4*n(w) for Grothendieck abelian categories, this is
a weaker variant of Grothendieck’s axiom AB4*. If a Grothendieck abelian category A satisfies AB4*n(w)
for some n > 0, then D(A) is left-complete by [Ant18, Proposition 8.14]. Hence, we get the following:

Lemma 5.1 ([Pos25, Theorem 1.4]). Let X be a geometric scheme. There exists an n > 0 such that
QCoh(X) is AB4*n(w). In particular, the derived co-category D(QCoh(X)) is left-complete.

Proposition 5.2. Let X be a geometric F,-scheme. There exists an n > 0 such that Frob(QCoh(X), Fy) is
AB4*n(w). In particular, the derived oo-category D(Frob(QCoh(X), Fy)) is left-complete.

Proof. By Lemma there is an n > 0 such that QCoh(X) is AB4*n(w). It is enough to show that
Frob(QCoh(X), Fy) is also AB4*n(w). Let (My)r be a countable family in Frob(QCoh(X), Fy). We have
to show that the product [[, HM; € D(Frob(QCoh(X), F,))>—_yn. This statement only depends on the
bounded above part D (Frob(QCoh(X), Fy)). Hence, using Theorem we may work in the co-category
Frob(D*(QCoh(X)), D" (F.)). Now, by definition of the t-structure, connectivity may be checked after
applying the limit-preserving t-exact functor U: Frob(D*(QCoh(X)),D*(F.)) — DT (QCoh(X)). But
U Tl HM;, 2 I, HUM,, € D+(QCoh(X))s_, as QCoh(X) is ABA*n(w). O

To show that Frob(D(QCoh(X)), D(F\)) is left-complete as well, we need the following result:

Lemma 5.3. Let D be a presentable stable co-category with a t-structure. Then D is left-complete if and
only if

(a) X — lim,, 7<, X is an equivalence for every X € D, and

(b) t<plim, X,, — X}, is an equivalence for every k € Z and every (X,,), € lim, D<,, (i.e. X,, € D<,, for
every n, together with compatible equivalences <, X, = Xy, for allm <n).

Proof. By definition, D is left-complete if and only if the canonical functor D — lim,, D<,, is an equivalence.
This functor has a right adjoint, given by sending (X,,), to its limit lim,, X,, € D. The two maps given in
the statement of the lemma are exactly the unit and counit of this adjunction. Hence, D is left-complete if
and only if those maps are equivalences. O

As an immediate corollary, we obtain:
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Corollary 5.4. Let U: D — £ be a t-exact conservative limit-preserving functor of presentable stable oo-
categories with t-structures. If the t-structure on £ is left-complete, then the t-structure on D is also left-
complete.

Using Lemma we can apply this result to U: Frob(D(QCoh(X)), D(F.)) — D(QCoh(X)), which
is conservative and limit-preserving by [MW24] Corollary 2.8 (b) and (c)], and t-exact by definition of the
induced t-structure [MW24| Proposition 3.3]. Hence, we get:

Corollary 5.5. Let X be a geometric F,-scheme. The induced t-structure on Frob(D(QCoh(X)), D(Fy)) is
left-complete.

Next, we state and prove our main theorem. For a geometric Fp-scheme X, using the universal property
of the pullback, we let ®x be the dashed morphism in the following diagram, where we write for notational
convenience A = QCoh(X):

D(U)

D(x) F;éb(’D(A), D(F,)) ——

D(A)
Kl - J(id,D(F*
D(Fun(Al, A)) ——— Fun(A!, D(A)) = D(A) x D(A).

U

Here, the bottom left functor is the functor from the discussion before [MW24, Theorem 5.1]. As in the
last sections, the commutativity of the outer solid diagram can be deduced in the exact same way as the
commutativity of the diagram in [MW24 Theorem 5.1], see the paragraph directly behind the statement of
the theorem.

To prove the main theorem, we also need the following lemma about left-complete stable co-categories:

Lemma 5.6. Let F': D — & be a t-exact functor of presentable stable oco-categories with t-structures such
that both co-categories are left-complete. If the induced functor FT: Dt — £ is an equivalence, then also
F: D — & is an equivalence.

Proof. This is immediate since D<,, = D<n —> E;n = &y, for all n € Z, and D = lim,, D<,,, and similarly
for £. O

Theorem 5.7. Let X be a geometric F,-scheme. Then the functor
®x : D(Frob(QCoh(X), F,)) = Frob(D(QCoh(X)), D(F,))

described above is a t-exact equivalence, where we equip the target with the induced t-structure from [MW24,
Proposition 3.3].

Proof. The t-exactness of the functor follows immediately from the definition of the induced t-structure and
the t-exactness of D(U). Thus, ®x restricts to a functor

&% : DT (Frob(QCoh(X), F.)) — Frob(D*(QCoh(X)), D" (F.)).

By construction, ®% is the same functor as in Theorem where we also showed that it is an equivalence.
Note that by definition of the induced t-structure on Frob(D(QCoh(X)), D(Fy)) the category of bounded
above objects of this category is exactly given by Frob(D*(QCoh(X)), D" (F,)). Hence, Lemma [5.6 implies
that the functor

& : D(Frob(QCoh(X), F,)) = Frob(D(QCoh(X)), D(F.))

is also an equivalence, as both source and target are left-complete by Proposition [5.2] and Corollary 5.5 [

21



A Compact projective generators

In the literature, there are a variety of notions of compact (projective) generators in various settings, e.g. in
abelian categories or in stable co-categories. The goal of this appendix is to translate between some of those
notions so that we may use different results from the literature.

Definition A.1. Let A be a Grothendieck abelian category and P € A an object. We say that P is a
compact projective generator if Map 4 (P, —) commutes with sifted colimits and is conservative.

This definition immediately implies the following:

Lemma A.2. Let A be a Grothendieck abelian category and P € A a compact projective generator. Then
Map 4 (P, —) commutes with all colimits.

Proof. Since Map 4 (P, —) preserves sifted colimits by assumption, it suffices to show that Map 4 (P, —) pre-
serves finite coproducts. This is clear since finite coproducts are finite products in abelian categories. O

We have a similar definition in the stable situation.

Definition A.3. Let D be a presentable stable co-category and P € D an object. We say that P is a
stable compact generator if mapp(P,—) (the mapping spectrum) commutes with filtered colimits and is
conservative.

Example A.4. Let R be an associative ring. Then R € Modg is a compact projective generator, and
R € Modg, is a stable compact generator.

Our goal in this section is to prove the following proposition:

Proposition A.5. Let A be a Grothendieck abelian category, and P € A a compact projective generator.
Then HP € D(A) is a stable compact generator.

For the proof, we need the following two lemmas.

Lemma A.6. Let A be a Grothendieck abelian category, and P € A a compact projective generator. Then
every object A € A admits a surjection 1P — A for some (small) set I.

v: P P—A

f: P—A

Proof. Consider the canonical map

We claim that this map is surjective, i.e. coker(¥) = 0. Since Map 4(P, —) is conservative and preserves
cokernels (by Lemma|A.2)), it suffices to show that the induced map of abelian groups

Map (P, €D P)— Map (P, A)
f: P—A

is surjective. This is clear as any f: P — A is the image of the inclusion of the f-th summand. O

Remark A.7. The last lemma shows that a compact projective generator is in particular a generator in the
sense of Grothendieck, see [Gro57, Proposition 1.9.1].

Lemma A.8. Let A be a Grothendieck abelian category, and P € A a compact projective generator. Then
there is an equivalence ¥: A =» Modz, where R := End(P) is the endomorphism ring of P, and ¥(P) = R.

Proof. Note that P is projective (in the abelian sense, i.e. Map 4(P,—) commutes with cokernels) by
Lemmal[A.2] Hence, in view of Lemmal[A.6] this follows from Gabriel’s theorem [Gab62, Corollaire V.1.1]. [

Proof of Proposition[A.5 By Lemma we may assume that A = Modz for some associative ring R, and
P = R. In particular, we know D(A) = Modg. Our goal is to show that mapyy,q,, (R, —) is conservative and
preserves filtered colimits. This functor can be identified with the canonical forgetful functor Modr — Sp,
cf. Lemma [335] Hence, the result follows from Lemma [3.3] O
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We end the section by proving a stability property of generators.

Lemma A.9. Let L: C — D be a left adjoint functor of co-categories such that the right adjoint R: D — C
preserves colimits and is conservative.

(a) If both C and D are Grothendieck abelian, then L preserves compact projective generators.
(b) If both C and D are presentable stable, then L preserves stable compact generators.

Proof. For the abelian case, let P € C be a compact projective generator. The statement then follows from
the equivalence Mapp(LP, —) = Map.(P, R—) and the properties of R. In the stable case, note that the
adjunction is automatically spectrally enriched. O
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