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Abstract

We prove that for X a quasi-compact Fp-scheme with affine diagonal (e.g. X quasi-compact and
separated) there is a t-exact equivalence D(Frob(QCoh(X), F∗)) → Frob(D(QCoh(X)),D(F∗)) of stable
∞-categories. Here, Frob(−,−) denotes the ∞-category of generalized Frobenius modules as introduced
in [MW24]. This generalizes our result from [MW24], where we proved the above for regular Noetherian
Fp-schemes. As a byproduct we prove that the derived ∞-category of Frobenius (and Cartier) modules
satisfies Zariski descent.
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1 Introduction

A crucial aspect of algebraic geometry over a field of positive characteristic p > 0 is the presence of the
Frobenius endomorphism. In particular, the study of modules with an action of the Frobenius has lead to
deep structural results.

If X is an Fp-scheme, then a (quasi-coherent) OX -module with a left action of the absolute Frobenius
F : X → X is called a Frobenius module. Equivalently, a Frobenius module is given by a pair (M,κM ) of
an OX -module M and an OX -linear morphism κM : M → F∗M . Examples of Frobenius modules include
the structure sheaf OX and local cohomology modules, both equipped with their natural left action by
the Frobenius. They have been used to prove important finiteness results, cf. [HS77, Lyu97]. Moreover,
Frobenius modules are related via a Riemann–Hilbert-type correspondence to p-torsion étale sheaves, cf.
[EK04, BL17, BP09].

There is also a dual notion of Cartier modules, which are related to Frobenius modules via Grothendieck–
Serre duality by a result of Baudin [Bau25, Theorem 4.2.7]. They are (quasi-coherent) OX -modules with
a right action of the Frobenius. Their category was first considered by Anderson in [And00] and more
thoroughly studied by Blickle and Böckle in [BB11, BB13]. Both Frobenius modules and Cartier modules
are important tools in positive characteristic commutative algebra and algebraic geometry, and have been
studied by many authors [LS01, Sch09, Pat16, HP16].

In our previous article [MW24], we introduced an ∞-categorical framework for Cartier and Frobenius
modules. Recall that for any (∞-)category C with an endofunctor G : C → C, we defined Frob(C, G) :=
LEq(idC , G) as the lax equalizer of the identity with G, cf. [MW24, Definition 2.4], and similarly Cart(C, G) :=
LEq(G, idC). If X is an Fp-scheme for some prime p, C = QCoh(X) and G = F∗ is the pushforward along
the absolute Frobenius, one recovers the classical categories of Frobenius and Cartier modules on X, see the
explanation above or e.g. [BL17, Remark 1.3.2] and [BB11, Definition 2.1] for definitions of these categories.

In the following, we write D(A) ∈ PrLst for the (presentable stable) derived ∞-category of a Grothendieck
abelian category A. In [MW24] we proved the following:

Theorem ([MW24, Corollaries 6.2 and 6.3]). Let X be an Fp-scheme. Then there is a canonical t-exact
equivalence of presentable stable ∞-categories

D(Cart(QCoh(X), F∗))
≃−→ Cart(D(QCoh(X)),D(F∗)).

If X is moreover regular Noetherian, then there is a canonical t-exact equivalence of presentable stable ∞-
categories

D(Frob(QCoh(X), F∗))
≃−→ Frob(D(QCoh(X)),D(F∗)).

Note that for this theorem to hold true, it is crucial to work with the derived ∞-category. In fact, the
proclaimed equivalences in the theorem do not hold if we replace the derived ∞-category by the ordinary
derived category hD(−): In this case, the target categories would not even admit a triangulated structure,
as the category Fun(∆1, hD(QCoh(X))) does not do so.

We needed the assumption that X is regular Noetherian so that the Frobenius F is flat by Kunz’ theorem
[Kun69, Theorem 2.1], and hence F ∗ is an exact functor. If X is arbitrary, then this is no longer the case,
and the proof strategy of [MW24] does no longer work. The goal of this paper is a version of the above
result, where we essentially remove the regularity and Noetherian hypothesis. For this, we need the following
definition:

Definition. Let X be a scheme. We say that X is geometric if X is quasi-compact and has affine diagonal
(the latter is also called semi-separated in the literature).

Example. Since closed immersions are affine, and affine morphisms are quasi-compact, we see that quasi-
compact separated schemes are geometric, and geometric schemes are qcqs. In particular, any affine scheme
is geometric.

Theorem A (Theorem 5.7). Let X be a geometric Fp-scheme. Then the canonical map

D(Frob(QCoh(X), F∗)) → Frob(D(QCoh(X)),D(F∗))

is a t-exact equivalence of presentable stable ∞-categories.
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Outline of the proof

We now explain how we prove Theorem A. Both sides of the proclaimed equivalence are left-complete (this
follows from Proposition 5.2, Lemma 5.1, and Corollary 5.4), hence (using Lemma 5.6) it suffices to show
the following theorem:

Theorem B (Theorem 4.16). Let X be a geometric Fp-scheme. Then the canonical map

D+(Frob(QCoh(X), F∗)) → Frob(D+(QCoh(X)),D+(F∗))

is a t-exact equivalence of stable ∞-categories. Here, D+ denotes the full subcategory of bounded above
objects.

In Proposition 4.12 and (the proof of) Theorem 4.16 we show that both sides of the equivalence are
Zariski sheaves in X, and that there is a canonical morphism between them, cf. Lemma 4.15. At this point,
we heavily use that we are working with the derived ∞-category instead of the ordinary derived category.
Hence, it suffices to prove the statement for X = Spec(R) an affine scheme. On affines, it boils down to
the Schwede–Shipley recognition theorem for stable module categories [Lur17, Theorem 7.1.2.1], which is
an ∞-categorical version of Gabriel’s theorem [Gab62, Corollaire V.1.1]: If one has a stable ∞-category
C with a compact projective generator M , then C is equivalent to the stable ∞-category of A-module
spectra, where A = End(M) is the endomorphism ring spectrum of M . Hence, in order to show Theorem B
on affines, it therefore suffices to show that both categories admit a compact projective generator (for
this see Lemmas 3.18 and 3.22), and that the endomorphism ring spectra of the generators are equivalent
(Proposition 3.27). In fact, as expected, the endomorphism ring spectra on both sides are equivalent to the
discrete (non-commutative) ring R[F ]op of e.g. [BP09, Definition 3.2.1].

Remark. Note that we cannot directly show that both sides of Theorem A are Zariski sheaves, as we a priori do
not know that they are left-complete. Indeed, for the proof of the left-completeness ofD(Frob(QCoh(X), F∗)),
we need to know that Frob(QCoh(X), F∗) satisfies a weaker version of axiom AB4∗. In order to show this,
we first establish Theorem B, as this axiom only depends on the bounded above objects of the derived
∞-category, and hence can then be deduced from the fact that already QCoh(X) satisfies it.

Zariski descent

As already mentioned above, one step in the proof of the main theorem is a reduction to affine schemes via
Zariski descent. In particular, we get the following result:

Theorem C (Proposition 4.12). Let X be a geometric Fp-scheme and write Xzar for the small (quasi-
compact) Zariski site of X, cf. Definition 4.2. Then D+(Frob(QCoh(−), F∗)) defines a Zariski sheaf on Xzar

with values in Cat∞.

As explained above, all involved ∞-categories are already left-complete. Hence, one also gets via an
analogous proof (using that then already D(−) preserves certain limits as in the proof of Proposition 4.10,
see [HM24, Proposition A.4.23]) the following:

Theorem D. Let X be a geometric Fp-scheme. Then D(Frob(QCoh(−), F∗)) defines a Zariski sheaf on
Xzar with values in PrLst.

Essentially dualizing the proof, we also get

Corollary E. Let X be a geometric Fp-scheme. Then D(Cart(QCoh(−), F∗)) defines a Zariski sheaf on
Xzar with values in PrLst.

Remark. One can use similar techniques to show stronger descent statements for the derived ∞-categories
of Frobenius and Cartier modules.
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Use of the ∞-category of spectra

As explained above, our proof reduces to the affine case X = Spec(R), and then identifies both sides with the
category of R[F ]-module spectra, i.e. working over the absolute base S ∈ Sp. This is mostly for convenience
of reference, as the ∞-categorical Schwede–Shipley theorem is formulated in this setting. Since all our
categories are (limits of) derived categories of rings and schemes, they are all Z-linear. Hence, one could
avoid the ∞-category of spectra by proving a Z-linear version of Schwede–Shipley, which then would identify
both sides of the equivalence with the category ModR[F ](D(Z)) (which in turn is of course equivalent to
ModR[F ](Sp), since the E1-morphism S → R[F ] canonically factors through HZ, and D(Z) = ModHZ(Sp)).

Notations and Conventions

This article is written in the language of ∞-categories, as developed by Lurie in [Lur09, Lur17, Lur18]. We
fix four universes, small, large, huge and very huge. By default, i.e. if not specified otherwise, any ∞-category
will be large, and any scheme will be small. We will employ the following notations:

p A prime number
Cat∞ The huge ∞-category of large ∞-categories

Ĉat∞ The very huge ∞-category of huge ∞-categories
PrL The huge ∞-category of large presentable ∞-categories,

with small colimit-preserving functors
PrLst The huge ∞-category of large presentable stable ∞-categories,

with small colimit-preserving functors
Groth The huge ∞-category of large Grothendieck abelian categories,

with small colimit-preserving exact functors
Sp The stable ∞-category of small spectra
S ∈ Sp The sphere spectrum

In particular, note that Sp ∈ PrLst, and that Cat∞,PrL,PrLst,Groth ∈ Ĉat∞.
We always use homological notation for a t-structure on a stable ∞-category. If D is a stable ∞-category

with a t-structure (D≥0,D≤0), we write H : D♡ ↪→ D for the inclusion of the heart.
If D is a stable ∞-category, it is in particular enriched in the ∞-category of spectra Sp, cf. [GH15,

Example 7.4.14]. We write mapD(−,−) : Dop × D → Sp for the mapping spectrum. If L : D ⇄ E :R is
an adjunction between stable ∞-categories, we will use without mention that it upgrades to a spectrally
enriched adjunction. In particular, there is a natural equivalence mapE(L−,−) ∼= mapD(−, R−).
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2 Functoriality of Frobenius modules

In this section, we show that the construction of (generalized) Frobenius modules from [MW24, Definition
2.4] is functorial in the ∞-category and its endofunctor. Moreover, we prove that the resulting functor is
limit-preserving, cf. Proposition 2.5 and Lemma 2.8.

Definition 2.1. We define a functor End(−) : Ĉat∞ → Ĉat∞ as the pullback in the following diagram in

Fun(Ĉat∞, Ĉat∞):

4



End(−) id
Ĉat∞

Fun(∆1,−) id
Ĉat∞

× id
Ĉat∞

.

⌟κ

U

(id,id)

(s,t)

If C is a (huge) ∞-category, we call End(C) the ∞-category of endomorphisms in C.
Remark 2.2. Let C be a huge ∞-category. Then End(C) ∼= LEq(idC , idC) is the lax equalizer of the identity
with the identity on C, see e.g. [MW24, Definition 2.1] for a definition. In other words, it fits in a pullback

square in Ĉat∞:

End(C) C

Fun(∆1, C) C × C.

⌟
UC

κC (idC,idC)

(s,t)

This holds since limits of functors are computed pointwise. A similar statement is true for morphisms, see
also the diagram in the next lemma.

Lemma 2.3. Let F : C → D be a functor of huge ∞-categories (i.e. a morphism in Ĉat∞). Moreover, let
p : K → End(C) be a diagram in End(C) admitting a limit and assume that F preserves the limit of the
diagram UC ◦ p. Then End(F ) : End(C) → End(D) preserves the limit of the diagram p. In particular, if F
preserves limits, then so does End(F ).

Proof. By construction (as limits of functors are computed pointwise), we know that End(F ) is the dashed
diagonal arrow in the following diagram:

End(C) C

End(D) D

Fun(∆1,D) D ×D

Fun(∆1, C) C × C.

End(F )

UC

κC (id,id)

F

⌟κD

UD

(id,id)

(s,t)
F∗

(s,t)

F×F

Thus, since UC and UD are limit-preserving and conservative functors by [MW24, Proposition 2.6 (b) and
(c)], and since F preserves the limit of the diagram UC ◦ p, the lemma follows from the commutativity of the
top quadrilateral.

We now construct the ∞-category of (generalized) Frobenius modules as a functor End(Cat∞) → Cat∞.

Proposition 2.4. There is a functor Frob(−,−) : End(Cat∞) → Cat∞ such that for every endofunctor
F : C → C, we have that Frob(C, F ) is the category of generalized Frobenius modules from [MW24, Definition
2.4].

Moreover, on morphisms f : (C, F ) → (D, G) the functor Frob(f) is given by the dashed morphism induced
by the following diagram:

Frob(C, F ) C

Frob(D, G) D

Fun(∆1, C) Fun(∆1,D) D ×D.

UC

κC

f

⌟
UD

κD (idD,G)

f∗ (s,t)
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Here, the commutativity of the outer diagram is witnessed by

idD fUC ∼= fsκC ∼= sf∗κC

and
GfUC ∼= fFUC ∼= ftκC ∼= tf∗κC .

Proof. Write UCat∞ : End(Cat∞) → Cat∞ and κCat∞ : End(Cat∞) → Fun(∆1,Cat∞) for the canoni-
cal forgetful functors (i.e. the projections out of the limit). By adjunction (and the identification of
s ◦ κCat∞

∼= UCat∞
∼= t ◦ κCat∞ via the defining diagram of End(Cat∞)), this can be seen as a natural

transformation κCat∞ : UCat∞ → UCat∞ . We let Frob(−,−) be the pullback in the diagram of functors in
Fun(End(Cat∞),Cat∞):

Frob(−,−) UCat∞

Fun(∆1, UCat∞) UCat∞ × UCat∞ .

⌟
(id,κCat∞ )

(s,t)

If (C, F ) ∈ End(Cat∞), then we see that (as limits of functors are computed pointwise) there is a pullback
square

Frob(C, F ) C

Fun(∆1, C) C × C,

⌟
UC

κC (idC,F )

(s,t)

i.e. we see that Frob(C, F ) agrees with the ∞-category from [MW24, Definition 2.4]. A similar argument
gives us the description on morphisms.

Proposition 2.5. The functor Frob(−,−) : End(Cat∞) → Cat∞ from Proposition 2.4 preserves limits.

Proof. Since Frob(−,−) is itself a limit of functors, it suffices to show that UCat∞ and Fun(∆1,−) preserve
limits. The first statement is [MW24, Proposition 2.6 (c)], and the second holds e.g. because Fun(∆1,−) is
right adjoint to the functor −×∆1 : Cat∞ → Cat∞.

Lemma 2.6. Let f : (C, F ) → (D, G) be a morphism in End(Cat∞). If the underlying functor f : C → D is
fully faithful, then also the induced functor Frob(C, F ) → Frob(D, G) is fully faithful.

Proof. The induced functor is the limit of the fully faithful functors f : C → D, f × f : C2 → D2 and
f∗ : Fun(∆1, C) → Fun(∆1,D), and thus itself fully faithful.

Proposition 2.7. Let C be either Groth ∈ Ĉat∞ or PrLst ∈ Ĉat∞. Write ι : C → Cat∞ for the obvious
inclusion. Then there exists the dashed functor making the following diagram commute:

End(Cat∞) Cat∞

End(C) C.

Frob(−,−)

End(ι) ι

We write again Frob(−,−) for the dashed functor. In other words, the functor Frob(−,−) ◦ End(ι) factors
over C.

Proof. We first prove the result if C = Groth. It suffices to show that for every (A, F ) ∈ End(Groth)
we have that Frob(A, F ) is again Grothendieck abelian, and that if ϕ : (A, F ) → (B, G) ∈ End(Groth) is
a colimit-preserving exact functor commuting with F and G, then also Frob(ϕ) is colimit-preserving and
exact.

The first statement is just [MW24, Corollary 2.8 (i)]. For the second statement, note that by definition,
there is a commutative diagram
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Frob(A, F ) A

Frob(B, G) B.

UA

Frob(ϕ) ϕ

UB

Now note that UA and UB are conservative, colimit-preserving and exact functors by [MW24, Corollary 2.8
(b) and (i)], and that ϕ is colimit-preserving and exact by assumption. Thus, the commutativity of the
above square immediately implies the result.

If C = PrLst, one now uses [MW24, Corollary 2.8 (e) and (f)] to see that on objects Frob(−,−) lands again
in PrLst. The argument for morphisms is analogous to the case C = Groth, again using [MW24, Corollary
2.8 (b) and (f)].

Lemma 2.8. Let C be either Groth ∈ Ĉat∞ or PrLst ∈ Ĉat∞. Then the functor Frob(−,−) : End(C) → C
from Proposition 2.7 preserves limits.

Proof. By definition, there is a commutative diagram

End(Cat∞) Cat∞

End(C) C.

Frob(−,−)

End(ι)

Frob(−,−)

ι

The top functor preserves limits by Proposition 2.5. If ι preserves limits, then so does End(ι) by Lemma 2.3.
Thus, using the commutativity of the diagram, it is enough to show that ι is conservative and preserves
limits. Conservativity is clear (as equivalences are always colimit-preserving and exact). For limits, in the
case of C = Groth this is [Lur18, Proposition C.5.4.21], and if C = PrLst this follows from [Lur17, Proposition
4.8.2.18] and [Lur09, Proposition 5.5.3.13].

3 Frobenius modules as modules over a ring

In this section, we show that Theorem A holds for affine schemes, cf. Theorem 3.28. To do so, we identify
both relevant ∞-categories as ∞-categories of module spectra over equivalent E1-rings. For this, we use the
Schwede–Shipley theorem, which we recall in Proposition 3.9.

Definition 3.1. Let S be an associative discrete ring. We write Mod♡S for the abelian (ordinary) category
of (right) S-modules.

Definition 3.2. Let S be an E1-ring spectrum (e.g. a discrete ring). Then we write ModS for the presentable
stable ∞-category of (right) S-module spectra, cf. [Lur17, Definition 7.1.1.2]. See [Lur17, Corollary 7.1.1.5]
and [Lur17, Corollary 4.2.3.7] for a proof that ModS is stable and presentable.

Lemma 3.3. Let S be an E1-ring spectrum. There is an adjunction

freeS : Sp ⇄ ModS : fgtS

such that fgtS freeS
∼= S ⊗S −, where S denotes the sphere spectrum, and freeS S ∼= S. Moreover, fgtS is

conservative and preserves colimits.
If S is an E∞-ring spectrum, then the right-hand side can be equipped with a symmetric monoidal structure

such that freeS is symmetric monoidal.

Proof. That there is an adjunction with the required description of the composition was shown in [Lur17,
Corollary 4.2.4.8]. We will defer the proof that freeS S ∼= S to the end. That fgtS is conservative can be seen
as follows: By stability, we only have to see that if fgtS(M) ∼= 0, then M ∼= 0. This is true as there is only
the trivial S-module structure on 0. In order to see that fgtS also preserves colimits, it suffices to show that
it has a right adjoint, which follows from [Lur17, Remark 4.2.3.8], since the tensor product on Sp commutes
with colimits in both variables.
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If S is an E∞-ring spectrum, then we equip ModS with the symmetric monoidal structure from [Lur17,
Theorem 4.5.2.1] (here we use that the tensor product in Sp commutes with colimits in each variable). It
was shown essentially in [Lur17, Corollary 5.1.2.6], that the unit map S → S induces a symmetric monoidal
functor Sp → ModS . As this functor is given by base change, it is clear that this functor is equivalent to
freeS , which gives us a symmetric monoidal structure on the latter.

Similarly, if S was only assumed to be E1, then [Lur17, Corollary 5.1.2.6] shows that Sp → ModS is
E0-monoidal, i.e. preserves the unit object. This is exactly the claim that freeS S ∼= S.

If S is a connective E1-ring spectrum, then we equip ModS with the accessible t-structure from [Lur17,
Proposition 7.1.1.13]. The following is immediate from the definition:

Lemma 3.4. Let S be a connective E1-ring spectrum. Then the forgetful functor fgtS : ModS → Sp is
t-exact.

Lemma 3.5. Let S be an E1-ring spectrum. Then there is an equivalence of functors

mapModS
(S,−) ∼= fgtS .

Proof. By Lemma 3.3 we have freeS S ∼= S. Thus, by adjunction we get

mapModS
(S,−) ∼= mapModS

(freeS S,−) ∼= mapSp(S, fgtS −) ∼= fgtS ,

where we used in the last equivalence that S is the unit and mapSp(−,−) the internal mapping object of the
category of spectra.

Recall the following lemma:

Lemma 3.6 ([Lur17, Theorem 7.1.2.13]). Let R be a commutative discrete ring. Then there is a symmetric
monoidal equivalence

D(Mod♡R)
∼= ModR .

Lemma 3.7. There is a functor
Θ: AlgE1

(Sp) → (PrLst)ModS /

that sends an E1-algebra R to the functor ModS → ModR given by base change.

Proof. See the discussion right before [Lur17, Corollary 4.8.5.13] with C = Sp, together with the canonical
equivalence Sp ∼= ModS.

Remark 3.8. An object F : ModS → C in (PrLst)ModS /
is the same data as a presentable stable ∞-category

C, together with an object M = F (S) ∈ C. This is true because ModS ∼= Sp, and a colimit-preserving exact
functor Sp → C is just the data of an object (the image of S).

If R is an E1-algebra, then Θ(R) ∼= (ModR, R), as S⊗S R ∼= R.

This functor has the following property:

Proposition 3.9 (Schwede–Shipley theorem). The functor Θ is fully faithful and has a right adjoint. An
object (C,M) ∈ (PrLst)ModS /

is in the essential image if and only if M is a stable compact generator of C in

the sense of Definition A.3. Moreover, the right adjoint of Θ is given by the functor that sends (C,M) to
End(M), where End(M) denotes the endomorphism spectrum of M equipped with its E1-ring structure.

Proof. That Θ is fully faithful and admits a right adjoint follows from [Lur17, Theorem 4.8.5.11], as Θ is the

restriction of Θ̂∗, whereas the description of the essential image is (the proof of) [Lur17, Theorem 7.1.2.1].
The description of the right adjoint is [Lur17, Remark 4.8.5.12].

For the rest of this section, let R be a (discrete) Fp-algebra. Write F : R → R for the Frobenius
endomorphism, i.e. the ring morphism given by x 7→ xp.

Note that the functor F∗ : Mod♡R → Mod♡R is a colimit-preserving exact functor of Grothendieck abelian
categories, as it has both a left adjoint [Sta25, Tag 05DQ] and a right adjoint [Sta25, Tag 08YP]. In particular,
the functor D(F∗) : D(Mod♡R) → D(Mod♡R) exists, cf. [MW24, Notation A.3].
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Proposition 3.10. The Frobenius pushforward D(F∗) : D(Mod♡R) → D(Mod♡R) has a symmetric monoidal

left adjoint LF ∗ : D(Mod♡R) → D(Mod♡R).

Proof. We have a canonical symmetric monoidal equivalence D(Mod♡R)
∼= ModR by Lemma 3.6. Hence, the

existence of the left adjoint is [Lur17, Proposition 4.6.2.17]. That the left adjoint is symmetric monoidal
follows essentially from [Lur17, Remark 4.5.3.2].

In the following we consider the category Frob(D(Mod♡R),D(F∗)) of (generalized) Frobenius modules.
Recall that it is defined by the pullback square

Frob(D(Mod♡R),D(F∗)) D(Mod♡R)

Fun(∆1,D(Mod♡R)) D(Mod♡R)
2.

⌟κD

UD

(id,D(F∗))

(s,t)

Proposition 3.11. The functor UD : Frob(D(Mod♡R),D(F∗)) → D(Mod♡R) has a left adjoint LD. The
underlying module of the left adjoint is given by UDLD ∼=

⊔
n≥0(LF

∗)n.

Proof. Since by Proposition 3.10 D(F∗) : D(Mod♡R) → D(Mod♡R) admits a left adjoint LF ∗, and since

D(Mod♡R) admits all countable coproducts (as it is presentable), it follows from [MW24, Corollary 4.4]
that UD has a left adjoint with the given description.

Recall that the category Frob(Mod♡R, F∗) is defined by the pullback square

Frob(Mod♡R, F∗) Mod♡R

Fun(∆1,Mod♡R) (Mod♡R)
2

⌟κ♡

U♡

(id,F∗)

(s,t)

in Cat∞. Since the functor F∗ admits a left adjoint (cf. [Sta25, Tag 05DQ]) and the category Mod♡R admits

all countable coproducts, the forgetful functor U♡ also admits a left adjoint L♡ : Mod♡R → Frob(Mod♡R, F∗)
by [MW24, Corollary 4.4].

By Proposition 2.7 the category Frob(Mod♡R, F∗) is Grothendieck abelian, so we can consider its de-
rived ∞-category. Note that the functors U♡ and κ♡ both are exact and colimit-preserving: For U♡ this
follows from [MW24, Corollary 2.8 (i)] as Mod♡R is a Grothendieck abelian category and F∗ is exact and
colimit-preserving, and for κ♡ this can be checked after applying the source and target functors where it
amounts to the fact that U♡ and F∗ are exact and colimit-preserving. Hence, they induce derived func-
tors D(U♡) : D(Frob(Mod♡R, F∗)) → D(Mod♡R) and D(κ♡) : D(Frob(Mod♡R, F∗)) → D(Fun(∆1,Mod♡R)) by
[MW24, Proposition A.2].

Definition 3.12. We define Φ: D(Frob(Mod♡R, F∗)) → Frob(D(Mod♡R),D(F∗)) to be the functor fitting into
the following diagram as the dashed arrow, via the universal property of the pullback:

D(Frob(Mod♡R, F∗))

Frob(D(Mod♡R),D(F∗)) D(Mod♡R)

D(Fun(∆1,Mod♡R)) Fun(∆1,D(Mod♡R)) D(Mod♡R)
2.

D(κ♡)

Φ

D(U♡)

⌟κD

UD

(id,D(F∗))

ξ (s,t)
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Here, ξ is the functor from the discussion before [MW24, Theorem 5.1]. The commutativity of the outer solid
diagram can be deduced in the exact same way as the commutativity of the diagram in [MW24, Theorem
5.1], see the paragraph directly behind the statement of the theorem.

In the rest of this section, we show that Φ is an equivalence.
For this, we first introduce t-structures on the source and target of Φ such that Φ is t-exact with respect

to these t-structures.
Recall that the derived ∞-category D(A) of any Grothendieck abelian category A carries a t-structure

which is described in [Lur17, Definition 1.3.5.16]. In particular, the ∞-category D(Frob(Mod♡R, F∗)) carries

an induced t-structure as Frob(Mod♡R, F∗) is a Grothendieck abelian category by Proposition 2.7.
Moreover, we have the following.

Lemma 3.13. Define the two full subcategories Frob(D(Mod♡R),D(F∗))≥0 and Frob(D(Mod♡R),D(F∗))≤0 of

Frob(D(Mod♡R),D(F∗)) as follows: For an object M ∈ Frob(D(Mod♡R),D(F∗)) we have

M ∈ Frob(D(Mod♡R),D(F∗))≥0 if and only if UDM ∈ D(Mod♡R)≥0, and

M ∈ Frob(D(Mod♡R),D(F∗))≤0 if and only if UDM ∈ D(Mod♡R)≤0.

These subcategories define a t-structure on Frob(D(Mod♡R),D(F∗)) and the forgetful functor UD is t-exact.

Proof. Since the functor D(F∗) : D(Mod♡R) → D(Mod♡R) is t-exact by the definition of the derived functor,
cf. [MW24, Notation A.3], this follows directly from [MW24, Proposition 3.3].

Lemma 3.14. The functor Φ is t-exact.

Proof. By the definition of the t-structure on Frob(D(Mod♡R),D(F∗)) it suffices to show that UD◦Φ ∼= D(U♡)
is t-exact. This follows from the definition of the derived functor, cf. [MW24, Notation A.3].

Therefore, Φ induces a functor Frob(Mod♡R, F∗) → Frob(D(Mod♡R),D(F∗))
♡ between the hearts. We

proceed by showing that this induced functor is an equivalence.

Lemma 3.15. Consider the functor

Λ := Frob(π0, h) : Frob(D(Mod♡R),D(F∗)) → Frob(Mod♡R, F∗)

induced by the functoriality of Frob(−,−) from Proposition 2.4 and the commutative square h:

D(Mod♡R) D(Mod♡R)

Mod♡R Mod♡R ,

π0

D(F∗)

π0

F∗

which exists by [MW24, Lemma A.4]. Then the composition of the inclusion of the heart

H : Frob(D(Mod♡R),D(F∗))
♡ ↪→ Frob(D(Mod♡R),D(F∗))

with Λ is an equivalence Frob(D(Mod♡R),D(F∗))
♡ ∼= Frob(Mod♡R, F∗).

Proof. This is done in the proof of [MW24, Proposition 3.4]. Note that the functor which is called Φ in
loc. cit. is exactly the composition

Frob(D(Mod♡R),D(F∗))
♡ H
↪−→ Frob(D(Mod♡R),D(F∗))

Λ−→ Frob(Mod♡R, F∗).

Lemma 3.16. Under the identification of the heart of Frob(D(Mod♡R),D(F∗)) from Lemma 3.15, the fol-
lowing diagram commutes:
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Frob(D(Mod♡R),D(F∗)) Fun(∆1,D(Mod♡R))

Frob(Mod♡R, F∗) Fun(∆1,Mod♡R).

π0

κD

(π0)∗

κ♡

Proof. By the description of the equivalence of Lemma 3.15 and of the t-structure on Fun(∆1,D(Mod♡R)),
we have to show that the following diagram commutes:

Frob(D(Mod♡R),D(F∗)) Fun(∆1,D(Mod♡R))

Frob(D(Mod♡R),D(F∗))
♡ Fun(∆1,D(Mod♡R))

♡

Frob(D(Mod♡R),D(F∗)) Fun(∆1,D(Mod♡R))

Frob(Mod♡R, F∗) Fun(∆1,Mod♡R).

π0

κD

π0

H

κ♡
D

H

Λ

κD

(π0)∗

κ♡

Note that the functor κD is t-exact because both functors sκD ∼= UD and tκD ∼= D(F∗) are. This implies
that the restriction κ♡D appearing in the diagram is well-defined and that the two upper squares commute.
The lower square commutes by definition of Λ.

Lemma 3.17. Under the identification of the heart of Frob(D(Mod♡R),D(F∗)) from Lemma 3.15, the functor

Φ♡ := π0ΦH : Frob(Mod♡R, F∗) → Frob(Mod♡R, F∗)

is equivalent to the identity.

Proof. We first show that there is an equivalence ω : κ♡Φ
♡ ∼= κ♡. It is given by the following chain of

equivalences:

κ♡Φ
♡ = κ♡π0ΦH ∼= (π0)∗κDΦH = (π0)∗ξD(κ♡)H

= (π0)∗ξHκ♡ = (π0)∗H∗κ♡ ∼= κ♡.

Here, the equality signs are just definitions, whereas the equivalences are given by Lemma 3.16 and since
(π0)∗H∗ ∼= (π0H)∗ ∼= id.

Thus, we also get an equivalence η : U♡Φ
♡ ∼= U♡ as follows:

U♡Φ
♡ ∼= sκ♡Φ

♡ ω−→
≃
sκ♡ ∼= U♡.

In particular, by construction, ω and η are compatible in the defining diagram of Frob(Mod♡R, F∗), and thus,
by the universal property of the pullback, we get an equivalence Φ♡ ∼= idFrob(Mod♡

R ,F∗)
.

We now show that both relevant ∞-categories have a canonical stable compact generator (in the sense
of Definition A.3). Using the Schwede–Shipley theorem, this will also imply that we can identify the ∞-
categories with certain module categories.

Lemma 3.18. The stable ∞-category D(Frob(Mod♡R, F∗)) has a stable compact generator A := HL♡(R).

Proof. Using Proposition A.5, it suffices to show that L♡(R) is a compact projective generator (in the sense
of Definition A.1) of the Grothendieck abelian category Frob(Mod♡R, F∗). By [MW24, Corollary 2.8], the
forgetful functor U♡ is a conservative and colimit-preserving functor between Grothendieck abelian categories.
Then Lemma A.9 shows that L♡ preserves compact projective generators. Since R is a compact projective
generator of Mod♡R we see that L♡(R) is a compact projective generator of Frob(Mod♡R, F∗).
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Corollary 3.19. There is a canonical equivalence of ∞-categories

ModEnd(A)
≃−→ D(Frob(Mod♡R, F∗)).

Proof. There is a morphism

(ModEnd(A),End(A)) → (D(Frob(Mod♡R, F∗)), A)

in (PrLst)ModS/
which is given by the counit of the adjunction from Proposition 3.9. The same result implies

that the target of this morphism is in the essential image of Θ, as A is a stable compact generator of
D(Frob(Mod♡R, F∗)) by Lemma 3.18. Using this, it follows from the fully faithfulness of Θ that the counit
above is an equivalence in this case.

Lemma 3.20. The object LDHR ∈ Frob(D(Mod♡R),D(F∗)) lies in the heart.

Proof. By definition of the induced t-structure it suffices to show that UDLDHR lies in the heart. By
Proposition 3.11 we have UDLDHR ∼=

⊔
n≥0(LF

∗)nHR. Since
⊔
n≥0 preserves connective objects (because

connective objects are closed under colimits) and also coconnective objects (since the t-structure is stable
under filtered colimits, cf. [Lur17, Proposition 1.3.5.21]), it suffices to show that (LF ∗)nHR is discrete for
all n. Since LF ∗ is symmetric monoidal, cf. Proposition 3.10, and since HR ∈ D(Mod♡R) is the tensor unit,
we know that LF ∗HR ∼= HR. Inductively, we thus see that (LF ∗)nHR ∼= HR, which is clearly in the
heart.

Lemma 3.21. Under the identification of the heart of Frob(D(Mod♡R),D(F∗)) from Lemma 3.15, there is a

canonical equivalence L♡ ∼= π0LDH of functors Mod♡R → Frob(Mod♡R, F∗).

Proof. Note that the adjunction LD ⊣ UD induces an adjunction π0LDH ⊣ π0UDH on the heart, cf. [BBD82,
Proposition 1.3.17 (iii)]. By uniqueness of left adjoints, it suffices to provide an equivalence U♡ ∼= π0UDH.
Under the identification of the heart (via the functor ΛH), this is immediate from the definition of Λ.

Lemma 3.22. The object B := Φ(A) is a stable compact generator of Frob(D(Mod♡R),D(F∗)). Moreover,
there is a canonical equivalence B ∼= LDHR.

Proof. We first establish the equivalence B ∼= LDHR. It is given by the following chain of equivalences:

Φ(A) ∼= ΦHL♡R ∼= HΦ♡L♡R ∼= HL♡R ∼= Hπ0LDHR ∼= LDHR.

Here, the first equivalence is the definition of A, the second holds because Φ is t-exact by Lemma 3.14, and
the third equivalence follows since Φ♡ ∼= id by Lemma 3.17. The fourth equivalence is just Lemma 3.21,
whereas the last equivalence holds because LDHR is discrete by Lemma 3.20.

Hence, it suffices to show that LDHR is a stable compact generator of Frob(D(Mod♡R),D(F∗)). Note that
by [MW24, Corollary 2.8], the forgetful functor UD is a conservative and colimit-preserving functor between
presentable stable ∞-categories. Then Lemma A.9 shows that LD preserves stable compact generators.
Since HR is a stable compact generator of D(Mod♡R) by Proposition A.5, we see that LDHR is a stable

compact generator of Frob(D(Mod♡R),D(F∗)).

Corollary 3.23. There is a canonical equivalence of ∞-categories

ModEnd(B)
≃−→ Frob(D(Mod♡R),D(F∗)).

Proof. There is a morphism

(ModEnd(B),End(B)) → (Frob(D(Mod♡R),D(F∗)), B)

in (PrLst)ModS/
which is given by the counit of the adjunction from Proposition 3.9. The proof is now the same

as the one of Corollary 3.19, where we use that B is a stable compact generator of Frob(D(Mod♡R),D(F∗))
by Lemma 3.22.
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Combining this corollary with Corollary 3.19, we see that the ∞-categories D(Frob(Mod♡R, F∗)) and

Frob(D(Mod♡R),D(F∗)) are equivalent if the E1-ring spectra End(A) and End(B) are equivalent. Next, we
show that the latter is indeed true.

Lemma 3.24. Both A ∈ D(Frob(Mod♡R, F∗)) and B ∈ Frob(D(Mod♡R),D(F∗)) lie in the heart of the respec-
tive ∞-categories.

Proof. By definition, A = HL♡R is in the heart. Moreover, B = Φ(A) is in the heart since Φ is t-exact by
Lemma 3.14.

Lemma 3.25. The mapping spectrum map(A,A) is connective (in fact discrete, i.e. in Sp♡).

Proof. Note that A lives in the heart by Lemma 3.24, and thus it is clear that map(A,A) is coconnective.
To see that it is also connective, note that we have

π−nmap(A,A) ∼= Extn(L♡R,L♡R),

cf. the discussion in [Lur17, Notation 1.1.2.17]. But now note that by (the proof of) Lemma 3.18 we see
that L♡R is a projective object. In particular, the Ext-groups vanish for n ̸= 0, which immediately implies
connectivity of the mapping spectrum.

Lemma 3.26. The mapping spectrum map(B,B) is connective (in fact discrete, i.e. in Sp♡).

Proof. By Lemma 3.22 there is an equivalence B ∼= LDHR. Now we have equivalences

map(B,B) ∼= map(LDHR,LDHR) ∼= map(HR,UDLDHR) ∼= fgtR UDLDHR.

Here, the second equivalence holds by adjunction, whereas the last equivalence is (essentially) Lemma 3.5.
Since fgtR is t-exact by Lemma 3.4, it suffices to show that UDLDHR is in the heart. This was shown in
Lemma 3.20.

Proposition 3.27. The morphism of E1-rings End(Φ): End(A) → End(B) (given by the action of Φ on
the endomorphism spectra) is an equivalence.

Proof. It suffices to show that the underlying map is an equivalence, i.e. we have to see that the map

mapD(Frob(Mod♡
R ,F∗))

(A,A)
Φ−→ mapFrob(D(Mod♡

R),D(F∗))
(B,B)

is an equivalence. Note that by Lemmas 3.25 and 3.26 both mapping spectra are connective, hence it suffices
to show that Φ induces an equivalence of mapping spaces

MapD(Frob(Mod♡
R ,F∗))

(A,A)
Φ−→ MapFrob(D(Mod♡

R),D(F∗))
(B,B).

Since both A and B are in the respective hearts, cf. Lemma 3.24, it follows that this map is actually induced
by Φ♡. But Φ♡ is an equivalence by Lemma 3.17. This proves the proposition.

Theorem 3.28. The functor Φ is an equivalence.

Proof. Consider the commutative diagram

(D(Frob(Mod♡R, F∗)), A) (Frob(D(Mod♡R),D(F∗)), B)

(ModEnd(A),End(A)) (ModEnd(B),End(B))

Φ

Θ(End(Φ))

in (PrLst)ModS/
, where the vertical maps are the counits of the adjunction from Proposition 3.9. These counits

are equivalences by (the proofs of) Corollaries 3.19 and 3.23. As End(Φ) is an equivalence by Proposition 3.27,
the theorem follows.
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4 Zariski descent of Frobenius modules

In this section, we show that the functor D+(Frob(QCoh(−), F∗)) defines a Zariski sheaf on the small (quasi-
compact) Zariski site of a geometric scheme, cf. Proposition 4.12. Combining this with our results from the
previous section, we prove Theorem B, cf. Theorem 4.16.

We start by recalling that the derived ∞-category is functorial in Grothen-dieck abelian categories:

Proposition 4.1. There is a functor D : Groth → PrLst which sends a Grothen-dieck abelian category to its
derived ∞-category, and a colimit-preserving left exact functor to its derived functor.

Similarly, there is a functor D+ : Groth → Cat∞ that is the restriction of D to bounded above objects.

Proof. Write PreStL ⊂ PrL for the full subcategory consisting of those presentable categories that are
prestable, cf. [Lur18, Definition C.1.2.1]. We first construct a functor

D≥0 : Groth → PreStL

which sends a Grothendieck abelian category A to the presentable prestable category D(A)≥0, i.e. the
connective part of the derived ∞-category. Recall from [Lur18, Proposition C.5.4.5] that there is a fully
faithful functor M : Groth → Grothlex,sep∞ , where the right-hand category denotes the category of separated
Grothendieck prestable categories, whose morphisms are left exact colimit-preserving functors. We let D≥0

be the composition of M with the canonical forgetful functor Grothlex,sep∞ → PreStL. It now follows from
[Lur18, Propositions C.5.4.5 and C.5.3.2] that D≥0 sends a Grothendieck abelian categoryA to the connective
part of the derived ∞-category of A.

If A is a Grothendieck abelian category, then its derived ∞-category D(A) is the stabilization of D(A)≥0

by [Lur18, Remark C.1.2.10] since the t-structure on the derived ∞-category of A is right-complete. Hence,
we can define D as the composition of D≥0 with the stabilization functor Sp(−) : PrL → PrLst.

To get the description on morphisms, note that for each morphism F in Groth the functor D≥0(F ) is left
exact and colimit-preserving, and hence preserves categorical n-truncated and n-connective objects. Thus,
it is t-exact on the stabilization. Therefore, by the universal property of the derived ∞-category [MW24,
Proposition A.2], it suffices to show that the restriction of D(F ) to the heart is given by F , which is obvious
from the above.

To get D+, one uses that all involved derived functors are t-exact, and thus everything restricts to
bounded above objects.

Definition 4.2. Let X be a qcqs Fp-scheme. We write Xzar for the (small) subcategory of Sch/X spanned by
those schemes Y → X that can be written as Y = ⊔i∈IYi → X, where I is finite, and Yi → X is the inclusion
of a quasi-compact open subset of X. In particular, since every U ∈ Xzar is a finite disjoint union of quasi-
compact open subset of the qcqs X, it is clear that U is moreover quasi-separated (as open immersions are
quasi-separated [Sta25, Tag 01L7], and quasi-separated morphisms are stable under composition). We equip
Xzar with the Grothendieck topology where covers are given by jointly surjective families {Ui → U}i∈I . To
see that this in fact defines a Grothendieck topology, we have to check that Xzar is closed under pullbacks.
This is true since the intersection of quasi-compact opens is quasi-compact since X was assumed to be
quasi-separated.

Remark 4.3. This version of the Zariski site is nonstandard. Since affines are quasi-compact, it is still true
that equivalences of sheaves can be checked on affine opens if the scheme is geometric, see Definition 4.5
and Lemma 4.6 below. If the scheme is not geometric, in order to reduce to affine schemes, one has to work
with hypercovers instead (as the intersections of affines are no longer guaranteed to be affine, and so the
Čech nerve does not only consist of affines). Therefore, it is not clear that our arguments would work with
non-geometric schemes, as one has to prove hyperdescent of the relevant module categories. This is one of
the reasons why we choose to work with geometric schemes in the following. We use this version of the site
to avoid problems with quasi-coherence and flat base change. Indeed, e.g. [Sta25, Tag 02KH] needs the
morphism f to be qcqs. Since in our case f will always be one of the open subset inclusions U ↪→ V in Xzar,
this follows from [Sta25, Tag 01KV] and [Sta25, Tag 03GI] since U and V were assumed to be qcqs.

Remark 4.4. If X is a qcqs scheme such that any open subset of X is quasi-compact (e.g. X Noetherian),
then Xzar is (the finite disjoint union completion of) the usual small Zariski site of X.
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Definition 4.5. Let X be a scheme. We say that X is geometric if X is quasi-compact and has affine
diagonal (the latter is also called semi-separated in the literature).

Lemma 4.6. Let X be a geometric scheme and let C be a complete ∞-category. Let F ,G : Xop
zar → C be

Zariski sheaves, and let f : F → G be a morphism. Suppose that for every affine open U ⊂ X the morphism
fU : F(U) → G(U) is an equivalence. Then f is an equivalence.

Proof. Let U = {Ui}i be a finite Zariski cover of X, where the Ui are affine. Since X has affine diagonal,
any intersection of the Ui is also affine. In particular, the Čech nerve U• of the cover consists only of
affine schemes. Since F is a sheaf, F(X) ∼= lim∆ F(U•), and similarly for G. By assumption, f induces an
equivalence on the limit diagram and therefore also on the limit.

We now show that certain constructions like quasi-coherent sheaves satisfy Zariski descent.

Lemma 4.7. Let X be a qcqs Fp-scheme. There is a functor QCoh(−) : Xop
zar → Groth which on objects

sends an open U ⊂ X to the category of quasi-coherent OU -modules. Similarly, the associated morphism to
an inclusion U ⊂ V of open subsets of X is the restriction of quasi-coherent OV -modules to U .

Moreover, QCoh(−) is a Zariski sheaf.

Proof. We let QCoh(−) : Xop
zar → Cat∞ be the straightening of the cartesian fibration from [Sta25, Tag 03YL]

(restricted to Xop
zar). Note that by construction, we have that QCoh(U) is just the Grothendieck abelian

category of quasi-coherent sheaves on U . Moreover, on inclusions of open subsets U ⊂ V , QCoh(U ↪→ V ) is
the restriction of quasi-coherent sheaves. Note that these restriction functors are exact as U ↪→ V is an open
immersion and so in particular flat. Furthermore, the restriction functors are also colimit-preserving as they
have right adjoints given by pushforward (note that here we need that the morphisms U ↪→ V are qcqs by
Remark 4.3). In particular, we see that everything factors through Groth. That the functor QCoh(−) is a
Zariski sheaf follows from [Sta25, Tag 03YM]. Note that the functor actually lands in the (2, 1)-category of
ordinary categories, hence the result from the stacks project applies.

Lemma 4.8. Let X be a qcqs Fp-scheme. The functor QCoh(−) : Xop
zar → Groth from Lemma 4.7 admits a

lift QCoh(−)frob to End(Groth), i.e. there exists a diagonal morphism in the diagram

End(Groth)

Xop
zar Groth

QCoh(−)frob

QCoh(−)

such that for any open U ⊂ X, the underlying functor of QCoh(U)frob is the Frobenius pushforward
F∗ : QCoh(U) → QCoh(U).

Proof. By the universal property of End(Groth) and adjunction, this boils down to giving a natural trans-
formation QCoh(−) → QCoh(−), or, by unstraightening [Lur09, §3.2], to giving a morphism of cartesian
fibrations ∫

QCoh(−) →
∫

QCoh(−).

These are both ordinary categories, so we can write down by hand what this morphism is: On objects, it
sends a pair (U,F), where U ⊂ X is open and F ∈ QCoh(U), to the pair (U,F∗F). It sends a morphism
(ι, ϕ) : (U,F) → (V,G), where ι : U ↪→ V is an inclusion of open subsets, and ϕ : G → ι∗F is a morphism of

quasi-coherent sheaves, to the morphism (ι, ϕ′), where ϕ′ : F∗G
F∗ϕ−−→ F∗ι∗F ∼= ι∗F∗F . Here, the equivalence

exists because already Fι = ιF . We check that this actually defines a functor: So let (ι, ϕ) : (U,F) → (V,G)
and (j, ψ) : (V,G) → (W,H) be two morphisms. We have to see that the outer diagram commutes:

F∗H F∗j∗G j∗F∗G

F∗j∗ι∗F j∗F∗ι∗F

F∗j∗ι∗F j∗ι∗F∗F .

F∗ψ

F∗(j∗ϕ◦ψ)

Ex∗,∗

F∗j∗ϕ j∗F∗ϕ

Ex∗,∗

Ex∗,∗

Ex∗,∗

15

https://stacks.math.columbia.edu/tag/03YL
https://stacks.math.columbia.edu/tag/03YM


Here, the small square commutes by naturality of the exchange transformation, whereas the left trapezoid
commutes by functoriality, and the right trapezoid commutes by the definition of the exchange transforma-
tions.

It suffices to show that the functor is a morphism of cartesian fibrations. So let (ι, ϕ) : (U,F) → (V,G)
be a cartesian edge. Using the description of cartesian edges from [Sta25, Lemma 04U3] we know that the
adjoint morphism ϕ̃ : ι∗G → F is an equivalence, and we have to show that the same is true for the image of

(ι, ϕ). Hence, we have to see that the adjoint of ϕ′ : F∗G
F∗ϕ−−→ F∗ι∗F ∼= ι∗F∗F is an isomorphism. Consider

the following diagram:

ι∗F∗G ι∗F∗ι∗F ι∗ι∗F∗F

F∗ι
∗G F∗ι

∗ι∗F F∗F .

Ex∗
∗

ι∗F∗ϕ

Ex∗
∗

Ex∗,∗

counit

F∗ι
∗ϕ counit

The left square commutes by naturality of the exchange transformation, whereas the right square commutes

by definition of the vertical exchange transformation as adjoint of the map F∗
unit−−→ F∗ι∗ι

∗ ∼= ι∗F∗ι
∗. The

composition on the top and right is the adjoint of ϕ′. The left vertical arrow is an isomorphism by [BB13,
Lemma 2.2.1], whereas the bottom composition is F∗ applied to the adjoint of ϕ, which is an isomorphism
by assumption. This proves the claim.

Lemma 4.9. Let X be a qcqs Fp-scheme. The functor

QCoh(−)frob : Xop
zar → End(Groth)

from Lemma 4.8 is a Zariski sheaf.

Proof. We have seen in Lemma 4.7 that QCoh(−) is a Zariski sheaf. Since End(Groth) → Groth is conser-
vative and preserves limits, e.g. by [MW24, Proposition 2.6 (b) and (c)], it follows immediately that also
QCoh(−)frob is a Zariski sheaf.

Proposition 4.10 (Zariski descent of derived categories). Let X be a qcqs Fp-scheme. Let F : Xop
zar → Groth

be a Zariski sheaf of Grothendieck abelian categories, such that F satisfies base change in the following sense:
If

U1 U2

U3 U4

g′

f ′ ⌟ f

g

is a cartesian square in Xzar (in particular, all the arrows are (disjoint unions of) qcqs open immersions),
then applying the functor D+ ◦ F (using Proposition 4.1) yields a horizontally right adjointable square

D+(F(U4)) D+(F(U3))

D+(F(U2)) D+(F(U1)),

g∗

f∗ f ′∗

g′∗

i.e. the functors g∗ and g′∗ admit right adjoints Rg∗ and Rg′∗, respectively, and the canonical base change
map f∗Rg∗ → Rg′∗f

′∗ is an equivalence.
Then D+ ◦ F : Xop

zar → Cat∞ is a Zariski sheaf of stable ∞-categories.

Proof. It suffices to show that for every Zariski cover U = {Ui ↪→ U}i in X the functor D+ preserves the
limit diagram F(U) → F(Č(U)•), where Č(U)• is the Čech nerve of the cover. For notational convenience,
we write An := F(Č(U)n), so that F(U) =: A−1 ∼= limn∈∆ An. The proposition then follows from [HM24,
Proposition A.4.23] if we can show the following statements:

(a) An is a Grothendieck abelian category for each n ∈ ∆.
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(b) For every α : [n] → [m] ∈ ∆, the functor α∗ : An → Am is a left exact functor admitting a right adjoint
α∗.

(c) For di : [n] → [n+ 1] the i-th coface map, and α : [n] → [m] ∈ ∆, the following diagram commutes:

D+(An+1) D+(An)

D+(Am+1) D+(Am),

Rd0∗

α′∗ α∗

Rd0∗

where α′ is defined as id[0] ⋆α under the identification [n+ 1] = [0] ⋆ [n] and similarly for m.

(d) The functor d1∗ : A0 → A1 sends injective objects to d0∗-acyclic objects.

The statements (a) and (b) are clear since A• is a diagram in Groth. We proceed by showing (c). By
definition, all functors in the square are induced by open immersions of the form

⊔
i0,...,im

m⋂
k=0

Uik →
⊔

i0,...,in

n⋂
k=0

Uik .

Hence, the result follows from our base change assumption.
We end the proof by showing (d). Let M ∈ F(⊔iUi) be an injective object. We have to see that d1∗M

is d0∗-acyclic. For this, it is enough to see that the following diagram commutes:

D+(A0) D+(A−1)

D+(A1) D+(A0),

Rι∗

d1∗ ι∗

Rd0∗

where ι : ⊔iUi → U is the canonical map. Indeed, ifM ∈ D+(A0) is injective, we want to know that Rd0∗d
1∗M

is concentrated in degree 0. This follows from commutativity, as M is Rι∗-acyclic (as it is injective), and ι∗

is t-exact (since it was exact on abelian categories). But now the commutativity of the diagram is proven in
exactly the same way as in (c).

In order to use the above proposition in the setting of Frobenius modules, we have to make sure that
they satisfy (a weak version of) flat base change. For this to make sense note that each qcqs morphism of
schemes f : X → Y induces a left exact pushforward functor

f∗ : Frob(QCoh(X), F∗) → Frob(QCoh(Y ), F∗)

on Frobenius modules via the functoriality of Frob(−), cf. Proposition 2.4. This in turn induces a right
derived functor

Rf∗ : D+(Frob(QCoh(X), F∗)) → D+(Frob(QCoh(Y ), F∗)).

Moreover, the usual pullback functor f∗ : QCoh(Y ) → QCoh(X) induces a functor

f∗ : Frob(QCoh(Y ), F∗) → Frob(QCoh(X), F∗)

via [BP09, Definition 4.1.1] (note that in loc. cit. Frobenius modules are called τ -sheaves, and their categories
are equivalent by [MW24, Corollary 2.10]). The proof of [BP09, Proposition 4.4.5] shows that the pullback
functor f∗ is left adjoint to f∗.

Lemma 4.11. Let

X ′ X

S′ S

g′

f ′ ⌟ f

g
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be a cartesian diagram of geometric Fp-schemes and qcqs morphisms such that g is moreover flat. Let
M ∈ D+(Frob(QCoh(X), F∗)). Then the base change map g∗Rf∗M → Rf ′∗g

′∗M is an equivalence in
D+(Frob(QCoh(S′), F∗)).

Proof. First note that the functors g∗ and g′∗ are exact because g, and therefore also g′, are flat, respectively,
and because the forgetful functor U is conservative and exact by [MW24, Corollary 2.8 (b) and (h)]. Thus,
[Sta25, Tag 09T5] implies that g∗ is left adjoint to Rg∗, and similarly for g′. Using this we can define the

base change map as being adjoint to the map Rf∗M
u−→ Rf∗Rg

′
∗g

′∗M ∼= Rg∗Rf
′
∗g

′∗M , where u denotes
the unit of the adjunction and the equivalence follows from the commutativity of the diagram. We have to
show that this map is an equivalence, which we do after applying the conservative t-exact forgetful functor
D+(U) : D+(Frob(QCoh(S′), F∗)) → D+(QCoh(S′)) (for the conservativity see [MW24, Corollary A.5]).

Assume first that M ∈ D+(Frob(QCoh(X), F∗))
♡. The forgetful functor commutes with the pullback

functors by definition, and with the derived pushforward functors by the version of [BP09, Proposition
6.4.2] for Frobenius modules (here we use that the schemes are geometric which implies that the derived
pushforward functors can be computed using a Čech resolution, cf. [Sta25, Tag 01XL]). This means, we have
to show that the map g∗Rf∗UM → Rf ′∗g

′∗UM is an equivalence in D+(QCoh(S′)). But this is exactly the
flat base change theorem [Sta25, Tag 02KH].

Since all the functors are exact, by a standard devissage argument, we immediately get the result for
M ∈ D♭(Frob(QCoh(X), F∗)). Suppose now that M ∈ D+(Frob(QCoh(X), F∗)). By separatedness of the
t-structures, it suffices to show that πn(g

∗Rf∗UM) → πn(Rf
′
∗g

′∗UM) is an equivalence for all n ∈ Z. For
this, consider the following diagram:

τ≥ng
∗Rf∗UM τ≥nRf

′
∗g

′∗UM

τ≥ng
∗Rf∗Uτ≥nM τ≥nRf

′
∗g

′∗Uτ≥nM ,

∼=
∼=

∼=

where the vertical arrows are equivalences since g∗Rf∗U and Rf ′∗g
′∗U are left t-exact (in fact, g∗, g′∗ and

U are t-exact, and Rf∗ and Rf ′∗ are right adjoints of t-exact functors). Indeed, this can be checked on
homotopy groups; by definition they vanish below n, and in degrees ≥ n they agree by the long exact
sequence associated to the fiber sequence

τ≥ng
∗Rf∗Uτ≥nM → τ≥ng

∗Rf∗UM → τ≥ng
∗Rf∗Uτ≤n−1M,

using that g∗Rf∗U is left t-exact, and similarly for the right vertical morphism. But the lower horizontal
arrow is an equivalence by the above, as τ≥nM is bounded. This immediately implies the result.

Proposition 4.12. Let X be a geometric Fp-scheme. The presheaf of stable ∞-categories

D+(Frob(QCoh(−)frob)) : Xop
zar → Cat∞

is a Zariski sheaf. Here, QCoh(−)frob is the functor from Lemma 4.8.

Proof. By Lemma 4.9, the presheaf QCoh(−)frob is a Zariski sheaf. Moreover, the functor Frob(−) preserves
limits by Lemma 2.8, hence also the presheaf Frob(QCoh(−)frob) is a Zariski sheaf (as Zariski sheaves are
defined using a limit condition). Therefore, the proposition follows from Proposition 4.10, using Lemma 4.11.

Lemma 4.13. Let X be a qcqs Fp-scheme. The presheaf of stable ∞-categories

D+(QCoh(−)) : Xop
zar → Cat∞

is a Zariski sheaf.

Proof. Since QCoh(−) is a Zariski sheaf by Lemma 4.7, this follows from Proposition 4.10, using [Sta25, Tag
02KH] (which applies since all involved morphisms are qcqs, cf. Remark 4.3). Note that the reference only
gives that the base change map is an equivalence on objects in the heart, but one can deduce the result for
every bounded above object by an analogous argument as in the proof of Lemma 4.11.
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Lemma 4.14. Let X be a qcqs Fp-scheme. The presheaf of stable ∞-categories

End(D+)(QCoh(−)frob) : Xop
zar → End(Cat∞)

is a Zariski sheaf.

Proof. By Lemma 4.9, the presheaf QCoh(−)frob is a Zariski sheaf. Thus, it suffices to show that for every
(quasi-compact) Zariski cover U = {Ui ↪→ U}i in Xzar, the functor End(D+) preserves the limit diagram
QCoh(U)frob → QCoh(Č(U)•)frob, where Č(U)• is the Čech nerve of the cover. By Lemma 2.3, it is enough
to show that the functor D+ preserves the limit diagram QCoh(U) → QCoh(Č(U)•). This was shown in
Lemma 4.13.

Lemma 4.15. Let X be a qcqs Fp-scheme. There is a morphism of presheaves on Xzar

Φ: D+(Frob(QCoh(−)frob)) → Frob(End(D+)(QCoh(−)frob))

such that for each (quasi-compact) open U ⊂ X, the map ΦU can be identified with a t-exact functor

ΦU : D+(Frob(QCoh(U), F∗)) → Frob(D+(QCoh(U)),D+(F∗)),

where the target is equipped with the induced t-structure from [MW24, Proposition 3.3]. If U = Spec(R) is
affine, then this map can be identified with a map

ΦR : D+(Frob(Mod♡R, F∗)) → Frob(D+(Mod♡R),D
+(F∗)),

which is the restriction of the equivalence from Theorem 3.28.

Proof. We will construct a map from the bottom-left to the top-right composition of the below square. Then
precomposition with QCoh(−)frob gives the desired map.

End(Groth) End(Cat∞)

Groth Cat∞

Frob(−,−)

End(D+)

Frob(−,−)

D+

Let A ∈ Groth, and let F : A → A be a colimit-preserving, left exact endofunctor. Hence, unwinding the
definitions, we have to find a map

Φ(A,F ) : D+(Frob(A, F )) → Frob(D+(A),D+(F ))

natural in the pair (A, F ). Using the universal property of the pullback, we let Φ(A,F ) be the dashed
morphism in the following diagram:

D+(Frob(A, F ))

Frob(D+(A),D+(F )) D+(A)

D+(Fun(∆1,A)) Fun(∆1,D+(A)) D+(A)×D+(A).

Φ(A,F )

D+(κ)

D+(U)

⌟
U

κ (id,D+(F ))

(s,t)

The bottom left functor is the restriction of the functor from the discussion before [MW24, Theorem 5.1] to
the subcategories of bounded above objects. The commutativity of the outer solid diagram can be deduced
in the exact same way as the commutativity of the diagram in [MW24, Theorem 5.1], see the paragraph
directly behind the statement of the theorem. As everything in this diagram is natural in (A, F ), the same is
true for Φ(A,F ). Moreover, the t-exactness of Φ(A,F ) follows immediately from the definition of the induced
t-structure [MW24, Proposition 3.3], and the fact that D+(U) is t-exact.

It is clear from the construction that on affine U = Spec(R) the functor ΦU is exactly the restriction of
the equivalence from Theorem 3.28.
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Theorem 4.16. Let X be a geometric Fp-scheme. Then the canonical morphism

ΦX : D+(Frob(QCoh(X), F∗))
≃−→ Frob(D+(QCoh(X)),D+(F∗))

from Lemma 4.15 is a t-exact equivalence.

Proof. By Lemma 4.15, there is even a morphism of presheaves on Xzar

Φ: D+(Frob(QCoh(−)frob)) → Frob(End(D+)(QCoh(−)frob)),

that is sectionwise t-exact. We have to show that this morphism is an equivalence on global sections.
The source of Φ is a Zariski sheaf by Proposition 4.12. Similarly, the target of Φ is also a Zariski sheaf:
Indeed, the composition End(D+) ◦ QCoh(−)frob is a Zariski sheaf by Lemma 4.14, and the functor
Frob(−,−) : End(Cat∞) → Cat∞ preserves limits by Proposition 2.5. Thus, it follows that also the compo-
sition Frob(−,−) ◦ End(D+) ◦ QCoh(−)frob is a Zariski sheaf.

Hence, in order to see that Φ is an equivalence on global sections, it suffices to see that it is an equivalence
on affine opens U ⊂ X, cf. Lemma 4.6. Now note that this case was shown in Theorem 3.28 (as we have
identified the morphism ΦU with the restriction of the morphism in loc. cit. by Lemma 4.15).

5 Left-completeness on geometric schemes

In this section, we show that the derived categories of quasi-coherent modules and Frobenius modules,
respectively, over a geometric scheme are already left-complete. This will imply our main theorem, cf.
Theorem 5.7.

Recall from [Ant18, Definition 8.3 (d)] the axiom AB4∗n(ω) for Grothendieck abelian categories, this is
a weaker variant of Grothendieck’s axiom AB4∗. If a Grothendieck abelian category A satisfies AB4∗n(ω)
for some n ≥ 0, then D(A) is left-complete by [Ant18, Proposition 8.14]. Hence, we get the following:

Lemma 5.1 ([Pos25, Theorem 1.4]). Let X be a geometric scheme. There exists an n ≥ 0 such that
QCoh(X) is AB4∗n(ω). In particular, the derived ∞-category D(QCoh(X)) is left-complete.

Proposition 5.2. Let X be a geometric Fp-scheme. There exists an n ≥ 0 such that Frob(QCoh(X), F∗) is
AB4∗n(ω). In particular, the derived ∞-category D(Frob(QCoh(X), F∗)) is left-complete.

Proof. By Lemma 5.1 there is an n ≥ 0 such that QCoh(X) is AB4∗n(ω). It is enough to show that
Frob(QCoh(X), F∗) is also AB4∗n(ω). Let (Mk)k be a countable family in Frob(QCoh(X), F∗). We have
to show that the product

∏
kHMk ∈ D(Frob(QCoh(X), F∗))≥−n. This statement only depends on the

bounded above part D+(Frob(QCoh(X), F∗)). Hence, using Theorem 4.16, we may work in the ∞-category
Frob(D+(QCoh(X)),D+(F∗)). Now, by definition of the t-structure, connectivity may be checked after
applying the limit-preserving t-exact functor U : Frob(D+(QCoh(X)),D+(F∗)) → D+(QCoh(X)). But
U
∏
kHMk

∼=
∏
kHUMk ∈ D+(QCoh(X))≥−n as QCoh(X) is AB4∗n(ω).

To show that Frob(D(QCoh(X)),D(F∗)) is left-complete as well, we need the following result:

Lemma 5.3. Let D be a presentable stable ∞-category with a t-structure. Then D is left-complete if and
only if

(a) X → limn τ≤nX is an equivalence for every X ∈ D, and

(b) τ≤k limnXn → Xk is an equivalence for every k ∈ Z and every (Xn)n ∈ limnD≤n (i.e. Xn ∈ D≤n for
every n, together with compatible equivalences τ≤mXn

∼= Xm for all m ≤ n).

Proof. By definition, D is left-complete if and only if the canonical functor D → limnD≤n is an equivalence.
This functor has a right adjoint, given by sending (Xn)n to its limit limnXn ∈ D. The two maps given in
the statement of the lemma are exactly the unit and counit of this adjunction. Hence, D is left-complete if
and only if those maps are equivalences.

As an immediate corollary, we obtain:
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Corollary 5.4. Let U : D → E be a t-exact conservative limit-preserving functor of presentable stable ∞-
categories with t-structures. If the t-structure on E is left-complete, then the t-structure on D is also left-
complete.

Using Lemma 5.1, we can apply this result to U : Frob(D(QCoh(X)),D(F∗)) → D(QCoh(X)), which
is conservative and limit-preserving by [MW24, Corollary 2.8 (b) and (c)], and t-exact by definition of the
induced t-structure [MW24, Proposition 3.3]. Hence, we get:

Corollary 5.5. Let X be a geometric Fp-scheme. The induced t-structure on Frob(D(QCoh(X)),D(F∗)) is
left-complete.

Next, we state and prove our main theorem. For a geometric Fp-scheme X, using the universal property
of the pullback, we let ΦX be the dashed morphism in the following diagram, where we write for notational
convenience A := QCoh(X):

D(Frob(A, F∗))

Frob(D(A),D(F∗)) D(A)

D(Fun(∆1,A)) Fun(∆1,D(A)) D(A)×D(A).

ΦX

D(κ)

D(U)

⌟
U

κ (id,D(F∗))

(s,t)

Here, the bottom left functor is the functor from the discussion before [MW24, Theorem 5.1]. As in the
last sections, the commutativity of the outer solid diagram can be deduced in the exact same way as the
commutativity of the diagram in [MW24, Theorem 5.1], see the paragraph directly behind the statement of
the theorem.

To prove the main theorem, we also need the following lemma about left-complete stable ∞-categories:

Lemma 5.6. Let F : D → E be a t-exact functor of presentable stable ∞-categories with t-structures such
that both ∞-categories are left-complete. If the induced functor F+ : D+ → E+ is an equivalence, then also
F : D → E is an equivalence.

Proof. This is immediate since D≤n ∼= D+
≤n

≃−→
F

E+
≤n

∼= E≤n for all n ∈ Z, and D ∼= limnD≤n, and similarly

for E .

Theorem 5.7. Let X be a geometric Fp-scheme. Then the functor

ΦX : D(Frob(QCoh(X), F∗))
≃−→ Frob(D(QCoh(X)),D(F∗))

described above is a t-exact equivalence, where we equip the target with the induced t-structure from [MW24,
Proposition 3.3].

Proof. The t-exactness of the functor follows immediately from the definition of the induced t-structure and
the t-exactness of D(U). Thus, ΦX restricts to a functor

Φ+
X : D+(Frob(QCoh(X), F∗)) → Frob(D+(QCoh(X)),D+(F∗)).

By construction, Φ+
X is the same functor as in Theorem 4.16, where we also showed that it is an equivalence.

Note that by definition of the induced t-structure on Frob(D(QCoh(X)),D(F∗)) the category of bounded
above objects of this category is exactly given by Frob(D+(QCoh(X)),D+(F∗)). Hence, Lemma 5.6 implies
that the functor

ΦX : D(Frob(QCoh(X), F∗))
≃−→ Frob(D(QCoh(X)),D(F∗))

is also an equivalence, as both source and target are left-complete by Proposition 5.2 and Corollary 5.5.
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A Compact projective generators

In the literature, there are a variety of notions of compact (projective) generators in various settings, e.g. in
abelian categories or in stable ∞-categories. The goal of this appendix is to translate between some of those
notions so that we may use different results from the literature.

Definition A.1. Let A be a Grothendieck abelian category and P ∈ A an object. We say that P is a
compact projective generator if MapA(P,−) commutes with sifted colimits and is conservative.

This definition immediately implies the following:

Lemma A.2. Let A be a Grothendieck abelian category and P ∈ A a compact projective generator. Then
MapA(P,−) commutes with all colimits.

Proof. Since MapA(P,−) preserves sifted colimits by assumption, it suffices to show that MapA(P,−) pre-
serves finite coproducts. This is clear since finite coproducts are finite products in abelian categories.

We have a similar definition in the stable situation.

Definition A.3. Let D be a presentable stable ∞-category and P ∈ D an object. We say that P is a
stable compact generator if mapD(P,−) (the mapping spectrum) commutes with filtered colimits and is
conservative.

Example A.4. Let R be an associative ring. Then R ∈ Mod♡R is a compact projective generator, and
R ∈ ModR is a stable compact generator.

Our goal in this section is to prove the following proposition:

Proposition A.5. Let A be a Grothendieck abelian category, and P ∈ A a compact projective generator.
Then HP ∈ D(A) is a stable compact generator.

For the proof, we need the following two lemmas.

Lemma A.6. Let A be a Grothendieck abelian category, and P ∈ A a compact projective generator. Then
every object A ∈ A admits a surjection ⊕IP ↠ A for some (small) set I.

Proof. Consider the canonical map

Ψ:
⊕

f : P→A

P → A.

We claim that this map is surjective, i.e. coker(Ψ) ∼= 0. Since MapA(P,−) is conservative and preserves
cokernels (by Lemma A.2), it suffices to show that the induced map of abelian groups

MapA(P,
⊕

f : P→A

P ) → MapA(P,A)

is surjective. This is clear as any f : P → A is the image of the inclusion of the f -th summand.

Remark A.7. The last lemma shows that a compact projective generator is in particular a generator in the
sense of Grothendieck, see [Gro57, Proposition 1.9.1].

Lemma A.8. Let A be a Grothendieck abelian category, and P ∈ A a compact projective generator. Then

there is an equivalence Ψ: A ≃−→ Mod♡R, where R := End(P ) is the endomorphism ring of P , and Ψ(P ) = R.

Proof. Note that P is projective (in the abelian sense, i.e. MapA(P,−) commutes with cokernels) by
Lemma A.2. Hence, in view of Lemma A.6, this follows from Gabriel’s theorem [Gab62, Corollaire V.1.1].

Proof of Proposition A.5. By Lemma A.8, we may assume that A = Mod♡R for some associative ring R, and
P = R. In particular, we know D(A) ∼= ModR. Our goal is to show that mapModR

(R,−) is conservative and
preserves filtered colimits. This functor can be identified with the canonical forgetful functor ModR → Sp,
cf. Lemma 3.5. Hence, the result follows from Lemma 3.3.
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We end the section by proving a stability property of generators.

Lemma A.9. Let L : C → D be a left adjoint functor of ∞-categories such that the right adjoint R : D → C
preserves colimits and is conservative.

(a) If both C and D are Grothendieck abelian, then L preserves compact projective generators.

(b) If both C and D are presentable stable, then L preserves stable compact generators.

Proof. For the abelian case, let P ∈ C be a compact projective generator. The statement then follows from
the equivalence MapD(LP,−) ∼= MapC(P,R−) and the properties of R. In the stable case, note that the
adjunction is automatically spectrally enriched.
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