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Abstract

We prove a rigidity result for certain p-complete étale Al-invariant
sheaves of anima over a qcgs finite-dimensional base scheme S of bounded
étale cohomological dimension with p invertible on S. This general-
izes results of Suslin—Voevodsky [SV96], Ayoub [Ayo14], Cisinski-Déglise
CD15], and Bachmann to the unstable setting. Over a
perfect field we exhibit a large class of sheaves to which our main theorem
applies, in particular the p-completion of the étale sheafification of any
2-effective 2-connective motivic space, as well as the p-completion of any
4-connective Al-invariant étale sheaf. We use this rigidity result to prove
(a weaker version of) an étale analog of Morel’s theorem stating that for
a Nisnevich sheaf of abelian groups, strong Al-invariance implies strict
Al-invariance. Moreover, this allows us to construct an unstable étale
realization functor on 2-effective 2-connective motivic spaces.
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1 Introduction

It is well-known that étale cohomology with locally constant F,-coefficients is
Al-invariant, cf. [GAVTI) Corollaire XV.2.2]. One can ask whether the converse
is true, resulting in rigidity results of Suslin—Voevodsky [SV96], Ayoub [Ayol4]
or Cisinski-Déglise [CD15]. The most general of such results is the following
version for spectral coefficients, due to Bachmann.

Theorem (|Bac2lal BH2I]). Let S be a scheme, and p a prime invertible on
S. There are canonical equivalences

Shv, (Sst, Sp)) => SHE, (S)) = SHeu(S))

between p-complete hypersheaves of spectra on the small étale site of S, p-
complete A'-invariant étale hypersheaves of spectra on Smg, and its (p-complete)
G,,, -stabilization.

The main goal of this article is a generalization of Bachmann’s result to the
unstable setting. We write cd (k) for the étale cohomological dimension of a field
k. Our main theorem is the following.

Theorem A (Corollary [B.8). Let k be a perfect field with cd(k) < oo, and
p # char(k) be a prime. There is a canonical equivalence

Lynr: (Shvk (ko s )5 > (Shvk (Smi). e 5 )

Here, (Shv‘gt(két)*%); denotes the full subcategory of Shv (ks )« (the oo-topos
of étale hypersheaves on ke ) consisting of those sheaves that are the p-completion
of a 4-connective sheaf, and similarly (Shvgt(Smk)*,Al,zél);\ denotes the full sub-

category of Shv,}élt(Smk)* consisting of those sheaves that are the p-completion of
an Al-invariant 4-connective sheaf.

Remark 1.1. The above result is likely true for integers 2 < m < 4, but our
methods are not strong enough to show this. Note however that the functor

Lyu: (Shvgt(két)*);,\ — (Shv]é‘t(Smk)*A1>;\

is not an equivalence. Indeed, any sheaf of sets is automatically p-complete (cf.
[Mat24b, Lemma 3.13]), but there are Al-invariant étale sheaves of sets that are
not coming from the small étale site, e.g. G,.

We will deduce this theorem from a related version that holds over any base
scheme with some bound on the étale cohomological dimension of its residue
fields. To state the result, we need the following definition:

Definition (Definition [3.10). Let S be a scheme, and X € Shv} (Smg). We
say that X is p-completely étale Al-nilpotent if there exists a highly connected
tower (X,,), under X (i.e. the connectivity of the transition maps X, +1 — X,
goes to infinity as n — o) such that the following holds:

1. XO = %,
2. X =lim, X,,.



3. Each of the morphisms X,,;1 — X, is part of a fiber sequence X, 1 —
X, = K,, where K,, 2 Q°FE,, is a connected infinite loop sheaf for some
E, € Sp(Shv}, (Sms))s;.

4. For every n the object L,E,, = limy E,//p* is Al-invariant.

In other words, an sheaf X is p-completely étale Al-nilpotent if it admits a
principal refinement of (a version of) the Postnikov-tower of X, such that the
layers are Al-invariant after p-completion.

Theorem B (Corollary [6.7 and Lemma[3.13). Let S be a qcgs scheme of finite
Krull-dimension with sup,cgcd(s) < oo, and let p be a prime invertible on S.
The functor

iF: Shvl, (See)p = Shvl (Smg))

is fully faithful, with essential image exactly the p-completions of p-completely
étale Al-nilpotent sheaves. In particular, every sheaf in the essential image is
Al-invariant.

We will deduce Theorem [A] from Theorem [B] by doing a careful analysis of
which étale sheaves are actually p-completely étale Al-nilpotent, which we will
now explain.

Etale Al-nilpotent sheaves over a perfect field

Over a perfect field k, by a result of Asok—Fasel-Hopkins, in the Nisnevich
local world there is no difference between Nisnevich nilpotence and Nisnevich
Al-nilpotence:

Lemma (JAFH22, Proposition 3.2.3] and [Mat24bl, Lemma 5.19]). Let k be a
perfect field and X € Shvyis(Smy). be connected and A'-invariant. Then X is
nilpotent (in the topos theoretic sense, i.e. there exists a principal refinement of
the Postnikov tower of X ) if and only if X is Al-nilpotent (i.e. there emists a
principal refinement of the Postnikov tower of X with A'-invariant layers).

This naturally leads to the following analogous question:

Question 1.2. Let k be a perfect field, p # char(k) be a prime, and X €
Shv} (Smy). be connected A'-invariant. If X is étale nilpotent, is it true that
X is (p-completely) étale A'-nilpotent?

We are able to give a partial answer to this question in form of the following
result, which is interesting on its own:

Theorem C (Proposition . Let k be a perfect field of exponential char-
acteristic e with cd(k) < oo, p # e a prime, and X € Spc(k). be a motivic
space that is 2-effective, nilpotent (as a Nisnevich sheaf) and Z[%]-local. Then
Ls X is étale Al-nilpotent (so in particular A'-invariant and p-completely étale
Al-nilpotent).

Note that this is a priori surprising, as, in general, the étale sheafification
of an Al-invariant presheaf is no longer Al-invariant, and simultaneous étale
sheafification and A'-localization is computed by the countable colimit of the
alternating application of the two localization functors. The above theorem



says that if we start with a nilpotent and 2-effective motivic space, then this
procedure is unnecessary, as the étale sheafification is already A'-invariant. The
proof makes heavy use of the theory of P'-Postnikov towers as developed in
[ABH23].

Using this, we can give more examples of étale sheaves for which rigidity
holds. Bachmann showed that in p-complete étale stable motivic homotopy
theory over an algebraically closed field, there is an equivalence L,3X*°G,, =
L,S!, cf. [Bac21al Theorem 6.5 and [BH21] proof of Theorem 3.1] (note that
if the field is algebraically closed, the twisting spectrum is trivialized, yielding
the above claim). A similar statement is true unstably:

Theorem D (Theorems and [7.10). Let k be an algebraically closed field
with p # char(k). Then there is a retract diagram (in Shvi (Smy))

L,S* 5 LyLe piPY 5 L,S%

Moreover, after (the p-completion of)) a twofold suspension, T becomes an equiv-
alence, i.e. we have
L,S* 22 L,Le p1 7P

Using this retract, we can prove that in fact every 4-connective Al-invariant
étale sheaf over an algebraically closed field is (p-completely) a retract of a 2-
effective and 2-connective étale motivic space. Using étale descent, this result
suggests the following corollary.

Corollary E (Proposition [8.7). Let k be a perfect field with cd(k) < oo and
p # char(k) a prime, and X € Shvl (Smy), be 4-connective and A'-invariant.
Then X is p-completely small, i.e. Lyut*X =2 L, X.

Etale motivic spaces at the characteristic

If k is a field of characteristic p > 0, then the Artin—Schreier sequence F, —
A' =55 A shows that the Al-localization of the constant sheaf of abelian
groups IF, is 0. From this, one can for example deduce the vanishing of the
whole category of motives with p-torsion coeflicients, cf. [CDI15, Proposition

A.3.1]. The strongest such vanishing result is due to Bachmann and Hoyois:

Theorem ([BH21, Theorem A.1]). SHei(S), = SHS:(S)A = 0 for S any

P
scheme over F,.
Unstably, we can show the following version:

Theorem F (Proposition . Let S be a qgcgs Fp-scheme of finite Krull-
dimension with sup,cgcd(s) < oo, and X € Shvi (Smg) be p-completely étale
Al-nilpotent. Then L,X = x.

Related is the following result:

Theorem G (Corollary. Let k be a perfect field of characteristic p > 0 with
cd(k) < 0o. Let A € Shvg(Smy, Ab) be a sheaf of abelian groups, and k > 3. If
L,K(A,k) is Al-invariant, then L,K(A,k) = x.

Remark 1.3. Tt is not true that unstably the whole p-complete category vanishes:
Indeed, étale sheaves of sets are always p-complete by [Mat24b, Lemma 3.13],
but there are Al-invariant sheaves of sets that are nontrivial, e.g. G,,.



Etale hyperdescent for rational motivic spaces

Let k be a perfect field. Recall from e.g. [CD19, §16] that there is a splitting
SH(k)g = S’H(k)a x SH(k)g. Every object in S’H(k})a satisfies étale hyper-
descent, whereas if the cohomological dimension of & is finite, SH(k)g = 0. In
particular, one obtains the following result:

Theorem ([CD19, §16]). Let k be a perfect field with cd(k) < oo. Then any
rational motivic spectrum E € SH(k)q satisfies étale hyperdescent.

Using similar techniques as in the proof of Theorem [C] we can prove an
unstable version of this result.

Theorem H (Theorem . Let k be a perfect field with cd(k) < co. Any
rational nilpotent and 2-effective motivic space X € Spc(k). satisfies étale hy-
perdescent.

Strict Al-invariance for étale sheaves of abelian groups

Let k be a perfect field. Recall that a Nisnevich sheaf of abelian groups A is 1-
strictly (resp. strictly) Nisnevich Al-invariant if Kyis(A4,1) € Shvyis(Smy) is Al-
invariant (resp. Kpis(A,n) € Shvyis(Smy) is Al-invariant for all n > 0). Morel
showed in [Mor12, Theorem 4.46] that 1-strictly Nisnevich Al-invariant sheaves
of abelian groups are already strictly Nisnevich A'-invariant. This naturally
leads to the analogous question for étale sheaves. Let us say that an étale
sheaf of abelian groups A on Smy, is m-strictly étale A'-invariant for m > 1 if
K(A,m) € Shv} (Smy) is Al-invariant, and that it is strictly étale A'-invariant
if K(A,n) is Al-invariant for all n > 0.

Question 1.4. Let k be a perfect field with cd(k) < co and A be an étale sheaf
of abelian groups on Smy. Suppose that A is 1-strictly étale A'-invariant. Is it
true that A is strictly étale A'-invariant?

Using the rigidity result, we can partially answer this question.

Theorem I (Theorem [9.7). Let k be a perfect field with cd(k) < oo and A €
Shvgt(Smk,.Ab) be an étale sheaf of abelian groups. If A is 4-strictly étale A'-
invariant, then A is strictly étale Al-invariant.

In other words, this is a weak version of Morel’s theorem in the étale world.

Remark 1.5. It is unknown to the author if for m € {1,2,3} we still have the
implication that m-strictly étale A'-invariant sheaves are already strictly étale
Al-invariant. This is closely related to whether Theorem [A| holds for m < 4.

Using the equivalence HZ (U, A) = m,_;(K(A,n)(U)) for every smooth k-
scheme U, integers n > i > 0 and étale sheaf of abelian groups A, we can
reformulate the above theorem as the following.

Corollary J. Let k be a perfect field with cd(k) < co and A € Shv (Smg, .Ab)
be an étale sheaf of abelian groups. If H (—,A) is A'-invariant for every i €
{0,...,4}, then HZ (—, A) is Al-invariant for every i > 0.



Etale realization functor

As another application of this theory, we obtain an unstable étale realization
functor:

Theorem K. Let k be a perfect field with cd(k) < oo, and p # char(k) a prime.
There exists an étale realization functor

Re,: Spe(k) il 2—er — Shvgt(két) A

*,p

Here, the left-hand side is the co-category of nilpotent and 2-effective pointed
motivic spaces.

Proof. Write e for the exponential characteristic of k. Let X € Spc(k)« nil2—efi-
Then also Lz[é]X is nilpotent and 2-effective: Indeed, nilpotence was shown in
[AFH22, Proposition 4.3.8] (they only show that Ly 11X is weakly Al-nilpotent,
but under the assumption that X is nilpotent their proof in fact shows that
Ly X is nilpotent). That it is 2-effective was shown in [ABH23, Proposi-
tion 4.3.4]. Hence, Y := L¢iLy1;X is étale Al-nilpotent by Theorem (C} so in
particular p-completely étale Al-nilpotent by Lemma We can therefore
define Re,X to be the inverse of the equivalence ¢f' from Theorem [B| applied
to LY. O

Improving the bounds

Let k be a perfect field and € > 0 be an integer. Recall that SHSl(k:)(e),
the category of e-effective motivic S'-spectra, and SH(k)(e), the category of e-
effective motivic spectra both possess a t-structure [BY20] §6.1]. In particular,
by [BY20, Lemma 6.2], there is an induced functor on the hearts

w®: SH(k)(e)® = SHS (k)(e)°.

By [BY20, Bac21bl [Fel21], this functor is an equivalence for € > 2 (see also
[ABH23, Theorem 2.2.30 (2)] for a combined proof of this fact). This equivalence
lets us resolve any e-effective motivic space by a tower, where the layers are P!'-
infinite loop spaces, cf. Proposition [2.14] All the bounds presented in the above
introduction are derived from the fact that this works for € = 2. If it turns out
that also for ¢ = 1 the above functor is an equivalence, one can improve the
above results as follows:

e In Theorem [A] one can replace 4-connective by 3-connective.

In Theorem [C] one can replace 2-effective by 1-effective.

In Corollary [E] one can replace 4-connective by 3-connective.

In Theorem [H] one can replace 2-effective by 1-effective.

In Theorem [I] one can replace 4-strictly by 3-strictly.

In Corollary |J| one can replace {0,...,4} by {0,...,3}.

In Theorem [K] one can replace 2-effective by 1-effective.



Linear Outline

We begin in Section [2] with background material.

Section 2.I] establishes a criterion for when a geometric morphism of co-topoi
preserves limits along certain highly connected towers.

In Section 2:2] we strengthen some results on unstable p-completion from
[Mat24bl, Mat24al.

In Section [2.3] we collect key results on P'-Postnikov towers from the work
of Asok-Bachmann-Hopkins [ABH23|, which serve as an important tool in our
later arguments.

Section [2.4] collects key facts about hypercomplete étale co-topoi.

Finally, in Section we show that any n-connective pointed sheaf in an
oo-topos X' has a canonical resolution by “free n-connective pointed sheaves”,
i.e. sheaves of the form S™ AT for T € X,.

Section [3] examines the connection between étale sheaves and Al-invariant
presheaves. In particular, we introduce the notion of (p-completely) étale Al-
nilpotent sheaves, which play a central role in the rigidity theorem.

Section [ shows that, after rationalization, étale and Nisnevich motivic
spaces become closely related, culminating in Theorem [H]

Section [f] provides some vanishing results of p-complete étale motivic spaces,
if p is the characteristic of the base scheme, proving Theorems [F] and [G]

The unstable rigidity theorem is proven in Section [f] where we establish
Theorem

In Section [7| we construct a retract S — G,, — S? in the p-complete étale
unstable motivic setting, yielding Theorem

Section [§] presents concrete examples of étale Al-nilpotent sheaves, thereby
verifying Theorems [A] and [C] and Corollary [E]

Finally, Section [9] proves Theorem [} an étale analog of Morel’s theorem on
I-strictly and strictly Al-invariant sheaves of abelian groups.

Furthermore, in Appendix[A] we collect some results about Moore-Postnikov
towers for nilpotent morphisms in the setting of oco-topoi.

Notation

This article is written in the language of co-categories, as developed e.g. by
Lurie in [Lur09]. We will use the word anima for an object of the oo-category
of anima/spaces/homotopy types, whereas we will use the word sheaf for an
object of an oco-topos X'. We will furthermore employ the following notation:



An oo-category of anima
Sp oo-category of spectra [Lurl? §1.4.3]
Sp(—) Stabilization of an oo-category [Luri7, §1.4.2]
Shv.(C) | oco-topos of sheaves on a site (C, 1)
Shvlﬁ (C) | oco-topos of hypersheaves on a site (C, 1),
i.e. the hypercompletion of Shv.(C)
Ab Category of abelian groups
Lo (Un)stable rationalization functor [Mat24al §§2, 3]
L, (Un)stable p-completion functor [Mat24bl, §§2, 3]
C) p-complete objects in an oco-category C, [Mat24bl §§2, 3]
i.e. the essential image of L,
Smg Category of quasicompact smooth S-schemes
Set Category of quasicompact étale S-schemes
Spe(S) oo-category of motivic spaces [BH17, §2.2]
HSI (S) | oo-category of motivic S!-spectra [Mor03, §4]
SH(S) oo-category of motivic spectra [BH17, §4.1]
7-[;?: (S) | oo-category of étale motivic S'-spectra [Bac21al, §5]
SHet(S) | oo-category of étale motivic spectra [Bac21al, §5]
KMW n-th Milnor—-Witt K-theory group [Mor12], §2]

We will use without mention that there is a canonical equivalence
Sp(Shv,(C)) = Shv,(C, Sp)

between the stabilization of the oo-category of sheaves on (C,7) and the oo-
category of sheaves of spectra on (C, 7), cf. [Lurl8, Remark 1.3.2.2 and Propo-
sition 1.3.1.7], and similarly in the hypercomplete case. In particular, an object
E € Sp(Shv.(C)) will be called a sheaf of spectra.

Recall that there are by construction adjunctions

5% Spe(S), = SH () 10

and

o SH5'(S) = SH(S) tw

We also write X5t := 0°°X> and Qp7 | = Q3w for the composed adjunction.
If k£ is a field, then we define the exponentwl characteristic of k as

)1 if char(k) =0
~|p if char(k) =p > 0.
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2 Preliminaries

2.1 Limits of highly connected towers

Recall from [Mat24al, Definition 5.1 and Lemma 5.2| that a locally finite di-
mensional cover of an co-topos X consists of a jointly conservative collection of
limit-preserving geometric morphisms {p}: X — U, }icr, such that moreover U;
has enough points and is locally of homotopy dimension < n; for some n; > 0
(depending on 7). Moreover, any co-topos that admits such a cover is automat-
ically Postnikov-complete, cf. [Mat24al Lemma 5.3]. Recall that a tower (X, ),
is called locally highly connected (subordinate to the cover {U;};) [Mat24a, Def-
inition 6.1 (3)] if (pfXn)n is a highly connected tower in U; for all i € I, i.e. all
the pyX,, are connected, and for every ¢ € I and k > 1 there exists an N; ;, > 0
such that for all n > N; j the map 7 (p; X,,) = 7 (pf Xn;, ,.) is an isomorphism.
In this section, we will show that under suitable finiteness conditions, geometric
morphisms preserve limits of (locally) highly connected towers.

Proposition 2.1. Let f*: X — Y be a geometric morphism of co-topoi. Sup-
pose that X is locally of homotopy dimension < N for some N and that )
admits a locally finite dimensional cover. Let (X)), be a highly connected tower
in X. Then the canonical map

fflim, X,, — lim,, f*X,
is an equivalence.

Proof. Since )Y admits a locally finite dimensional cover, there exists a jointly
conservative set of points S of ) such that each point s* € S factors through an
oo-topos which is locally of homotopy dimension < N for some N, cf. [Mat24a),
Definition 5.1 (3)]. It thus suffices to check the equivalence after applying s* € S.
Note that we have a commutative diagram of the form

s* f*lim,, X,, —— s*lim,, f*X,,

T~

lim,, s* f*X,,

where all maps are limit-assembly maps. Since s* f* is a point of X', the diagonal
map is an equivalence by [Mat24al Lemma 6.5]. By [Mat24a, Example 6.3], we
see that (f*X,), is highly connected (and thus in particular locally highly
connected). Hence, since s* € S, the vertical map is an equivalence by [Mat24al
Corollary 6.6]. Therefore, also the horizontal map is an equivalence, which is
what we wanted to show. O

We want a version of the above proposition where we relax the assumption
that X is locally of homotopy dimension < N. Instead, we only want both X
and ) to admit locally finite dimensional covers. In order to prove such a result
one needs a certain compatibility of locally finite dimensional covers which is
captured by the following straightforward definition.

Definition 2.2. Let X be an oco-topos with a locally finite dimensional cover
{pf: X = U;}icr, and similarly ) be an oo-topos with a locally finite dimen-
sional cover {gj: Y — V;}jes.



A morphism of co-topoi with locally finite dimensional covers consists of a
geometric morphism f*: X — ), a map «: J — I, and geometric morphisms
I} Usj = Vj, together with the datum of a commutative square

=
X —)

*
lp " J/q;

Unj E— Vj
for every j € J.

Proposition 2.3. Let X be an co-topos with a locally finite dimensional cover
{pi: X = U}ier, and similarly Y be an oo-topos with a locally finite dimen-
sional cover {q;: Y — Vitjes. Let (f*: X = Y,k J = I,(fF: Usj — Vy);) be
a morphism of co-topoi with locally finite dimensional covers.
If (X)n is a locally highly connected tower in X (subordinate to {U;};), then
the canonical map
f*lim, X, — lim,, f*X,,.

is an equivalence.

Proof. Since the ¢ are jointly conservative, it suffices to show that the canonical
map ¢; f*lim, X;,, — ¢;lim, f*X, is an equivalence for all j € J. So fix j € J
and consider the following commutative diagram:

q; f*limy, X, —= fipi;limy, X,

J» b

¢;lim, f* X, filim, py; X,

s Js

The two horizontal arrows are given by the morphism of co-topoi with finite
dimensional covers, and are thus equivalences by definition. All the other maps
are given by limit-assembly maps. The maps S and 7 are equivalences since
py; and gj commute with all limits by definition. Moreover, the map 4 is an
equivalence by Proposition since (p;;; Xn)n is highly connected and U,; is
locally of homotopy dimension < N for some N by assumption. Hence, also the
map « is an equivalence which is precisely what we wanted to show. O

Lemma 2.4. Let X be an oco-topos locally of homotopy dimension < N with
enough points, and (X,), be a highly connected tower in X. Write X = lim,, X,
Then for all k > 0 the canonical map 7, (X) — (X)) is an isomorphism for
alln > 0.

Proof. Let k > 0. By assumption, there exists NV such that 7, (X,,) =& 7 (Xn)
for alln > N. We will show that m(X) = 7, (X,,) for all n > N. Since there are
enough points, and since s*lim,, X,, = lim,, s*X,, for all points s* by [Mat24al
Lemma 6.5], and s*m(—) = 7p(s*—) since s* is a geometric morphism, we
may assume that X = An. The result is now an immediate consequence of the
computation of homotopy groups of the limit as e.g. done in [MP11l, Proposition
2.2.9], as the system (mg41(X,)), is Mittag—LefHler (it consists of isomorphisms
for n > 0). O

10



2.2 Unstable p-completion

Let & be a Postnikov-complete co-topos with enough points. Write L,: X — X
for the unstable p-completion functor, the Bousfield localization at the class of
p-equivalences, cf. [Mat24bl, Section 3], and &) for its essential image, i.e. the
subcategory of p-complete sheaves. The goal of this section is to strengthen
some of the results about L, from [Mat24bl Section 3] and [Mat24al Section 6].

Lemma 2.5. Let f: E — F be a morphism in Sp(X) between 1-connective
sheaves of spectra. Then f is a p-equivalence if and only if Q°f is a p-
equivalence.

Proof. If f is a p-equivalence, then Q5° f is a p-equivalence by [Mat24bl Lemma
3.16]. Suppose on the other hand that Q$°f is a p-equivalence. Hence, we see
that L,QXf: L,QXE — L,QXF is an equivalence. Note that by [Mat24bl
Lemma 3.17| this morphism is equivalent to the morphism

QfTZleE — Q:OTZILPF-

Since 22° is conservative on connective objects (this can e.g. be checked on
stalks, where it reduces to the same claim about 25°: Sps, — An., which is
conservative by [Lurl7, Corollary 5.2.6.27]), it follows that 751 L,E — T>1L,F
is an equivalence. Consider the canonical morphism of fiber sequences

TZleE LpE TgoLpE
b ]
T51L,F L,F T<oL,F.

As L, is an exact functor, p-completing again yields the morphism of fiber
sequences

L,m>1L,E L,E L,7<oL,E
e
LpTzleF LpF LPTSOLPF'

In order to see that f: E — F' is a p-equivalence, we have to show that L, f is
an equivalence. By the above morphism of fiber sequences, it suffices to show
that L,7<oL,F — L,T<oL,pF is an equivalence. We will in fact show that both
objects are equivalent to 0. We will show that L,7<oL,E = 0, the proof for
F is the same. Since E is l-connective, we see that m,(7<¢L,E) is uniquely
p-divisible for all n (for n > 0 the homotopy object is 0, and for n < 0 use
[Mat24bl Lemma 2.9] applied to the p-equivalence E — L, E). Hence, the claim
follows immediately from [Mat24bl Lemma 2.10], as the standard t-structure
on Sp(X) is left-separated (cf. e.g. the first paragraph of [Mat24bl, Section 3.2],
using that X' is hypercomplete). This proves the lemma. O

Next, we strengthen [Mat24bl Proposition 3.19] to arbitrary maps of nilpo-
tent sheaves X — Y in X, i.e. we remove the assumption that the p-completions
of X and Y are still nilpotent. For this, we need the following cofinality result:
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Lemma 2.6. Let f: X — Y be a morphism in X, of pointed connected sheaves.
Then the N-indexed inverse systems (< fib(X — Y)),, and (fib(7<, X — 7<nY))n
are cofinal, i.e. for every n there exists morphisms

ap: fib(t<p X — 7<) Y) = 7<p1fib(X = Y)

and

Bn: T<pfib(X = Y) — fib(1<, X — 7<,,Y)

such that the compositions B,_1ay, and o, B, are just the transition morphisms
on the respective towers. In particular, the towers have equivalent limits.

Proof. A long exact sequence argument shows that the canonical map
Tgnflﬁb(X — Y) — Tgnflﬁb(TSnX — TSnY)

is an equivalence for all n. Thus, it suffices to show that the two towers
(T<n—1fib(7<n X — 7<,Y))n and (fib(r<, X — 7<,Y)), are cofinal.
Note first that for every n the unit gives a morphism

ap: fib(T<n X = 7<,Y) = 1< 1fib(7<n X — 7<,Y).

On the other hand, fib(1<, X — 7<,,Y) is n-truncated (as a limit of n-truncated
objects), and hence the map fib(7<p,41X — 7<p1Y) — fib(7<, X — 7<,)Y)
induced by the respective units 7<,41X — 7<, X and 1<, 1Y — 7<, Y factors
over a map

B T<pfib(T<pi1X = T<pt1Y) — fib(7<, X — 7<,)Y).

It is now easy (but tedious) to see that for every n the compositions 3,_1ay,
and «,f, are just the transition morphisms on the respective towers. O

Lemma 2.7. Let f: X — Y be a morphism in X, of pointed nilpotent sheaves.
Suppose that X and Y are n-truncated for some n > 0. Then

Lp7—21ﬁb(X — Y) = TZlﬁb(LpX — LpY)

Proof. Since X and Y are n-truncated, it follows from [Mat24b, Proposition
3.20| that also L,X and L,Y are nilpotent. Thus, the lemma is an immediate
consequence of [Mat24bl Proposition 3.19]. O

Proposition 2.8 (Bousfield-Kan Fiber Lemma). Suppose that X has a locally
finite dimensional cover. Let f: X — Y be a morphism in X, of pointed nilpo-
tent sheaves. Then

Lyms1fib(X = Y) & 75fib(L,X — L,Y).
Proof. Since X has a locally finite dimensional cover, we have equivalences
L,X =lim, L,7<, X

and
L,Y =lim, L,7<,Y,

12



see [Mat24al, Proposition 6.12]. Hence, we compute

Ts1fib(L,X — L,Y) 2 15 1fib(lim, L,7<, X — lim,, L,7<,Y)
T>1lim,, fib(L,7<p X — L,7<,Y)

Tleimn TZlﬁb(LpTSnX — LpTSnY>

1 1R

R

Tleimn Lp’TZlﬁb(TSnX — TSnY)
T>1limy, L,7>17<p,fib(X = Y)
Lp7'21ﬁb(X — Y)

1%

1%

Here, we used that limits commute with limits in the second equivalence, e.g.
[Mat24al Lemma 4.2] in the third equivalence, Lemma in the fourth equiv-
alence, Lemma in the fifth equivalence, and again [Mat24al Proposition
6.12] and the fact that the p-completion of a connected sheaf is connected, cf.
[Mat24bl Lemma 3.12], in the last equivalence. This proves the lemma. O

Remark 2.9. Note that in the proof of Proposition 2.8 we cannot argue as in
Lemma because it is unclear (and probably wrong in general) that L,X is
nilpotent for every nilpotent sheaf X € X,.

In the last part of this section, our goal is a strengthened version of [Mat24al,
Proposition 6.12]: We want to prove that p-completion commutes with limits
along locally highly connected towers, and not just the tower of truncations
(T<nX)n. For this, we need the following well-known lemma for which we could
not find a reference in the language of co-categories.

Lemma 2.10. Let C be a pointed oo-category with finite limits, and f: X —Y
and g: Y — Z be morphisms in C. Then there is a canonical fiber sequence

fib(f) — fib(gf) — fib(g).

Proof. Consider the following commutative diagram:
fib(f) — «
fib(gf) —— fib(g) —— *
x—L Ly

v 7.

We want to show that the upper left square is cartesian. By definition, the
horizontal rectangle, the vertical rectangle and the lower right square are all
cartesian. Hence, we conclude by applying the pasting law for pullback squares
twice (cf. the dual of [Lur09, Lemma 4.4.2.1]). O

The next (very technical) lemma states that p-completion reduces the con-
nectivity of a morphism between nilpotent sheaves roughly by the local homo-
topy dimension of the topos.

Lemma 2.11. Suppose that X is locally of homotopy dimension < N. Let
f: X =Y € X, be a morphism between nilpotent sheaves such that fib(f) is
(N + k + 2)-connective for some k > 1. Then the fiber fib(L, f) is k-connective.
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Proof. By Corollary also the morphism f is nilpotent (cf. Definition
for a definition). Hence, using Proposition we may choose a Moore-
Postnikov refinement of f, i.e. a sequence of connected sheaves (X,,), under
X and over Y with X = lim,, X,,, Xo 2Y, and fiber sequences X,, = X,,_1 —
K (A, ky), where the 4, € Ab(Disc(X)) are sheaves of abelian groups, and
the k, > 2 are integers, such that k, — oo as n — oo. Since fib(f) is
(N + k + 2)-connective, we may even assume that k, > N + k + 2 for all
n, cf. Lemma Note that since Y is nilpotent, using [Mat24b, Lemma A.12]
inductively, we conclude that also all the X, are nilpotent. Moreover, it is
clear that (X,,), is a highly connected tower. By Proposition we see that
L, X, = 1>1fib(L,X,—1 — L,K(Ap, ky,)). Using the proof of [Mat24al Lemma
6.11] (where the connectivity of the p-completion of an Eilenberg-MacLane sheaf
is computed), we see that L,K(A,,k,) is at least (k + 1)-connective, and the
connectivity tends to infinity as n — co. As L, X, is connected, we see by a
long exact sequence argument that already fib(L,X,,—1 — L,K (A, k,)) is con-
nected, and hence L, X,, = fib(L,X,_1 — L,K(Ap, k,)). Hence, fib(L,X,, = L, X,,_1) =
QL,K(Ap, ky,) is at least k-connective, again with connectivity tending to in-
finity as n — oo. By Lemma [2.10] we have a fiber sequence

fb(LyXni1 — LpXn) = fib(LyXnp1 — L,Y) = fib(L, X, — L,Y).

Since Xy 2 Y, we can thus inductively prove that also fib(L,X,+1 — L,Y) is
at least k-connective. Moreover, as the connectivity of fib(L, X, 11 — L, X,,)
tends to infinity as n — oo, we conclude that in fact (fib(L, X, — L,Y)), is a
highly connected tower. Additionally, we can compute its limit:

lim,, fib(L, X,, — L,Y) = fib(lim,, L, X,, — L,Y) = fib(L,X — L,Y),

where the second equivalence is Proposition using that (X,,), is a highly
connected tower of nilpotent sheaves. Hence, we conclude from Lemma [2:4]
that also fib(L,X — L,Y) is k-connective, which is exactly what we wanted to
prove. O

We also need the following result which is a strengthening of [Mat24al
Lemma 6.11]:

Lemma 2.12. Suppose that X admits a locally finite dimensional cover. Let
(Xn)n be a locally highly connected tower (subordinate to this cover), such that
all the sheaves X,, € X, are nilpotent. Then also the tower (L,X,), is locally
highly connected.

Proof. Since p; commutes with the p-completion by [Mat24al Lemma 6.10], and
preserves nilpotent objects (as it is the left adjoint of a geometric morphism),
we can assume that X is locally of homotopy dimension < N for some N € N
and that (X,,), is a highly connected tower, and our goal is to show that also
(LpXp)n is highly connected. So let k € N. Since (X,,),, is highly connected,
there exists L > 0 such that for all m > L the fiber fib(X,, — X)) is (k +
N + 3)-connective. We have to find M > 0 such that for all m > M the fiber
fib(Lp Xy — LpXar) is (k+ 1)-connective. The claim follows from Lemma
using M = L. O
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Proposition 2.13. Suppose that X admits a locally finite dimensional cover.
Let (Xp,)n be a locally highly connected tower (subordinate to this cover), such
that all the sheaves X,, € X, are nilpotent. Then the canonical map Lplim,, X,, —
lim,, L, X,, is an equivalence.

Proof. The proof is identical to that of [Mat24al Proposition 6.12], but we now
need Lemma to see that (L,X,,), is still locally highly connected. O

2.3 P!'-Postnikov towers

In the sequel we will need that over a perfect field any 2-effective nilpotent mo-
tivic space admits a version of the Postnikov-tower, where the layers are infinite
P!-loop spaces. This is a deep result of Asok—Bachmann—Hopkins [ABH23],
which we now recall:

Proposition 2.14 (Asok-Bachmann—Hopkins). Let k be a perfect field and
X € Spc(k). a pointed nilpotent motivic space. Suppose moreover that X is
q-effective for some ¢ > 2. Then X admits a refined Postnikov tower where the
layers are g-effective infinite loop spaces, i.e. there exists an N-indexed inverse
system Xo: N°P — Spc(k), x/ of pointed motivic spaces X; under X, and fiber
sequences X; 11 — X; — K, such that

(a) Xo = x,

(b) for every i, X; is nilpotent and q-effective,

(¢) X 2lim; X;,

(d) the connectivities of the K; tend to 0o as i — oo, and

(e) for every i, there exists a motwic spectrum E; € SH(k) which is 2-
connective and g-effective, and an equivalence K; = Qg% | F;. In particular
K; is 2-connective and q-effective.

Proof. Tt follows from [ABH23, Construction 4.1.7] that there exist motivic
spaces X; under X and fiber sequences X;11 — X; — K;, satisfying (a), (b),
(c) and (d), such that K; = 75 (441, K (A, n;) with A; a strictly A'-invariant
sheaf of abelian groups, n; > 2 and n; — oo as ¢ — oo. Here we use the
notation 7 (441, from [ABH23, Definition 4.1.2]. Now the remaining claim
(e) is [ABH23| Remark 4.1.13]. O

Remark 2.15. In the sequel we will repeatedly use some kind of induction on this
tower. The main strategy will be the following: If a statement for motivic spaces
is stable under limits and holds for sheaves of the form Q¢ |G for G € SH(k),
then it holds for any nilpotent 2-effective motivic space.

This version of the Postnikov-tower behaves well with respect to rationaliza-
tion, as captured by the following lemma.

Lemma 2.16. Let k be a perfect field and X € Spc(k). a pointed nilpotent
motivic space. Suppose moreover that X is q-effective, where ¢ > 2. Let R C Q
be a subring. If X is R-local, then we may assume that also the X;, K; and E;
from Proposition |2.14) are R-local.
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Proof. Choose sheaves X;, K; and E; for all ¢ as in Proposition 2.14, We show
that also the collection of LrX;, LrK; and LrF; satisfies (a) to (e) of loc. cit..

First, it follows from [AFH22, Theorem 4.3.11] that LrX,; 11 — LpX; —
LrK; is still a fiber sequence. We prove the remaining points:

(a): It is clear that LrXo & Lr* = *.

(b): That LrX; is nilpotent was shown in [AFH22] Proposition 4.3.8| (they
only show that LrX; is weakly Al-nilpotent, but under the assumption that
X is nilpotent their proof in fact shows that LrX; is nilpotent). That it is
g-effective was shown in [ABH23, Proposition 4.3.4].

(c): We have X & LpX = Lglim,, X,, & lim,, LrX,, by combining [AFH22,
Proposition 4.3.8 and Theorem 4.3.9] (which shows that the R-localization of a
motivic space can be computed as the R-localization of the underlying Nisnevich
sheaf) with [Mat24al, Proposition 6.9] (which applies as Shvyis(Smy) admits a
locally finite dimensional cover, cf. [Mat24al Proposition A.3]).

(d): This follows from [AFH22, Proposition 4.3.8].

(e): It was shown in [ABH23| Lemma 3.2.7 (1) and Corollary 3.2.9] that
LrFE; is still 2-connective and g-effective. Note that LpK; = LRQ[?pcl)y*Ei &
QFLRE;. Indeed, we have Qp | = QXw™, and Q7 commutes with Lz on
1-connective objects by [Mat24al Lemma 3.18] (or rather its analog for motivic
spaces, which can be proven in exactly the same way), whereas w® commutes
with Lgr by [Mat24al, Corollary 2.7] as it preserves filtered colimits by [BY20,
Lemma 6.1]. O

2.4 Etale co-topoi

In this section, we collect some results about the small-étale and smooth-étale
oo-topoi.

Definition 2.17. Let S be a qcgs scheme.

o We write Sg; for the category of qcgs étale S-schemes, equipped with the
étale topology, and Shvlé’t(Sét) for the oco-topos of étale hypersheaves on
Set -

e We write Smg for the category of qcgs smooth S-schemes, equipped with
the étale topology, and Shvy (Smg) for the co-topos of étale hypersheaves
on Smg.

Proposition 2.18. Let S be a scheme. A conservative family of points of
Shv% (Smg) is given by evaluating at Spec(@ﬁchj), the spectrum of the strict
henselization of the local ring of X at T, where X is a smooth S-scheme and
T € X is a geometric point.

Similarly, a conservative family of points of Shvgt(Sét) is given by evaluating
at Spec(@if’%), the spectrum of the strict henselization of the local Ting of S at
5, where s € S is a geometric point.

Proof. That these functors are points is [CM21] Example 4.32]. We now prove
that they are jointly conservative. Since we work with hypersheaves, we can
check equivalences on homotopy sheaves and are thus reduced to show that
on the underlying 1-topos those points form a conservative family. This was
proven in [Sta23] Theorem 03PU| for the small étale site, the smooth case
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follows similarly (e.g. by pulling back to various small étale sites Shv¥, (X¢;) for
X e Sms). O

Definition 2.19. Let S be a qcgs scheme, and z € S. Write c¢d(z) € NU {oo}
for the étale cohomological dimension of the field k(x), cf. [Sta23l Tag 0F0Q).
Similarly, write c¢d(S) € NU {oc} for the étale cohomological dimension of S.

Definition 2.20. Let S be a qcgs scheme. We say that S is étale bounded
if there is a global bound on the étale cohomological dimension of the residue
fields of S, i.e. sup,cgcd(z) < 0.

Lemma 2.21. Let S be a qcqs scheme of finite Krull-dimension that is étale
bounded. Then also cd(S) < co. Moreover, if sup,cgcd(s) < N, then cd(S) <
N + dim(S).

Proof. See e.g. the proof of [CM21), Corollary 3.29]. O

Lemma 2.22. Let S be a scheme, and U — S an étale S scheme. The canonical
functor
Shv¥, (Set) — Shvi (Ust)

induces an equivalence
Shv? (Set) jr 2 Shvl (Ue)

Proof. Since morphisms between étale S-schemes are themselves étale [Sta23l
Tag 02GW]|, we get an equivalence of sites (Set) i = Ust, where the slice cate-
gory carries the canonical site structure. Then the result follows from [GAVT1]
Exposé I1I, Proposition 5.4], as all involved co-topoi are (hypercompletions of)
1-localic topoi. O

Lemma 2.23. Let S be a qcqs scheme of finite Krull-dimension, such that S is
étale bounded. There exists an N > 0 such that Shv¥, (Se;) is locally of homotopy
dimension < N. In particular, it is Postnikov-complete.

Proof. Let N := dim(S) + sup,cg cd(z). This is finite since S is étale bounded.
By [CM21l Corollary 3.29] we see that for every étale S-scheme U — S the coho-
mological dimension of Shv¥, (Uy) is < N. Note that Shvgt(Sét)/U >~ Shv? (Us)
by Lemma In particular, we see that Shv} (Ss) is locally of cohomological
dimension < N. Since it is hypercomplete by definition, it follows that it is
locally of homotopy dimension < N, cf. [Lurl8, Proposition 1.3.3.10]. It follows
from [Lur09, Proposition 7.2.1.10] that it is also Postnikov-complete. O

Lemma 2.24. Let S be a qcgs scheme of finite Krull-dimension, which is more-
over étale bounded. Let p: X — S be a smooth finite type S-scheme. Then X
is €tale bounded.

Proof. Let K = sup,cgcd(s), and let M := sup, x trdeg(k(z)/k(p(x))) be the
supremum over the transcendence degrees. K is finite by assumption, and by
combining [Sta23| | Tag 0A3V| with [Sta23, Tag 0A21| we see that also M is finite.
We claim that sup, ¢y cd(z) < K + M. This follows from [Sta23| Tag OF0T] as
for x € X we have cd(z) < cd(p(z)) + trdeg(k(z)/k(p(x))) < K + M. O
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Proposition 2.25. Let S be a gcgs scheme of finite Krull-dimension, which is
moreover étale bounded. Then Shv% (Smg) admits a locally finite dimensional
cover in the sense of [Mat24d, Definition 5.1]. In particular, it is Postnikov-
complete.

Proof. Arguing as in the proof of [Mat24al, Proposition A.3], one reduces to
the claim that for U € Smg, the co-topos Shvlgt(Ué ) is locally of homotopy
dimension < N for some N and has enough points. The first statement was
proven in Lemma [2.23] as U is étale bounded, cf. Lemma [2.24] The other
statement is Proposition That Shv¥, (Smg) is Postnikov-complete follows
from [Mat24al Lemma 5.3]. O

Proposition 2.26. Let S be a qcgs scheme of finite Krull-dimension, which is
moreover étale bounded. The étale hypersheafification functor Lg, : Shvyis(Smg) —
Shv]gt(SmS) upgrades to a morphism of oco-topoi with locally finite dimensional
covers, where we equip the Nisnevich topos with the locally finite dimensional
cover from [Mat24d, Proposition A.3], and the étale topos with the cover from
Proposition |2.25).

Proof. For this, it suffices to note that étale hypersheafification commutes with
restriction to a small étale site, i.e. that for every smooth S-scheme U the
following diagram commutes:

Shvpis(Smg) —— Shvpis(Uss)
e L
Shv, (Sms) — Shvi, (Uey).
This follows as already the corresponding diagram of sites commutes. O

Definition 2.27. We write ¢: S¢; — Smg for the inclusion of sites, and
u: Shvk (Ss) = Shvl (Smg) :0*

for the induced geometric morphism on the associated hypercomplete oco-topoi,
i.e. the hypercompletion of the geometric morphism from [Pst22l Proposition
A.11]. Here, +* is given by restriction along ¢, and ¢ is left Kan extension along
L, followed by hypersheafification. Note that .* also has a right adjoint ¢,: It
exists before the hypercompletion by [Pst22, Proposition A.13] because ¢ has
the covering lifting property [Pst22, Definition A.12] .

Lemma 2.28. The functors vy and v, are fully faithful.

Proof. The functor ¢ is fully faithful by [Bac2lal Lemma 6.1], note that in the
reference, e* is the name for ;. Since ¢, is right adjoint to the right adjoint of
u1, it is formal that it is also fully faithful (cf. (the dual of) [NPR24] Corollary
2.7] for a fun proof of this fact). O

Definition 2.29. Let f: T'— S be a morphism of schemes. Pullback along f
defines a morphism of sites Smg — Smyp. We write

f*: Shvk (Smg) = Shvk, (Smy) : f.
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for the induced geometric morphism on the associated hypercomplete co-topoi,
i.e. the hypercompletion of the geometric morphism from [Pst22l Proposition
A.11]. Here, f. is given by restriction along the morphism of sites, and f* is
left Kan extension along f, followed by hypersheafification.

Similarly, we have a geometric morphism

f*: Shvk (Sep) = Shvl (Tx) : f-
using the small étale sites.

Definition 2.30. Let S be a scheme, and 5§ € S a geometric point. Write
ps: S = Spec qul?g — S for the canonical morphism from the spectrum of
the strict henselization of the local ring of S at 5 to S. In particular, using
Definition [2.29] we have adjunctions

pt: Shvh (Smg) = Shv}élt(Smsgh) ps

3k

and
pi: Shve (Se) = Shvg ((SE),,) tps

5*.

Lemma 2.31. Let S be a scheme and 5 € S a geometric point. Suppose that
T € Smgen. Then there exists a cofinal filtered system s =>U — 95); of
quasicompact étale neighborhoods of 5 in S (i.e. S = 1im; U;), and for every i
a smooth U;-scheme T;, together with transition morphisms T; — T; making the
obvious diagram commute, such that T = lim; T;. If T is étale over S2, then
we can arrange that all the T; — U; are étale.

Similarly, we can descend any étale cover T' — T in Smgen, or any disjoint
union decomposition T = 11;T;. )

Proof. Combine [Sta23, Lemma 01ZM] with [Sta23l Lemma 0COC]. For the étale
statements, we instead use [Sta23] Lemma 07RP|, where we additionally use
descent for surjective morphisms [Sta23 Lemma 07RR] for the covers. For dis-
joint union decompositions, we can combine [Sta23], Lemma 01ZP| with [Sta23],
Lemma 0EUU| and again the statement about surjective morphisms. O

Lemma 2.32. Let X be an co-topos, and T € X an object of homotopy dimen-
sion < N for some N > 0. Let X € X andm > 0. Write f: X = 7<nymX for
the canonical map. Then Mapy (T, f) is an (m + 1)-connective map of anima.

Proof. The global sections functor I': X/ — An sends k-connective morphisms
to (k — N)-connective morphisms, cf. [Lur09, Lemma 7.2.1.7]. The map f is
(N + m + 1)-connective, and so is f x T: X x T' = (T<ntmX) x T € X)p.
Note that T'(f x T) & Mapy,. (T, f xT) = Mapy(T, f), hence we see that

Map (T, f) is an (m + 1)-connective map of anima. O

Lemma 2.33. Let S be a qcgs scheme of finite Krull dimension which is more-
over étale bounded, and 3 € S a geometric point. Let {s — U; — Sticr be a
cofinal system of étale neighborhoods of 3, and 0 € I be an initial object. Sup-
pose that Ty — Uy is a scheme over Uy such that Ty — Uy — S is smooth. Let
T, :=Toxp, U; and T =Ty Xy, S’gh = lim; T;. Then for every X € Shvgt(SmS)
we have piX (T) = colim; X (T;).
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Proof. We first prove the lemma under the additional assumption that X is
N-truncated for some N > 0. Write f*: P(Smg) &= P(Smgen) : fi for the
adjunction on presheaves where f, is given by precomposition aloﬁg the pullback
functor f: Smg — SmS§h7 and f* is left Kan extension. In particular, pZX =
Le f*X. Hence, it suffices to show that (1) f*X(7T) = colim; X (T;) and (2)
f*X satisfies étale hyperdescent.

(1): By definition of left Kan extension we have an equivalence

FX(T) = | colim  X(U),
where the colimit runs over the comma category (T | Smg). By the universal
property of the pullback, this category is equivalent to (Smg), /0 where we view
T as an S-scheme. It is left to show that the T; are cofinal in this category. For
this, let T'— U any S-morphism with U € Smg, and we have to show that there
is an ¢ such that T — U factors over T' — T;. This is an immediate application
of [Sta23| Proposition 01ZC]|.

(2): Since f* preserves truncated objects, and since any truncated sheaf is
automatically a hypersheaf, it suffices to show that f*X is an étale sheaf. Note
that f*X is a X-sheaf (i.e. it sends finite coproducts to products): Indeed, let
(V;); be a finite family of smooth schemes over Ssh. By Lemma we may
assume that we get compatible families (Vj;); over a cofinal system of étale
neighborhoods 3 — U; — S, such that Vj; xp, S8 = V;. Now, by (1) we
know that f* X (II;V;) = colim X (II;V} ;). Since X is a ¥-sheaf, and since finite
limits commute with ﬁltergd colimits in An, we conclude that also f*X is a
Y-sheaf. Hence, it now suffices to prove the sheaf condition for an étale cover
V — U consisting of a single morphism. Again, using Lemma we can find
compatible étale covers V; — U;. We argue as above, using (1) and the fact
that on homotopy groups the totalization of the Cech nerve behaves like a finite
limit, and hence again commutes with filtered colimits.

We end the proof by showing the general statement. So let X € Shv} (Smg)
be arbitrary. First note that Tj is étale bounded, with some bound K > 0 by
Lemma [2:24] Moreover, by the proof of this lemma, since any T is an étale
To-scheme, we see that it is again étale bounded with the same bound K, and
similarly for the pro-étale Ty-scheme T'. Hence, all the T; € Shv¥, (Smg) and also
T € Shv}, (Smgn ) have cohomological dimension < N, where N := K 4dim(Tp),
cf. Lemma ﬂ (as dim(T) = dim(T;) = dim(7p)). By the proof of [Lur(9,
Proposition 1.3.3.10], using Postnikov-completeness, T and the T; have in fact
homotopy dimension < N. We now have for every m > 0 a commutative
diagram

(pEX)(T) = Map gsn (T, ptX) ——— Map gsn (T, T< N+mpiX)

|

Mapgan (T’ p57< N +m X)

|

colim; X (T;) = colim; Mapg(T;, X) —— colim; Mapg(T;, T< N4+mX)

Here, the top right vertical map is an equivalence since p% is a geometric mor-
phism, and the bottom right vertical map is an equivalence by the above special

20


https://stacks.math.columbia.edu/tag/01ZC

case where X was assumed to be truncated. Our goal is to show that the left ver-
tical map of anima is an equivalence, it suffices to show that it is co-connective.
For this, we will show that the horizontal maps are both m-connective, since
the left vertical map is independent of m, this then proves the claim. First note
that m-connective maps are stable under filtered colimits. Since T and the T;
have homotopy dimension < N, the claim now follows from Lemma [2:32] O

Lemma 2.34. Let S be a qcqs scheme of finite Krull dimension, that is more-
over étale bounded, and s € S a geometric point. The following squares are
commutative:

Sh"}e’lt (Set) s Sh"gt ((Sgh)ét)

b ;

Shvl, (Sms) —2— Shv, (Smga)
and

Shvl, (Ser) —— Shvi ((S2),,)

Shvl, (Sms) —2— Shvl,(Smga).

Proof. For the first square, is suffices to show that the associated square of

right adjoints commutes. As all the right adjoints are given by restriction along

morphisms of sites, this follows since they already commute on the level of sites.
For the second square, note that there exists a natural transformation

unit counit
P — upEt S ptut —— S pk

given by the Beck—Chevalley transformation (using the commutativity of the
first diagram). The morphism induced by the unit is an equivalence since ¢ is
fully faithful, cf. Lemma[2:28] Hence, it suffices to show that also the morphism
induced by the counit is an equivalence. So let X € Shv% (Smg). Since ¢* is
given by restriction, we have to show that for every T' € (Sgh)ét the canonical

map
counit

(psu” X)(T') —— (psX)(T)
is an equivalence. By Lemma we may choose étale neighborhoods {5 —
U; — S}; and for every i an étale U;-scheme T such that T = lim; T;. It now
follows from Lemma that this morphism is equivalent to the morphism

counit

colim; (ut* X )(T;) —— colim; X (T3).

Since T; € S¢ and « is given by left Kan extension along the inclusion Sg —
Smg, it follows that this morphism is an equivalence. O

Lemma 2.35. Let S be a qcqs scheme of finite Krull dimension, that is more-
over étale bounded. The collection of functors {pt}ses is jointly conservative
on both Shvl, (Smg) and Shvl, (Set) (where the s are the geometric points of S).
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Proof. We first show that the functors p%: Shvl (Smg) — Shv?t(SmS;;h) are

jointly conservative. So let f: X — Y be a morphism in Shvgt(SmS) such
that p%f is an equivalence for all geometric points 5. As for the étale topology
strictly henselian local rings form the points of the topos, and we are working
with hypersheaves, it suffices to show that for every T € Smg and geometric
point £ € T the morphism f: X (T:") — Y (T%") is an equivalence. Fix T and Z.
Hence, we have to show that

fi colim X(U)— colim Y(U) (1)
IU-5T I-U5T

is an equivalence. Write s € S for the geometric point under ¢ € T', so that
there is a commutative diagram

s
t

la JB

Ssh TS
In particular, p; 8% f = a*pzf is an equivalence. By Lemma the equivalence
piBf: ptfﬁ*X(Tfh) & p%B*Y(T;h) may be identified with the morphism

B*f: colim ﬁ*X(U)i colim B*Y(U).
IsU-5T IsUST

Since any étale T-scheme U is in particular a smooth S-scheme, we see that
B*Z(U) = Z(U) for any Z. Hence, the above equivalence can be identified with
the morphism , which proves the claim.

We finish the proof by showing that also the functors p%: Shvi (Ss) —
Shv]gt((Sgh)ét) are jointly conservative. For this, let f: X — Y € Shv% (Ss) be
a morphism such that pZf is an equivalence for all geometric points s € S. Then
also upif = pZu f is an equivalence for all 5 € S, using Lemma Hence, it
follows from the first part that ¢ f is an equivalence. Thus, we deduce that f is
already an equivalence since v is fully faithful, cf. Lemma [2:28] O

Lemma 2.36. Let k be a separably closed field. Then evaluation at k induces
an equivalence Shv’ (ks) = An.

Proof. Since k is separably closed, the functor Fin — k¢ from finite sets to kg
given by sending a set A to 114 Spec(k) is an equivalence of categories. Under
this equivalence, the étale topology corresponds to the topology generated by
finite coproduct decompositions. Hence, using [BHI17, Lemma 2.4], we see that
Shv% (ks) = Ps(Fin) (the reference shows this holds before hypercompletion,
and the right-hand side is hypercomplete by [BH17, Lemma 2.6]), i.e. the oo-
category of product-preserving presheaves on finite sets, which is equivalent to
the oo-category of anima, cf. [CS23| §5.1.4]. Unwinding the definitions, we see
that this equivalence is precisely given by evaluation at k. O

Lemma 2.37. Suppose that k is a separably closed field. Then the functor

(=)(k): Shv% (Smy) — An
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given by evaluation at k has a left and a right adjoint. In particular, it pre-

serves all limits and colimits and commutes with p-completion, i.e. L,(F(k)) =
(L,F)(k) for all F € Shv¥,(Smy).

Proof. There is a commutative diagram

ShvZ, (Smy) s Shv¥, (ket)

m‘ i( )

Since k is separably closed, we have seen in Lemma that the right vertical
arrow is an equivalence. Moreover, ¢* has a left and a right adjoint, cf. Defi-
nition [2:27] hence the same is true for the diagonal functor. That evaluation
at k then also commutes with p-completion follows formally from the fact that
it preserves both p-equivalences and p-complete objects, cf. [Mat24bl Lemma
3.11]. O

2.5 The canonical resolution of a connective sheaf

Let X be an oco-topos. In this section, we prove that for every n-connective
sheaf X € X, >, there is a canonical way of writing X as a sifted colimit of
sheaves of the form X"T with T € X,.

Proposition 2.38. Let X € &, >,,. Then X is the geometric realization of the
simplicial diagram given by [k] — (X"Q")*TY(X). In particular, X is a sifted
colimit of sheaves of the form L"T with T € Xi.

Proof. If we can show that the functor Q": X, >, — X, is monadic (i.e. is con-
servative and preserves geometric realizations of Q™-split simplicial diagrams),
then this follows from (the proof of) [Lurl, Proposition 4.7.3.14]. Consider the
following commutative diagram of right adjoints

Mong,, (X, <—>MonIgEp 8 TX* >n

e

where the right horizontal morphism is an equivalence by [Lurl7, Theorem
5.2.6.15]. Since fgt: Mong, (X,) — X. is monadic, it suffices to show that
the forgetful functor Mong” (X.) < Mong, (X.) is conservative and preserves
geometric realizations that are fgt-split. The first claim is clear. For the second
claim, we have to show that a fgt-split geometric realization (in Mong, (X)) of
grouplike E,-monoids is still grouplike. Grouplike objects are characterized by
certain maps G X G — G x G being equivalences, cf. [Lurl7, Definition 5.2.6.2].
Since geometric realizations that are fgt-split are computed underlying, and
since colimits are universal in X, the result follows. O]

23



3 Al-invariance and étale sheaves

In this section, we will define A'-invariant étale sheaves, and discuss (p-completely)
étale Al-nilpotent sheaves, a variant of nilpotence in an co-topos, where the
layers of the refined Postnikov tower are given by (p-completely) Al-invariant
infinite loop sheaves.

Definition 3.1. Let S be a scheme. Write Speg, (S) € Shvl (Smg) for the co-
category of Al-invariant étale hypersheaves on Smg. As in the Nisnevich case,
there is a Bousfield localization

Leg a1 Stht(SmS) = Speg(S) SLg, AL

at the projections X x Al — X for X € Smg. We call objects of this oo-
1

category étale motivic spaces over S. We write SH5, (S) = Sp(Spce; (S)) for

the stabilization.

Recall the following lemma:

Lemma 3.2 (e.g. [Mat24bl Lemma A.1]). Let S be a scheme. There is an
adjunction

Leonr: Sp(Shvll (Smg)) = SHE (S) t1aenr,

such that the following two diagrams are commutative:

Ly g1 1 1
Sp(Shvg; (Sms)) ——= SHE (S) Sp(Shvg, (Sms)) — SHE (5)
Z‘X’T E”T lﬂi" iﬁ“’
L a1
Shv, (Sms). ——— Speg(S). Shvg, (Sms)s 45— Spcg,(S)s

Lemma 3.3. Let S be a scheme. The functor tg; a1 : SHgil (S) — Sp(Shv¥ (Smg))
s fully faithful, with essential image those étale hypersheaves of spectra that are

Al-invariant. In particular, S'H‘Cfgtl(S) is equivalent to the co-category with the
same name from [Bac21d, [BH21).

Proof. The functor is fully faithful by [Mat24b, Lemma A.2]. Everything in
the essential image is A'-invariant. Indeed, this can be checked after applying
the functors Q2°%" for varying n, but now note that Q5 1 a1 = tg 41 22° by
Lemma On the other hand, suppose that E € Sp(Shvl (Smg)) is Al-
invariant. In particular, the QX°YX"E are all Al-invariant and thus define an

object of S?—[;?tl(S). O

Lemma 3.4. Let X be a Postnikov-complete co-topos, and T € X a coherent
object of cohomological dimension < N for some N. ThenT € X and XTT €
Sp(&X) are both compact.

Proof. The second claim follows from the first one since the right adjoint °°
of X%° preserves filtered colimits (recall that in any oo-topos, filtered colimits
commute with finite limits).

Now, 7<,T" is compact in Shvgt(Sms)Sn for every n by [Lurl8 Corollary
A.2.3.2]. Let X; be a filtered system in X. For every n > 0 we have the
following commutative diagram:
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Map o (T, colim; X;) colim; Map (T, X;)

| |

Map y (T, T< N +mcolim; X;) colim; Map 4 (T, T< N4m X:)

: i

MangN+m (T<N+mT, T< N4mcolim; X;) —— colim; MapXSN+m (T<N+mT, T< N+mX5)

Here, the bottom vertical maps are equivalences by adjunction, and the bottom
horizontal map is an equivalence since 7<n4p,T is compact in X<y, and
T<N+4+m: X = X<nim preserves colimits. Hence, also the middle horizontal map
is an equivalence. By the proof of [Lurl8| Proposition 1.3.3.10], using Postnikov-
completeness of X, the object T" has homotopy dimension < N. Hence, both
top vertical maps are (m + 1)-connective by Lemma Hence, also the top
horizontal map is (m + 1)-connective. Since m was arbitrary, we conclude that
the top horizontal map is co-connective, hence an equivalence of anima. O

Lemma 3.5. Let S be a gegs scheme of finite Krull-dimension, that is more-
over étale bounded. The functor tg a1: Spce,(S) — Shvl (Smg) commutes with

filtered colimits, and the functor ve a1 : S’Hgtl(S) — Sp(Shv’, (Smg)) commutes
with all colimits.

Proof. Since 14 a1 : S’Hil (S) — Sp(Shvk, (Smg)) is exact, it commutes with
finite colimits. Therefore, we only have to show that it commutes with filtered
colimits.

As Al-invariant objects are the local objects with respect to the morphisms
T x Al = T (resp. B2 (T x A') — £2°T)), it suffices to show that T' (resp. X7
is compact for every 1" € Smyg.

Any T € Smg has finite cohomological dimension by Lemmas [2:21] and [2:24]
As the étale topology is finitary, we see from [Lurl8, Proposition A.3.1.3]
that 7 € Shvy (Smg) is coherent. Hence, both T and ¥°T are compact by
Lemma [3-4] which immediately implies the lemma. O

Proposition 3.6. Let S be a gcgs scheme of finite Krull-dimension, that is
moreover étale bounded. The A'-localization functor

Lgar: Shvk (Smg) — Shvh (Smg)
preserves connected objects.

Proof. As the étale topology is finitary, étale hypersheaves are stable under
filtered colimits in the co-category of presheaves. Hence, the same proof as for
the Nisnevich topology applies (but with Nisnevich sheafification replaced by
étale hypersheafification), see e.g. [Bac24, Lemma 1.2]. O

Proposition 3.7. Let S be a qgeqs scheme of finite Krull-dimension, that is
moreover étale bounded. Let X € Shvy,(Smg).. If X is Al-invariant, then also
51X is Al-invariant.

Proof. Consider the counit 751X — X. Since X is Al-invariant by assumption,
this map factors over the canonical map 751X — Lg a17>1X. As Ly g1751 X
is connected by Proposition @ it follows that Lg 41751 X — X factors over
7>1X — X. Hence, we have the following commutative diagram:
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TZlX —_— LétAlTZlX e TZlX
\ Xy/

where the top composition is the identity on 751 X. As Al-invariant objects are
stable under retracts (this holds for the local objects of any Bousfield localiza-
tion), the proposition follows. O

Lemma 3.8. Let S be a gcgs scheme of finite Krull dimension, that is moreover
étale bounded, and 5 € S a geometric point. The functor

pi: Shvd, (Smg) — Shvg (Smgsn)

from Definition preserves Al-invariant sheaves.

Proof. Let X € Shv¥, (Smg) be Al-invariant. By definition, the strict henseliza-
tion
St~ lim U
§—>Ui>s

is the limit over all étale neighborhoods U of 5in S. Let T' € Smgsn, so that by
Lemma 2-31] we may choose a cofinal system of étale neighborhoods 5 — U; — S
and for every i a smooth U;-scheme T; such that T = lim; T;. By Lemma [2.33
we have that p%(X)(T) 2 colim; X (T;). The result follows from Al-invariance
of X and the fact that lim; (T; x A1) = T x Al O

Lemma 3.9. Let S be a scheme of finite Krull dimension that is moreover étale
bounded. The collection of functors

pi: Shvg, (Smg) — Shvg, (Smgan)

from Definition[2.30 where s ranges over the collection of geometric points of S
jointly detect Al-invariant objects, i.e. if p=X is Al-invariant for all 3, then X
is Al-invariant.

Proof. Let X € Shv¥, (Smg), such that p*X is Al-invariant for all 5. Consider
the canonical map f: X — Lg a1 X. We have seen in Lemma[3.§|that p%Lg a1 X
is A'-invariant. Moreover, since pi(A§ x5 T) = Agy, X = p£T for every smooth

S-scheme T, it follows immediately that pZ preserves Al-equivalences. In partic-
ular, we see that p%f is an Al-equivalence between Al-invariant sheaves, hence
an equivalence. This allows us to conclude from Lemma that already f is
an equivalence, i.e. X is Al-invariant. O]

Definition 3.10. Let S be a scheme. Let £: Sp(Shv} (Smg)) — Sp(Shv¥ (Smg))
be a left Bousfield localization. Let X € Shvl (Smg).. We say that X is £-
locally étale A'-nilpotent if there exists a highly connected tower (X,), under
X such that the following holds:

1. Xo = x,
2. X =lim, X,.
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3. Each of the morphisms X,,;1 — X, is part of a fiber sequence X, 1 —
X, = K,, where K,, 2 Q°FE,, is a connected infinite loop sheaf for some
E, € Sp(Shv}, (Sms))s;.

4. For every n the object LE,, is Al-invariant.
In the sequel, we will consider the following three special cases:
o If £ =id is the identity functor, we will say that X is étale A'-nilpotent.

o If L = L, is p-completion for some prime p, we will say that X is p-
completely étale A -nilpotent.

o If £L = Lg is rationalization, we will say that X is rationally étale A'-
nilpotent.

Lemma 3.11. Let S be a scheme. Let X € Shvl (Smg), be étale A -nilpotent.
Then X is p-completely étale Al-nilpotent for every prime p, and moreover
rationally étale A'-nilpotent.

Proof. Let E € Sp(Shvl (Smg)) be Al-invariant. Then L,E 2 lim, E/p" by
[Mat24bl Lemma 2.5|, and hence is Al-invariant as a limit of Al-invariant
sheaves. Similarly, LgE can be written as a filtered colimit of copies of E
by [Mat24a, Lemma 2.6]. Hence, it is Al-invariant since A'-invariant sheaves
of spectra are stable under colimits by Lemma [3.5] These two observations
immediately imply the lemma. O

Lemma 3.12. Let S be a scheme. Let X € Shvi (Smg). be étale A'-nilpotent
(resp. p-completely étale A'-nilpotent, resp. rationally étale A*-nilpotent), with
sheaves (X,,, Kn, Ey) as in Deﬁnition. Then K,, (resp. LyK,,, resp. LoK,,)

is Al-invariant.

Proof. If X is étale Al-nilpotent, then E,, is A'-invariant, and hence so is K,, =
Q°E, by Lemma [3.2]

If X is p-completely Al-nilpotent, then L,E, is Al-invariant. We have
LK, = LQYE, = 11Q°L,E, by [Mat24bl Lemma 3.17] (using that E,, is
1-connective). Hence, L, K, is Al-invariant by Lemma and Proposition

Similarly, if X is rationally Al-nilpotent, then LgF, is Al-invariant. We
have Lo K, = LoQ°E, = QX LgE, by [Mat24a, Lemma 3.18] (using that E,,
is 1-connective). Hence, LgK,, is Al-invariant by Lemma O

Lemma 3.13. Let S be a qcgs scheme of finite Krull-dimension, that is more-
over étale bounded. Let X € Shvgt(SmS)* be étale At-nilpotent (resp. p-completely
étale Al-nilpotent, resp. rationally étale A'-nilpotent). Then X (resp. L,X,
resp. LoX ) is Al-invariant.

Proof. Let L be one of id, L, or Lg, and suppose that X is L-locally étale
Alnilpotent. Choose sheaves (X,,)n, (K,), and sheaves of spectra (E,), as in
Definition All the sheaves X,, are nilpotent: As Xy = * is nilpotent, this
follows inductively, using the fiber sequence X, 1 — X,, — K, and [Mat24bl
Lemma A.12], and the fact that K, as a connected infinite loop sheaf is also
nilpotent, cf. [Mat24b, Lemma A.11].

Note that £X = lim, £X,: for £ = id this is by definition, for £ = L, we
use Proposition [2.13] whereas for £ = Lg we use [Mat24al, Proposition 6.9] (for
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the latter two cases we need that Shv¥ (Smg) admits a locally finite dimensional
cover, which was shown in Proposition . As Al-invariant sheaves are stable
under limits, it is sufficient to inductively show that £X,, is Al-invariant. For
n = 0 this is clear as LXg = Lx = %. For n > 0 consider the fiber sequence
Xnt+1 — X — K,,. Applying £ we get

£Xn+1 = TZlﬁb(,CXn — L:Kn),

this is clear if £ = id, and follows from Proposition in the case of £L = L,,
and from [Mat24al Lemma 3.13| in the case of £ = Lg. As £LX,, is Al-invariant
by the induction hypothesis, and £K,, is A'-invariant by Lemma we get
that also £X,,11 is Al-invariant (using again Proposition . O

4 Rational unstable étale motives

In this section we prove that over a perfect field of finite cohomological dimension
any nilpotent and 2-effective motivic space satisfies étale hyperdescent.

Proposition 4.1. Let k be a perfect field, with cd(k) < oco. Let E € SH(k)

be rational. Then the Nisnevich sheaf of spectra w*FE € SHS' (k) satisfies étale
hyperdescent.

Proof. First note that there is an equivalence SH(S)g = D1 (S, Q) between
the oo-category of rational motivic spectra and Morel’s Al-derived category
with rational coefficients, cf. [CD19) §5.3.35]; we will use this in the following
without mention. Note that there is a decomposition F = E, @ E_ by [CD19,
§16.2.1]. It follows from [CDI19l Corollary 16.2.14] that E_ = 0 (as cd(k) < o0),
and thus from [CD19, Theorem 16.2.18] that w™E =~ w™E, satisfies étale
hyperdescent (note that in the reference they use the word descent for the word
hyperdescent). O

Theorem 4.2. Let k be a perfect field, with cd(k) < co. Let X € Spc(k). be
nilpotent, 2-effective and rational. Then X satisfies étale hyperdescent.

Proof. We use the version of the Postnikov-tower from Proposition ie. we
have a tower of pointed motivic spaces X,, € Spc(k), under X with Xy = x,
and 2-effective motivic spectra F,, € SH(k), together with fiber sequences
Xng1 = Xn — QFF ,En, and an equivalence X = lim,, X,,. By Lemma we
may further assume that all the X,, and F,, are rational. Thus, as étale hyper-
sheaves are stable under limits, by induction it suffices to show that Q§?7*En
satisfies étale hyperdescent for all n. This follows, as already w™> FE,, satisfies
étale hyperdescent, cf. Proposition [4.1] O

5 Unstable étale motives at the characteristic

In this section, we prove some vanishing results for A'-invariant sheaves at the
characteristic.
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Proposition 5.1. Let p be a prime and S be an Fy-scheme of finite Krull

dimension which is moreover étale bounded. If X € Shvl (Smg) is p-completely
étale A'-nilpotent, then L,X = x.

Proof. By definition of étale A'-nilpotent there is a sequence of nilpotent sheaves
X, under X, with X = lim, X,,, and fiber sequences X, 11 — X,, — K,.
Moreover, K,, = QX FE,,, where E,, is a 1-connective étale sheaf of spectra, such
that L,E,, is Al-invariant. It follows from [BH21, Theorem A.1] that L,F,, =0,
and hence L, K, = 7>1QL,E, = *, where we used [Mat24bl, Lemma 3.17].
Using Proposition 2.8 we see inductively

L, Xpt1 = 7m>1b(L, X, = LpK,,) = m>1fib(x — %) = .

Hence, using Proposition we also get L, X = lim,, 7<, L, X, = %, which
proves the proposition. O

Proposition 5.2. Let p be a prime and k be a perfect field of characteristic p.
Let M € Modpyr, (Shv}, (Smg, Sp))s2 be a 2-connective sheaf of HF,-modules.
Suppose that QM is A'-invariant. Then QXM = % and M = 0.

Proof. Since M is connective, it is clear that Q$°M = x implies M = 0. Hence,
it suffices to prove the first claim. Consider the Artin—Schreier sequence

HF, - HG, 5 HG,

as a fiber sequence in Shvgt(SmS, Sp). Here, we view G, := A! as an étale sheaf
of Fp-vectorspaces. Tensoring with M over HF, gives a fiber sequence

M — M ®H]Fp HGa — M®H]Fp HGa,
and by rotating twice and applying Q5° also a fiber sequence
QX (M @pr, HG,) — Q°(QM @pr, HG,) — QM.

We claim that applying La: »is preserves this fiber sequence, i.e. that we get a
fiber sequence

LA17niSQ:O(QM QHF, H(Ga) — LAlvniSQ:C(QM QHF, HGa) — LAl,niSQ:OM.

This follows from [AWWT17, Theorem 2.3.3| if we can show that 7315 (Q2° M) = *,
and that 785(Q° M) is strongly Al-invariant. The second claim follows from
a theorem of Morel [Bac24, Corollary 1.8] since Q°M is assumed to be Al-
invariant and is even an étale sheaf. For the first claim, note that 7§(Q° M) =
THS (M) 22 Lyyi(U = mo(M(U))). By Zariski descent it therefore suffices to show
that mo(M(U)) = 0 for all affine U € Smy. There is a spectral sequence E5? =
HY (U,mg(M)) = mq—p(M(U)). Since M is 2-connective by assumption, it
therefore suffices to show that HY, (U, m4(M)) = 0 for all p > 2. This is an
immediate application of [GAVTIl Théoréme X.5.1] since m,(M) is a sheaf of
[F-vectorspaces by assumption and U was assumed to be affine.

Now, since Q2°M is assumed to be Al-invariant, and is moreover even an
étale sheaf, we see that QM = L1 ,;;Q°M. We claim that it suffices to
show that L1 ,;Q°(QM ®@pur, HG,) = *. Indeed, we have seen above that
QM is connected as a Nisnevich sheaf, and hence the long exact sequence
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in Nisnevich homotopy sheaves shows that Q°M = x. Since G, admits the
structure of a sheaf of F,-algebras, we see that HG, is an E.-algebra in
Modpgr, (Shvgt(Sms, Sp)). In particular, QM ® g, HG, is canonically an HG,-
module. Since 22° and L1 nis are both lax symmetric monoidal, we see that
L1 1iQ22°(QM ®pgr, HG,) acquires the structure of a module over the com-
mutative monoid L1 ,isQ°(HGg) = Lyt 4isG, = * (using that the underlying
sheaf of G, is just A'). Hence, Ly1 ,isQ5°(QM ®pur, HG,) = *. O

Corollary 5.3. Let p be a prime and k be a perfect field of characteristic p.
Let M € Modpz(Shvl (Sms, Sp))>s be a 3-connective sheaf of HZ-modules.
Suppose that L, M is A'-invariant. Then L,Q°M = x and L,M = 0.

Proof. Note that M /p is an HF,-module (since we assume M to be an HZ-
module). There is a fiber sequence QM [p — M — M, which is preserved by
Q2. Applying Proposition @ we thus get an equivalence

LyQXQM [lp = 751 fb(L,Q° M — L,Q°M).

Since M/p is an HF,-module, we see that QXQM /p is already p-complete.
Hence,
QXQM Jp = 751fib(L,Q° M — L,Q°M).

Since L,Q°M is assumed to be Al-invariant, and Al-invariant sheaves are sta-
ble under limits and connected covers (see Proposition for the latter), we
conclude that Q°QM//p is Al-invariant. Therefore, it follows from Proposi-
tion that M//p = 0, and hence L,M = 0. In particular, also L,Q°M =
T>105° L, M = *, where we used [Mat24b| Corollary 3.18]. O

Corollary 5.4. Let p be a prime and k be a perfect field of characteristic p.
Suppose that A € Shvg, (Smy, Ab) is a sheaf of abelian groups and i > 3 such that
L,K(A,i) is A'~invariant. Then L,K(A,n) = x for alln > 1 and L,HA = 0.

Proof. Note that Y*H A is in the (shift of the) heart, and hence admits an
HZ-module structure. Moreover, K(A,i) = Q*Y*HA. Hence, we see from
Corollary that L,HA = 0. Now, for any n > 1 we have

LyK(A,n) = 1>1QFX"L,HA = x,
using [Mat24bl Corollary 3.18]. O

Remark 5.5. Note that the Proposition [5.2] does not immediately follow from
[BH21, Theorem A.1], as it is not clear that the Al-invariance of 2°M implies
the Al-invariance of M, not even in the case that M is 2-connective (a posteriori
it does as M = 0 in this case). A similar remark applies to Corollaries
and 5.4

6 Proof of the rigidity theorem
In this section we prove our main result, the unstable rigidity theorem. Let

S be a qcgs scheme with finite Krull-dimension, such that S is étale bounded.
Moreover, let p be a prime invertible on S.
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Lemma 6.1. The functor 1 Shvl (S ).« — Shvh (Smg). from Deﬁnition
preserves nilpotent objects.

Proof. The statement is true for any geometric morphism, since they commute
with taking homotopy objects [Lur09, Remark 6.5.1.4]. O

Lemma 6.2. The adjunctions vy = t* 4 1, induce adjunctions

i Shvl, (Se)«,y = Shvg, (Sms)s,) :0h
and

Ly Shvgt(SmS)*7£ = Shvgt(Sét)*,g b

Here, 1, and Y are just given by restriction of t* and i, Tespectively.

Proof. Note that +* restricts to a functor ¢ : Shvgt(Sms)*,Z/)\ — Shv2, (Se A
since it preserves p-complete objects as a right adjoint (this follows formally from
[Mat24h), Lemma 3.11]). Similarly, ¢, restricts to a functor £: Shv¥, (Set)wpy =
Shvgt(SmS)*ﬁ. Write ¢ for the composition L, o Ulshyt (Se). o~ 1t s formal

that this gives adjunctions ¢f - o5 <. O
Lemma 6.3. The functors o} and & are fully faithful.

Proof. Tt suffices to show that the double right adjoint /£ is fully faithful (cf.
(the dual of) [NPR24, Corollary 2.7]). This is clear since (£ is just the restriction
of the fully faithful functor ¢, cf. Lemma [2.28] O

Proposition 6.4. Let X € Shvlélt(Sét)* be nilpotent. Then 11X s p-completely
étale A'-nilpotent (and in particular L,uX is Al-invariant).

Proof. Since X is nilpotent, we can choose a principal refinement (X, K,),
of the Postnikov-tower of X with K, = QXF, for some 2-connective sheaf
of spectra E, [Mat24b, Lemma A.15]. Then (¢, X,,uK,), is a refinement of
the Postnikov tower of vy X. Indeed, it is clear that this gives a refinement of
the Postnikov tower of lim, 11.X,,. Moreover, ¢y commutes with this limit by
Proposition [2.1, as Shv¥, (Sg) is locally of homotopy dimension < N for some
N, of. Lemma [2.23, and Shv¥, (Smg) has a locally finite dimensional cover, cf.
Proposition [2.25] Note that 1K, = Q°u E,. It therefore suffices to show that
L,uE, is Al-invariant, which follows from the proof of [Bac21a, Corollary 6.2],
since LyukE, =2 LyuL,FE,, as t* preserve p-equivalences.

That L,uX is Al invariant now follows from Lemma O

Definition 6.5. Let X € Shv} (Smg).. We say that X is p-completely small if
the counit ¢t*X — X is a p-equivalence, i.e. if and only if L,u*X — LpX is
an equivalence. In particular, in this case L, X is in the essential image of ¢}

Theorem 6.6 (Essential Image). Let W € Shvk (Smg). be p-completely étale
Al-nilpotent. Then W is p-completely small. In particular, L,W is in the
essential image of o}, restricted to the subcategory of p-complete nilpotent objects.

Proof. The “in particular” part follows as both ¢, and 1* preserve p-equivalences
(since they are left adjoints), and hence Lyut* = if t,Ly. By assumption there
is an N-indexed system (W), under W with lim, W,, & W, Wy = % and fiber
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sequences W, — W, — K, for some sheaves K,, such that K,, & QXF,,
where E, € Sp(Shv} (Smg)), is a l-connective sheaf of spectra, such that
L,E, is Al-invariant. We proceed in several steps:

Step 1: We prove that L,K,, = L,u*K,. Since E, is l-connective, it
follows from [Mat24bl Lemma 3.17] that L,K, = 7>1Q°L,E,. Moreover, it
follows from [Bac2lal Theorem 6.6] that L,E, = L,u.*E, (this is the stable
rigidity theorem, which needs our assumptions on S. In the reference it is shown
that ¢ induces an equivalence on p-complete objects, and hence the above claim
follows since both ¢; and its right adjoint :* preserve p-equivalences). Therefore,
we get

LpKn TZlﬂi.oLpEn
TzlﬂioLpLyL*En
LPQ:OLIL*En
= LyulQF E,
= LpLgL*f(n7

1R

1%

where we used again [Mat24b, Lemma 3.17] in the third equivalence (as also
ut*E, is 1-connective as both functors are t-exact, cf. [Lurl8, Remark 1.3.2.8]),
and e.g. [Mat24bl Lemmas A.1 and A.3] in the fourth equivalence.

Step 2: We prove that L,W,, = L,u.*W,,. We prove this by induction on n,
using that for Wy = * the statement is true since all involved functors preserve
the terminal object. Suppose now that L,W,, = L,u*W,. We have

Ly Wit1 = Lyud™ib(W,, — K,,)
= Lfib(u* Wy, — u*K,y,)
& > fib(Lput™ Wy, — Lyut*Ky,),

using in the second equivalence that both ¢; and +* preserve finite limits, as both
are (the left adjoints of) geometric morphisms. The last equivalence holds by
Proposition since fib(et*W,, — t*K,,) = 10" Wi, 41 is connected. Analo-
gously, one shows L,W, 41 = 7>1fib(L,W,, — L, K,). Thus, we conclude using
the induction hypothesis and the first step.

Step 3: We prove that L,W = L,u*W. We calculate

LW = Lyulim, W,
= Lyulim, W,
= Lplim,, "W,
= lim,, Lyud* W,
= lim, L, W,
=L,W.

The first equivalence holds by definition of W. The functor :* commutes with
the limit since it is a right adjoint, whereas ¢ preserves the limit by Proposi-
tion [2.1] using that (W,,), and hence also (:*W,,),, are highly connected towers.
The fourth and last equivalence are applications of Proposition using that
Shv% (Smg) admits a locally finite-dimensional cover by Proposition The
fifth equivalence is given by the second step. O
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Combining the above results we get the unstable rigidity theorem.

Corollary 6.7 (Etale rigidity for motivic spaces). The functor

iF 2 Shvl (See)«,pmit — Shve, (Smg), )

*,p,ni

is fully faithful, with essential image those p-complete A'-invariant sheaves that
are the p-completion of a p-completely étale A'-nilpotent sheaf.

Proof. We have seen in Lemmathat the functor ¢f’ is fully faithful. Note that
by Proposition [6.4]it factors through the proclaimed essential image. Hence, the
corollary follows from Theorem [6.6] O

7 A retract of projective space

In this section let k& be an algebraically closed field and p # char(k) a prime
number. We prove that in étale Al-homotopy theory over k there is a retract
diagram L,S 2 5 L,Pt — LPS2. Choose a compatible system of primitive roots
of unity ((pn)n, i.e. a sequence with (p» € k* a primitive p"-th root of unity
such that moreover ((yn+1)? = (pn for all n. In particular, ((yn), defines an
element of Z,(1)(k) = lim,, k> [p"].

Recall that in [Bac21al Section 3] Bachmann constructed (the desuspension
of) a map o: LpLét7A1]P1 — LpS27 and its stabilization o : LpLg ar Yopl
L,S?* € S’)‘{é;t1 (k) (since k is algebraically closed, we can choose a trivialization
of the twisting space, cf. [Bac21al Theorem 3.6 (3)]).

Our first goal is the construction of the other map of the retract. For this,
we will work in the Nisnevich topology. We write Lys41: P(Smg) — Spc(k)
for the motivic localization functor, and

Hais: Shvpis(Smg, Ab) 2 Sp(Shvais(Smy )Y — Sp(Shvnis(Smy))
for the embedding of the heart. Similarly, for every n > 1 we write
Kpis(—,m): Shvyis(Smy, Ab) — Shvys(Smyg)

for the Nisnevich-local Eilenberg-MacLane sheaves. We begin by constructing
an element 7 € mo(LypKpnis(G, 1)) (k):

Construction 7.1. Write A[p"] := ker(A LN A) for the p"-torsion of a sheaf
of abelian groups A. Using [Mat24bl Corollary 3.18 and Lemma 2.24], we have

7o (LpKnis (G, 1)) = mo(Lp Xt Hyis Gy ) 22 limy, G, [p™] = limy, prpn = Z,(1),
and therefore
T2 (LyKnis(Gm, 1)) (k) 2 Zp(1)(k) = limy, pupn (k).

Under this equivalence, we let 79 € mo(LpKyis(Gim, 1))(k) be the element given
by the system of roots of unity ({pn ).

Lemma 7.2. There is a map 1): WQLanisyAl]Pl — Mo LpKnis(Gr, 1) such that
To 18 in the image of this map.
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Proof. We will show that there exists a Nisnevich sheaf F' € Shv,;s(Smy,). that
fits into an exact sequence of Nisnevich sheaves of groups

o LpLgs i1 P L Ly Koo (G, 1) & my L, F

such that ¢(m9) = 0. Recall from the discussion before [Mor12, Theorem 6.29]
that there is a short exact sequence of Nisnevich sheaves of groups

0— KW — 71 (Lyis a1 Pt) — G, — 0.

Write F = ﬁb(LnisAl]P’l — Kis(Gp, 1)) for the fiber of the canonical map
Lyis s Pt — Kyis(m1 (Lpis a1P1), 1) = Kyis(Gyp, 1) induced by the right map in
the above short exact sequence. Note that F' is connected as 7 (Lyis at P —
Gy, is surjective and Ly g1 P! & Lyis 412Gy, is connected. As moKyis (G, 1) =
0, we see that 71 (F) = K)MW.

Since Lyis a1P! and Kyis(Gyyy, 1) are nilpotent by [AFH22, Remark 3.4.9| and
[Mat24bl Lemma A.11], it follows from Proposition that after p-completing,
we still have

LpF = TZlﬁb(Lanis,Al]Pl — LpKnis(Gnu 1))

Thus, the long exact sequence in homotopy yields the wanted exact sequence.
It is left to show that ¢(r9) = 0. As ¢(19) € (mL,F)(k), it clearly suffices
to show that this group is 0. We have

(mLpF) (k) = m1 Ly (F(K)) = Lom (F(k)) = Lo((m F) (k)

by Lemma[2.36]and [MP11l, Theorem 11.1.2], here Ly denotes the zeroth derived
p-completion functor on the category of groups as defined e.g. in [MP11], Chapter
10.4] (where it is called E,). Now note that (m1F)(k) = KXW (k) is uniquely
p-divisible as k is algebraically closed, for this combine e.g. [Dég23| Example
2.3.11] with [BT06, Chapter I, Corollary 1.3]. This immediately implies that
Lo(mF)(k) 20, cf. [MP11, Proposition 10.4.7 (iii)], which is what we wanted
to show. O

Construction 7.3. Hence, we can choose an element 7 € (o Ly Lyis a1 P') (k)
such that ¢(7) = 79. Therefore, 7 defines a map S? — L, Ly 41P', and thus
also a map

7: LpS? — LypLyjs s P,
which we will also denote by 7.

Bachmann constructed in [Bac21al, Lemma 6.4] (the desuspension of) a map
Tst: LpX?S — LpLyis a1 2Pt in SHS (k). His construction depends on a vari-
ety of choices, but he then shows that independently of these choices, 7 is an
equivalence. We will show that our map 7 stabilizes to one of these maps 7.
For this, let us make the following definition.

Definition 7.4. Let f: L,X?S — L,Ly s I°P! € S’Hsl(k) be a map, or
equivalently by adjunction (and up to homotopy), f € ma(LyLyis a1 X°P!)(k)
be a homotopy class. We say that f is of stable T-type if the image of f under
the chain of maps

7o (Lp Lnis a1 P (k) — 72((Lnis a1 S°PY) [p) (k) — 71 (Lnis a2 P (k) = KW (k)
(2)
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is the element [(,] corresponding to our chosen primitive p-th root of unity. Here,
the first map is the projection out of the limit, the second map is the boundary
map of the cofiber sequence Lys 41 S°°P! 2 Lyis st 2P — (Lpis a1 Y°PL) /p,
and the last isomorphism is [MorI2, Corollary 25].

We chose this definition because of the following result.

Proposition 7.5. We have that L,X°1: L,S* — LpLyis a Yoopl ¢ S’HSl(k)
is of stable T-type.

Proof. By adjunction, L,%°°7 corresponds to a 7 € ma(LpLyis 41 °P) (k). We
have to show that the image of 7 in KMW (k) under the map is [(p]. For
this, consider the following commutative diagram:

WQ(LaniS’Al}Pﬂ)(kJ) e 7T2(LpKnis<G77h 1))(k>

| .

7a(Lp L 1 5P (k) ——— my(LpSHpis G ) (k) —=— Z(1)(k)

|

73 (Lt i1 BPL p) (k) ——— (S HuisGom Jp) (k) —— 11, (k)

|

T (Lnis,Al Empl)(k) — M (ZHnlsGm)(k)

F ~

KMW (k) = G (k).

1R

Here, the black horizontal maps on the left are induced by the map
Lnis,A1 ZOO]Pl — Eoo]:(nis((gma ]-) — TSIEOCKniS(Gma ]-) = EI_IniS(Gma

where the last equivalence follows from the Freudenthal suspension theorem
for oo-topoi, cf. [DH21, Corollary 4.16]. Note that the bottom red arrow is
an equivalence as k is algebraically closed (see e.g. the short exact sequence
in [Dég23, Corollary 2.3.10] and the fact that the fundamental ideal I(k) =
ker(GW(k) — Z) is zero if k is algebraically closed, as then GW (k) = Z). By
definition of 7 the blue composition maps 7 to (,, which is exactly what we
wanted to show for the red composition. O

Now, in view of the construction of Bachmann’s 75 [Bac2lal Lemma 6.4
and the proof of [Bac2lal, Theorem 6.5], we have the following result.

Theorem 7.6 (Bachmann). Let f: L,%?S — L,Ly; s X°P! € S/Hsl(k) be a
map of stable T-type. Then LpLgy p1(0s: f) is an automorphism.

Proposition 7.7. The (p-completed) suspension spectrum functor
L,%>: Shv} (Smg)) — Sp(Shvy (Sms)))
induces an isomorphism of rings

moMap(L,S?, L,5%) — moMap(L,%*S, L,%?S).
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Proof. We first show that both sides are equivalent to Z,, (as groups). Note that
by adjunction, we have moMap(L,S?, L,5%) & moMap(S?, L,5?) = mo(L,S?) (k).
Now, from Lemma [2.37] we see that evaluation at k is a limit-preserving geo-
metric morphism, and in particular commutes with homotopy objects and p-
completion. Hence, the above is equivalent to moLy,(S?(k)) = mo(LpSg,,) = Zy.

A similar calculation shows that the right-hand side is also Z,,.

Since both abelian groups are endowed with ring structures (via composi-
tion), and since the group Z, has a unique ring structure (after a choice of unit
1 € Z,, which is given by the identity morphism), it follows that both groups are
equivalent to Z, as rings. Since the map is induced by a functor, it is clear that
it is a map of rings. But now the only ring map Z, — Z,, is the identity. O

From now on we will also write 7: L,5% — Ly Le pr P! for Leg a1 7.

Theorem 7.8. The maps 7: Lp,S? — L,Le s P* and o: LyLgy 1Pt — L, 52
form a retract (up to precomposing T with an automorphism of L,S?), i.e. there
is a homotopy oT = idr, g2.

Proof. By Proposition[7.7] the suspension spectrum functor induces an isomor-
phism of rings

moMap(L,S?, L,5?) — moMap(L,%?S, L,%?S).

As by definition L,X*0 = o044, and L,X°°7 is of stable 7-type by Proposi-
tion we see that L,X°°(o7) is an automorphism, cf. Theorem Hence,
in view of the ring isomorphism above, we see that also o7 is an automorphism.
Therefore, up to replacing 7 by 7(o7) !, we see that 7 and o form a retract. [

Actually, the retract constructed above is an equivalence after two suspen-
sions. For this, we need the following simple lemma:

Lemma 7.9. The swap endomorphism
swap: Lpis a1 P* A Lpig a1 Pt — Lyjo gt PYA Ly a1 P!
is homotopic to the identity.

Proof. For readability, we will exclude the functor L 41 from the notation.
The symmetric monoidal suspension spectrum functor 325 : Spc(k), — SH(k)
induces a morphism on homotopy classes of maps

®: [P AP P AP - [ERP! @ SRP! SXP! @ S9PY

which maps the swap morphism to the swap morphism. It therefore suffices to
show that ® is injective, and the stable swap morphism is homotopic to the iden-
tity. Recall the computations of Morel of [(P1) ", (P1) "] = KMW (k) = GW(k)
for all n > 2, cf. [Mor12l, Corollary 24|. Here, GW (k) is the Grothendieck-Witt
ring of k. This then stabilizes to show that ® is in fact an isomorphism. In
order to prove the second claim, we proceed as follows: under the equivalence

[ZRP' © TR, SRP © TP = GW (k)

the swap morphism corresponds to the element (—1) € GW(k), for this combine
the proof of [Mor03, Lemma 6.1.1 (2)] with [Mor03, Remark 6.3.5]. As k is
algebraically closed, in particular —1 € k™ is a square, and we see that (—1) =
1€ GW(k). O
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Theorem 7.10. The map
LpLss s1 327 LyLey 515" &2 Ly L p15%S? — Ly Lep a1 S*P
is an equivalence.

Proof. Consider the following diagram where we omit p-completions and étale-
Al-localizations:

52 APL TAEL pl A pl SV pl A pl

lSQ/\U lﬂj’l/\a la/\[?l
S2 52 IASL pL A g2 SN, g2 pl

lswap lswap/
§2 A 52 AT g2 At

Here, the swap morphisms swap: S?AS% — S2AS? and swap: P'AP! — PLAP!
are homotopic to the identity, for the first claim this holds since

0010
000 1
det 1y g o o] =1
0100

and for the second claim see Lemma (using that Ly 41 and L, are symmetric
monoidal). Note that the diagram commutes: the top left square by functoriality
of A, the bottom left and top right square since A is symmetric monoidal, and the
bottom right triangle is trivially commutative. Since o7 = id by Theorem [7.8]
it follows that the red composition on the top and right is the identity. Hence,
also the blue composition on the left and bottom is the identity, proving that
52 Ao is a two-sided inverse of S? A 7. O

Remark 7.11. Tt is unknown to the author if already 7 is an equivalence. On
the other hand, the retract only exists on S2, i.e. there is no retract L,S R
L,G,, — L,S'. Indeed, as S' is connected, so is L,S!, and in fact one can show
that L,S' = K(Z,,1). On the other hand, since G,, is O-truncated, we get that
L,G,, = G, cf. [Mat24b, Lemma 3.13]. In particular, L,G,, is O-truncated
and hence L,S! cannot be a retract of it.

8 Examples of étale Al-nilpotent sheaves

In this section, we will give examples of p-completely étale Al-nilpotent sheaves.
We use those to prove our main theorem, Theorem [A] in Corollary [8:8

Lemma 8.1. Let S be a scheme and E € Sp(Shvk,(Smg)). If LoE is A'-
invariant, and E ||p is Al -invariant for all primes p, then also E is Al -invariant.

Proof. We first show that for every prime p, the p-completion L,FE is Al-
invariant. Since L,E 2 lim, E/p™ and A'-invariant sheaves are stable under
limits, it suffices to show that E/p" is Al-invariant for all n. We assumed this
to be the case for n = 1. For n > 1, recall that there is a fiber sequence

E[p" — E[p"*" — E/p,
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and we conclude by induction. Now consider the cartesian fracture square
FE— Hp L,E
L=
LQE — LQ Hp LpE,

see e.g. [Mat24al Corollary 7.3]. By the above, all the L,E are Al-invariant.
Since Al-invariant objects are stable under limits, this holds also for the product.
Moreover, the rationalization of the Al-invariant sheaf of spectra F = [I, LyE
is again Al-invariant: this holds since LgF is given by a filtered colimit of a
diagram involving only F (cf. [Mat24a, Lemma 2.6]) and Al-invariant sheaves
of spectra are closed under colimits, cf. Lemma @ On the other hand, LoFE
is Al-invariant by assumption. Hence, so is E as a pullback of Al-invariant
sheaves of spectra. O

Lemma 8.2. Let k be an algebraically closed field, X € Smy and x € X a
point. Let F' € Shvi, (key) or F € Sp(Shvy, (ket)). Then (0 F)(k) = (WF) (0% ,).

Proof. If k is algebraically closed, then Shv} (ket) = An via evaluation at k by
Lemma, In particular, we see that ¢ is equivalent to the constant sheaf
functor (as An is the initial co-topos). In particular, s*i; = id 4,, for every point
s*: ShV}e}t(két) — An. Since the points of the étale topos are given by strictly
henselian local rings, cf. Proposition [2.18] the result follows. O

Lemma 8.3. Let k be a perfect field with cd(k) < oo and write e for the
exponential characteristic of k. Let E € SH(k) be a motivic spectrum such
that multiplication by e is invertible on E. Then Lgw™E € Sp(Shv (Smy)) is
Al-invariant.

Proof. Let k be an algebraic closure of k. Write p*: Shvy (Smy) — Shv¥, (Smz)
for the geometric morphism from Definition 2.30] By Lemma [3.9] we see that
p* detects Al-invariance, i.e. it suffices to show that p* Lgw™ E is Al-invariant.
Consider the following diagram:

Sp(Shve, (Smy)) 47— Sp(Shvuis(Smy)) +—=— SH(k)

& |+ [E

Sp(Shve, (Smy)) T Sp(Shvais(Smy)) «—— SH(k),

where the functor in the middle is defined in the same way as the functor on the
left, and the functor on the right is its G,,-stabilization. The diagram commutes:
for the left square this holds as all involved functors are induced by morphisms
of sites, and they already commute on the level of sites. For the right square,
it suffices to note that p*: Sp(Shvyis(Smy)) — Sp(Shvyis(Smy)) commutes with
Gp-loops, i.e. Qg, p*X = p*Qg, X . For this, see the discussion before [Hoy13|
Lemma A.7]. Therefore, p*Leyw™ E = Lgw™ p* E. Moreover, multiplication by
e on p*E is clearly an equivalence. Hence, we may assume that E € SH(k), i.e.
that k is already algebraically closed.

Write F = Lew™®FE € Sp(Shv¥, (Smy)). By Lemma it suffices to show
that LoF is Al-invariant and that the F/p are Al-invariant for all primes p.
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We first show that LoF is Al-invariant. Since L¢; and w™ commute with
filtered colimits (see [BY20, Lemma 6.1] for the latter), it follows from [Mat24al
Corollary 2.7] that LoF = Lgw™ LgE. We have seen in Proposition that
w™> Lok satisfies étale hyperdescent, hence we see that L¢w™ Lol =2 w™ Lok,
which is Al-invariant.

We finish the proof by showing that F/p is Al-invariant. If p = e, then
multiplication by p is invertible on F by assumption, and hence F//p = 0 is Al-
invariant. Hence, we may assume that p € k*. Note that F//p is p-complete,
and hence by [BH21, Theorem 3.1] it suffices to show that F'/p is small, i.e.
that v*(F)/p) — F//p is an equivalence. Since we work in the étale topology,
it hence suffices to show that (L!L*F//p)(O‘;(h,x) — (F/p)(O%',) is an equiva-
lence for every X € Smy and « € X, cf. Proposition In fact, by [Mil80,
Chapter II, Remark 2.17 (b)] we may check this on closed points (we can use
the 1-categorical result since we work with hypersheaves and hence can check
equivalences on homotopy sheaves). So pick an X € Smy and = € X a closed
point. This implies that k(z) is a finite (hence algebraic) field extension of k.
Since k is algebraically closed, it follows that k = k(x). In particular, we see
that O, = O% .. We first show that (F/p)(O%',) = (F/p)(k). Indeed, since
both Oﬁ(hﬂc and k are strictly henselian, and F/p & Lgw™E//p, it suffices to
show that (W®E/p)(0¥,) = (w*E/p)(k). Since O, = O%  this follows
from [ADIS8, Theorem 1.2] as p € k* and multiplication by p? is null on E /p.
Now consider the following equivalences

(F/p)(k) = (ue" (F)/p)) (k) = (e (F[p))(OX'2)-

Here we used that k is living in the small étale site and Lemma[8.2] Combining
these equivalences yields (F//p)(O%,) = (ue*(F/p))(O%,) which is what we
wanted to show. O

Proposition 8.4. Let k be a perfect field with cd(k) < oo and write e for the
exponential characteristic of k. Let X € Spc(k). be a nilpotent and 2-effective
motivic space that is Z[2]-local. Then L& X € Shvh, (Smy). is étale A -nilpotent.
In particular, Le X is still Al -invariant.

E,
with E, € SH(k) a 2-connective 2-effective motivic spectrum as in Proposi-
tion We may moreover assume that multiplication by e is invertible on £,
by Lemma [2:16]

As Lg is a geometric morphism, it preserves finite limits, and hence we get
fiber sequences Lgt X;+1 — Lst Xnn — LKy, where Lg K, =2 LétQ[g?’*En
QX Legyw™ E,, is a connected infinite loop sheaf. We moreover have Lg X
lim,, L¢ X,,: for this, note that as the connectivity of the K; tends to oo as
i — o0, the tower (X,,), is highly connected. Hence, the claim follows from
Proposition 23] using that the étale hypersheafification functor Le; upgrades
to a morphism of co-topoi with locally finite dimensional cover, cf. Proposi-
tion Hence, we are reduced to show that Lgw™®E,, is Al-invariant. This
was shown in Lemma B3]

It follows now from Lemmathat L¢ X is in particular Al-invariant. O

Proof. Choose motivic spaces X,, and Pl-infinite loop spaces K, = Qp%

3k

vl

Lemma 8.5 (Stability under retracts). Let X,Y € Shv’ (Smy).. Suppose that
there exists a retract L, X 5 L)Y 5. IfY is p-completely small, then so is X .
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Proof. By assumption L,Y = L,u/*Y, and we have to show that L,X =
Lyue* X. For this, consider the commutative diagram

Lyut* Ly X «—— Lyu*X —— L,X

L L

Lynt* LY +—— Lou*Y —— L,Y.

Since ¢ and ¢* preserve p-equivalences (as they are left adjoints), the left hor-
izontal maps are equivalences. By assumption the vertical maps admit retrac-
tions, and the lower right horizontal map is an equivalence. As equivalences are
stable under retracts, we conclude that the upper right horizontal map is an
equivalence. This is precisely what we wanted to prove. O

We now use the last few lemmas and the retract from Theorem [7.8 to show
that in fact over a perfect field k any A'-invariant 4-connective étale sheaf is
p-completely small. We start with the case of an algebraically closed field and
then deduce the general case.

Corollary 8.6. Let k be an algebraically closed field, p # char(k) a prime and
X e Shvgt(Smk)*. If X is 4-connective and A -invariant then X is p-completely
small, i.e. L,X = Lyu*X.

Proof. By Proposition there is an equivalence X 2 colim; W;, with W; of
the form W; = %4V, for some V; € Shv} (Smy)..

Suppose for the moment that we know that Lg; 41 W; is p-completely small.
We show that the same is true for X. For this, note that we have maps

X = COl_im W, — COl'im Lc’t,Al W, — Lét’Al COl_im Lét’Al W;.
i i i

Since A'-equivalences are stable under colimits, and since X is Al-invariant, we
see that

Lét,Al COliHl Lét,Al WIL = Lét,Al colim Wz = Lét,AIX =~ X.
i i

In particular, by construction we therefore have a retract diagram

X — colim Lgy g1 Wy — X.

By assumption the map u10* Lgy g1 Wi — Lgg a1 Wi is a p-equivalence for all 4, and
since both ¢; and ¢* commute with colimits, and p-equivalences are stable under
colimits, we see that the canonical map u¢*colim; Lgg 41 Wi — colim; Ly a1 Wi
is a p-equivalence. Hence, also the retract ¢;t* X — X is a p-equivalence, i.e. X
is p-completely small.

It remains to show that L a1 (S* A Z) is p-completely small for every Z €
Shv% (Smy),. By applying Theorem [7.8] twice (here we use our assumption that
k is algebraically closed), there is a retract

LpLgs i (S*ANZ) = LyLegpr (PP AP A Z) 2 L Ley p1 (S* AGL? A Z).

Write Y i= Ly1) Lyis a1 (S* AGJZ AwnisZ) € Spe(k). for the Nisnevich local ver-

m
sion (where we also invert the exponential characteristic e of k). This is clearly
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2-connective and 2-effective. Hence, we see that L¢Y is étale Al-nilpotent,
cf. Proposition and in particular Al-invariant by Lemma whence
Lz[%]Lét,Al(S2 ANGR2ANZ) =2 LgY. Thus, LyLgar(S* A Z) is a retract of
LpLétY (for this note that LPLZ[%] = L, as functors since p # e by assump-

tion, and p-completion in particular inverts Z[%]—local equivalences). Since by
Lemma L&Y is also p-completely étale Al-nilpotent, it is in particular
p-completely small by Theorem [6.6f Hence, we see that the same is true for
Leg a1 (S* A Z) using Lemma O

We now generalize the above corollary to arbitrary perfect fields of finite
étale cohomological dimension.

Proposition 8.7. Let k be a perfect field with cd(k) < oo, p # char(k) a
prime and X € Shvl (Smy).. If X is 4-connective and A'-invariant, then X is
p-completely small, i.e. Lyn*X =2 L, X.

Proof. Let k be an algebraic closure of k. Consider the geometric morphisms
p*: Shvk (Smy) = Shvgt(SmE) :p. and p*: Shvk, (k) = Shvk, (s) :p. from
Definition [2:30] both left adjoints are conservative by Lemma [2.35] Moreover,
Fp* = p*u*, as well as up* = p*u by Lemma [2.34] As p* is conservative, it suf-
fices to show by [Mat24bl Lemma 3.11] that p*ut*X — p*X is a p-equivalence.
By the above, this is equivalent to the morphism

wtp*X — p*X.

As p* X is 4-connective (since p* is a geometric morphism) and Al-invariant by
Lemma [3.8] it follows from Corollary [8:6]that v;c*p* X — p* X is a p-equivalence.
O

Corollary 8.8. Let k be a perfect field with cd(k) < oo and p # char(k). Then
o+ (Shvey(ket)«)p — (Shve(Smy).)p

induces an equivalence between the full subcategory of (Shv}élt(két)*)g consist-

ing of those sheaves that are the p-completion of a 4-connective sheaf, and the

full subcategory of (Shvgt(Smk)*)/\ consisting of those sheaves that are the p-

P
completion of a 4-connective A'-invariant sheaf.

Proof. From Lemmawe see that ¢ is fully faithful. First, let Y € Shv¥, (ke )s >4
be 4-connective. Note that f L,Y = L,uY (since v preserves p-equivalences as

a left adjoint), and by Proposition this sheaf is A'-invariant. Moreover, ;Y
is 4-connective since ¢ is a geometric morphism.

To prove the corollary, it thus suffices to show that if X € Shv]gt(Smk)*,Z;; is
4-connective and A'-invariant, then L, X is in the essential image of «{ restricted
to the full subcategory of (Shvgt(két)*)g consisting of those sheaves that are the
p-completion of a 4-connective sheaf. By Proposition @ we see that L,X =
Lyu*X = fLye*X. Since o* is a geometric morphism, we see that (*X is
4-connective. O
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9 Application: Etale strict A'-invariance

In this section, we use our rigidity result to prove a weak version of Morel’s the-
orem that strongly A'-invariant Nisnevich sheaves of abelian groups are strictly
Al-invariant. For this, we need the following list of definitions.

Definition 9.1. Let S be a scheme. Let A € Shvg(Smg, . Ab) be an étale sheaf
of abelian groups. We say that A is

e n-strictly étale A'-invariant for some n € N if K(A,n) € Shv, (Smg) is
Al-invariant,

o strictly étale A'-invariant if A is n-strictly étale Al-invariant for all n € N,

o p-completely n-strictly étale A'-invariant for a prime p and n € N if
L,K(A,n) € Shv (Smg) is Al-invariant,

o p-completely strictly étale A'-invariant for a prime p if A is p-completely
n-strictly étale Al-invariant for all n € N,

e rationally n-strictly étale A'-invariant for some n € N if LoK(A,n) €
Shvl (Smg) is Al-invariant,

o rationally strictly étale A'-invariant if A is rationally n-strictly étale Al-
invariant for all n € N,

Lemma 9.2. Let S be a scheme. Let A € Shvg(Smg, Ab) be an étale sheaf
of abelian groups, and 1 < n < m. If A is m-strictly étale A'-invariant (resp.
p-completely, resp. rationally), then A is n-strictly étale A'-invariant (resp. p-
completely, resp. rationally).

Proof. We have K(A,n) = Q™ "K(A,m). As limits of Al-invariant sheaves are
Al-invariant, the statement follows. For the p-complete or rational versions of
the statement, note that L,K(A,n) =2 7>1Q™ "L,K(A,m), and LoK(A,n) =
710" " Lo K (A, m) by Proposition and [Mat24al Lemma 3.13]. To show
that these sheaves are Al-invariant, it suffices to note that the connected cover
functor preserves A'-invariance, cf. Proposition O]

Lemma 9.3. Let S be a gegs scheme. Let A € Shvg(Smg, Ab) be an étale sheaf
of abelian groups, and n > 1. If A is n-strictly étale A'-invariant, then A is
rationally n-strictly étale A'-invariant.

If n > 2, and A is n-strictly étale A'-invariant, then A is p-completely
(n — 1)-strictly étale At-invariant for all primes p.
Proof. By assumption, K(A,n) is Al-invariant, we have to show that the same
is true for L,K(A,n —1) and LoK (A, n).

We first prove that LoK (A,n) is Al-invariant. Note that we have equiva-
lences

LoK(A,n) 2 QP LepX"HA

=~ Qcolimy X"HA
colimy Q°¥"HA
colimy K (4, n),

1%

IR
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where the colimit is over the N-indexed diagram from [Mat24al, Lemma 2.6]. In
the third equivalence, we used that Q2° commutes with filtered colimits (combine
[Lur09, Corollary 5.3.6.10] with the fact that filtered colimits commute with
finite limits in any oo-topos, cf. [Lur09, Example 7.3.4.7]). Since Al-invariant
sheaves are stable under filtered colimits by Lemma 3.5, and K(A,n) is Al-
invariant by assumption, the result follows.

We now show that if n > 2 also L,K(A,n —1) is Al-invariant. For this,
note that we have equivalences

LyK(An—1)275QFL,Y" T HA
7510%limg X" HA )/ p*
T>1limg Qf’En_lHA//plc

1%

[

> o1 limy, ﬁb(K(A, n) 2 K(A, n)).

Here we used [Mat24bl, Lemmas 3.17 and 2.5] in the first and second equivalence,
that Q2° preserves limits as a right adjoint in the third equivalence, and that

k

SLHApF = fib (E”HA r, Z”HA)

in the last equivalence. Hence, as Al-invariant sheaves are stable under limits
and connected covers (cf. Proposition for the latter), it suffices to show that
K(A,n) is Al-invariant, which holds by assumption. O

Proposition 9.4. Let k be a perfect field with cd(k) < oo and p # char(k) be
a prime. Let A € Shvg (Smy, Ab) be an étale sheaf of abelian groups. Suppose
that A is m-strictly étale A'-invariant for some m > 4. Then A is p-completely
strictly étale A'-invariant, and L,H A is an Al'-invariant sheaf of spectra.

Proof. 1t suffices to show that L,H A is Al-invariant. Indeed, then for any n > 1
we have L, K (A, n) & 7>1Q°X" L, H A by [Mat24b, Corollary 3.18]. Hence, it is
Al-invariant as both Q%° and 751 preserve A'-invariant sheaves, cf. Lemma
and Proposition [3.7]

Now, it is enough to show that tyu*HA — HA is a p-equivalence, as then
L,HA = Lyu*HA is Al-invariant by the proof of [Bac21a, Corollary 6.2|. For
this, it is clearly enough to show that X" *HA — 3™ H A is a p-equivalence.
Since Q2° commutes with both ¢ and +*, and detects p-equivalences between 1-
connective objects by Lemma@, it thus suffices to show that 1;t* QX" HA —
QXY™HA is a p-equivalence. Since QPYX™HA =~ K(A,m) and m > 4, this
follows from Proposition O

Proposition 9.5. Let k be a perfect field. Let A € Shvg(Smy,Ab) be an
étale sheaf of abelian groups. Suppose that A is rationally 1-strictly étale A'-
invariant. Then A is rationally strictly étale A'-invariant.

Proof. First note that for every n > 1 we have LoK(A,n) = K(Ag,n) us-
ing e.g. [Mat24al Proposition 3.12]. It follows from [VT00, Proposition 5.27]
that Kyis(Ag,n) = Kg(Ag,n). But if Kuis(Ag,1) is Al-invariant, then so is
Kyis(Ag,n) by Morel’s theorem [Bac24, Theorem 1.7]. O
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Proposition 9.6. Let k be a perfect field with p = char(k) > 0, and A €
Shvet (Smyg, Ab) be an étale sheaf of abelian groups. Suppose that A is p-completely
3-strictly étale A'-invariant. Then L,HA =0 and L,K(A,n) = * for alln > 1.
In particular, A is p-completely strictly étale A'~invariant, and L,HA is A'-
nvariant.

Proof. This is a reformulation of Corollary [5.4] O

Theorem 9.7. Let k be a perfect field with cd(k) < co. Let A € Shvg,(Smy, Ab)
be an étale sheaf of abelian groups. Assume that A is 4-strictly étale A'-
invariant. Then A is strictly étale A'-invariant.

Proof. We have to show that A is m-strictly étale A'-invariant for every m > 1.
From [Mat24al Theorem 8.7] we have a pullback square

K(A,m) —— 7>1 Hp L,K(A,m)

|- |
LoK(A,m) —— Lo7>1 ][, Ly K (A, m).

We have to show that the top left object is Al-invariant. As limits of Al-
invariant sheaves are A'-invariant, it suffices to show that the other objects
in the above diagram are A'-invariant. That L,K(A,m) is A'-invariant for
every p was shown in Proposition if p # char(k), and in Proposition if
p = char(k), using that L, K (A, 3) is Al-invariant by Lemma Moreover, that
LoK (A, m) is Al-invariant is exactly Proposition again using Lemma
Now also 7>1[], L, K(A,m) is Al-invariant as a connected cover of a limit of
Al-invariant sheaves, cf. Proposition For the object in the bottom right
corner we compute

LQTzlanpK(A, m) = LQT21HP7}1Q(:OLPET”HA [Mat24b, Corollary 3.18]

> Loms1 [[ QL HA [Mat24al, Lemma 4.2]
- g
= Lom: O°[[ L, HA (Q is a right adjoint)
P
= T>1Q§°LQH L,YX"HA [Mat24al Lemma 3.15].
- P

Now L,HA is Al-invariant (again by Proposition if p # char(k), and by
Propositionif p = char(k)), and hence so is the product over all primes. Since
Q2 and 7> preserve Al-invariant sheaves by Lemma and Proposition it
thus suffices to show that Lg on Sp(Shve(Smy)) preserves Al-invariant sheaves
of spectra. This holds since LgFE is given by a filtered colimit of a diagram
involving only F (cf. [Mat24al Lemma 2.6]), and A'-invariant sheaves of spectra
are closed under colimits, cf. Lemma [3.5] This proves the theorem. O

A Nilpotent morphisms

Let X be an oo-topos. In this section we discuss nilpotent morphisms in X.
We essentially copy the contents from [AFH22| about nilpotent morphisms of
motivic spaces to the setting of an oo-topos.

44



Definition A.1. Let f: E — B be a morphism in X,. We say that f is
nilpotent if the fiber fib(f) is connected, and the action of w1 (E) on m, (fib(f))
is nilpotent for every n.

Remark A.2. Let X € X,. Then X is nilpotent if and only if X — * is nilpotent.

Lemma A.3. Let q: Es — Ey and p: E1 — Ey be two morphisms in X, such
that fib(q), fib(p) and fib(pq) are all connected. If p and q are nilpotent, then
50 18 pq.

Proof. The proof of [AFH22, Proposition 3.3.2] can also be used for the co-topos
case. O

Corollary A.4. Let f: E — B be a morphism in X,. Suppose that E and B
are nilpotent, and that fib(f) is connected. Then also f is nilpotent.

Proof. This is an application of Lemma[A3|for ¢ = f: E — B and p: B — *,
using Remark and the assumption that B, E and fib(f) are connected. [

Proposition A.5 (Principal Moore-Postnikov tower). Let f: E — B be a
morphism in X,. If f is nilpotent, then there is a system of sheaves E; under E
and over B with Ey = B, such that E = lim; E;, and such that there are fiber
sequences

Ei+1 — Ez — K(AZ,TLZ)

with A; € Ab(Disc(X)) and n; > 2, such that n; — oo as i — oo.

Proof. The proof of [AFH22, Corollary 4.2.4] can also be used for the co-topos
case. O

Lemma A.6. Let f: E — B be a morphism in X,. If f is nilpotent, and fib(f)
is k-connective for some k > 2, then we may assume that in the situation of
Proposition[A73 the integers n; are > k.

Proof. This is immediate from the construction. O
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