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Abstract

We prove a rigidity result for certain p-complete étale A1-invariant
sheaves of anima over a qcqs finite-dimensional base scheme S of bounded
étale cohomological dimension with p invertible on S. This general-
izes results of Suslin–Voevodsky [SV96], Ayoub [Ayo14], Cisinski–Déglise
[CD15], and Bachmann [Bac21a, BH21] to the unstable setting. Over a
perfect field we exhibit a large class of sheaves to which our main theorem
applies, in particular the p-completion of the étale sheafification of any
2-effective 2-connective motivic space, as well as the p-completion of any
4-connective A1-invariant étale sheaf. We use this rigidity result to prove
(a weaker version of) an étale analog of Morel’s theorem stating that for
a Nisnevich sheaf of abelian groups, strong A1-invariance implies strict
A1-invariance. Moreover, this allows us to construct an unstable étale
realization functor on 2-effective 2-connective motivic spaces.
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1 Introduction
It is well-known that étale cohomology with locally constant Fp-coefficients is
A1-invariant, cf. [GAV71, Corollaire XV.2.2]. One can ask whether the converse
is true, resulting in rigidity results of Suslin–Voevodsky [SV96], Ayoub [Ayo14]
or Cisinski–Déglise [CD15]. The most general of such results is the following
version for spectral coefficients, due to Bachmann.

Theorem ([Bac21a, BH21]). Let S be a scheme, and p a prime invertible on
S. There are canonical equivalences

Shvhét(Sét,Sp)
∧
p

≃−→ SHS1

ét (S)
∧
p

≃−→ SHét(S)
∧
p

between p-complete hypersheaves of spectra on the small étale site of S, p-
complete A1-invariant étale hypersheaves of spectra on SmS, and its (p-complete)
Gm-stabilization.

The main goal of this article is a generalization of Bachmann’s result to the
unstable setting. We write cd(k) for the étale cohomological dimension of a field
k. Our main theorem is the following.

Theorem A (Corollary 8.8). Let k be a perfect field with cd(k) < ∞, and
p ̸= char(k) be a prime. There is a canonical equivalence

Lpι! :
(
Shvhét(két)∗,≥4

)
∧
p

≃−→
(
Shvhét(Smk)∗,A1,≥4

)
∧
p .

Here, (Shvhét(két)∗,≥4)
∧
p denotes the full subcategory of Shvhét(két)∗ (the ∞-topos

of étale hypersheaves on két) consisting of those sheaves that are the p-completion
of a 4-connective sheaf, and similarly (Shvhét(Smk)∗,A1,≥4)

∧
p denotes the full sub-

category of Shvhét(Smk)∗ consisting of those sheaves that are the p-completion of
an A1-invariant 4-connective sheaf.

Remark 1.1. The above result is likely true for integers 2 ≤ m < 4, but our
methods are not strong enough to show this. Note however that the functor

Lpι! :
(
Shvhét(két)∗

)
∧
p →

(
Shvhét(Smk)∗,A1

)
∧
p

is not an equivalence. Indeed, any sheaf of sets is automatically p-complete (cf.
[Mat24b, Lemma 3.13]), but there are A1-invariant étale sheaves of sets that are
not coming from the small étale site, e.g. Gm.

We will deduce this theorem from a related version that holds over any base
scheme with some bound on the étale cohomological dimension of its residue
fields. To state the result, we need the following definition:

Definition (Definition 3.10). Let S be a scheme, and X ∈ Shvhét(SmS). We
say that X is p-completely étale A1-nilpotent if there exists a highly connected
tower (Xn)n under X (i.e. the connectivity of the transition maps Xn+1 → Xn

goes to infinity as n→ ∞) such that the following holds:

1. X0
∼= ∗.

2. X ∼= limnXn.
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3. Each of the morphisms Xn+1 → Xn is part of a fiber sequence Xn+1 →
Xn → Kn where Kn

∼= Ω∞
∗ En is a connected infinite loop sheaf for some

En ∈ Sp(Shvhét(SmS))≥1.

4. For every n the object LpEn = limk En//p
k is A1-invariant.

In other words, an sheaf X is p-completely étale A1-nilpotent if it admits a
principal refinement of (a version of) the Postnikov-tower of X, such that the
layers are A1-invariant after p-completion.

Theorem B (Corollary 6.7 and Lemma 3.13). Let S be a qcqs scheme of finite
Krull-dimension with sups∈S cd(s) < ∞, and let p be a prime invertible on S.
The functor

ιp! : Shv
h
ét(Sét)

∧
p,nil → Shvhét(SmS)

∧
p

is fully faithful, with essential image exactly the p-completions of p-completely
étale A1-nilpotent sheaves. In particular, every sheaf in the essential image is
A1-invariant.

We will deduce Theorem A from Theorem B by doing a careful analysis of
which étale sheaves are actually p-completely étale A1-nilpotent, which we will
now explain.

Étale A1-nilpotent sheaves over a perfect field
Over a perfect field k, by a result of Asok–Fasel–Hopkins, in the Nisnevich
local world there is no difference between Nisnevich nilpotence and Nisnevich
A1-nilpotence:

Lemma ([AFH22, Proposition 3.2.3] and [Mat24b, Lemma 5.19]). Let k be a
perfect field and X ∈ Shvnis(Smk)∗ be connected and A1-invariant. Then X is
nilpotent (in the topos theoretic sense, i.e. there exists a principal refinement of
the Postnikov tower of X) if and only if X is A1-nilpotent (i.e. there exists a
principal refinement of the Postnikov tower of X with A1-invariant layers).

This naturally leads to the following analogous question:

Question 1.2. Let k be a perfect field, p ̸= char(k) be a prime, and X ∈
Shvhét(Smk)∗ be connected A1-invariant. If X is étale nilpotent, is it true that
X is (p-completely) étale A1-nilpotent?

We are able to give a partial answer to this question in form of the following
result, which is interesting on its own:

Theorem C (Proposition 8.4). Let k be a perfect field of exponential char-
acteristic e with cd(k) < ∞, p ̸= e a prime, and X ∈ Spc(k)∗ be a motivic
space that is 2-effective, nilpotent (as a Nisnevich sheaf) and Z[ 1e ]-local. Then
LétX is étale A1-nilpotent (so in particular A1-invariant and p-completely étale
A1-nilpotent).

Note that this is a priori surprising, as, in general, the étale sheafification
of an A1-invariant presheaf is no longer A1-invariant, and simultaneous étale
sheafification and A1-localization is computed by the countable colimit of the
alternating application of the two localization functors. The above theorem
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says that if we start with a nilpotent and 2-effective motivic space, then this
procedure is unnecessary, as the étale sheafification is already A1-invariant. The
proof makes heavy use of the theory of P1-Postnikov towers as developed in
[ABH23].

Using this, we can give more examples of étale sheaves for which rigidity
holds. Bachmann showed that in p-complete étale stable motivic homotopy
theory over an algebraically closed field, there is an equivalence LpΣ∞Gm ∼=
LpS1, cf. [Bac21a, Theorem 6.5] and [BH21, proof of Theorem 3.1] (note that
if the field is algebraically closed, the twisting spectrum is trivialized, yielding
the above claim). A similar statement is true unstably:

Theorem D (Theorems 7.8 and 7.10). Let k be an algebraically closed field
with p ̸= char(k). Then there is a retract diagram (in Shvhét(Smk))

LpS
2 τ−→ LpLét,A1P1 σ−→ LpS

2.

Moreover, after (the p-completion of) a twofold suspension, τ becomes an equiv-
alence, i.e. we have

LpS
4 ∼= LpLét,A1Σ2P1.

Using this retract, we can prove that in fact every 4-connective A1-invariant
étale sheaf over an algebraically closed field is (p-completely) a retract of a 2-
effective and 2-connective étale motivic space. Using étale descent, this result
suggests the following corollary.

Corollary E (Proposition 8.7). Let k be a perfect field with cd(k) < ∞ and
p ̸= char(k) a prime, and X ∈ Shvhét(Smk)∗ be 4-connective and A1-invariant.
Then X is p-completely small, i.e. Lpι!ι∗X ∼= LpX.

Étale motivic spaces at the characteristic
If k is a field of characteristic p > 0, then the Artin–Schreier sequence Fp →
A1 1−F−−−→ A1 shows that the A1-localization of the constant sheaf of abelian
groups Fp is 0. From this, one can for example deduce the vanishing of the
whole category of motives with p-torsion coefficients, cf. [CD15, Proposition
A.3.1]. The strongest such vanishing result is due to Bachmann and Hoyois:

Theorem ([BH21, Theorem A.1]). SHét(S)
∧
p

∼= SHS1

ét (S)
∧
p

∼= 0 for S any
scheme over Fp.

Unstably, we can show the following version:

Theorem F (Proposition 5.1). Let S be a qcqs Fp-scheme of finite Krull-
dimension with sups∈S cd(s) < ∞, and X ∈ Shvhét(SmS) be p-completely étale
A1-nilpotent. Then LpX ∼= ∗.

Related is the following result:

Theorem G (Corollary 5.4). Let k be a perfect field of characteristic p > 0 with
cd(k) <∞. Let A ∈ Shvét(Smk,Ab) be a sheaf of abelian groups, and k ≥ 3. If
LpK(A, k) is A1-invariant, then LpK(A, k) ∼= ∗.

Remark 1.3. It is not true that unstably the whole p-complete category vanishes:
Indeed, étale sheaves of sets are always p-complete by [Mat24b, Lemma 3.13],
but there are A1-invariant sheaves of sets that are nontrivial, e.g. Gm.
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Étale hyperdescent for rational motivic spaces
Let k be a perfect field. Recall from e.g. [CD19, §16] that there is a splitting
SH(k)Q ∼= SH(k)+Q × SH(k)−Q . Every object in SH(k)+Q satisfies étale hyper-
descent, whereas if the cohomological dimension of k is finite, SH(k)−Q = 0. In
particular, one obtains the following result:

Theorem ([CD19, §16]). Let k be a perfect field with cd(k) < ∞. Then any
rational motivic spectrum E ∈ SH(k)Q satisfies étale hyperdescent.

Using similar techniques as in the proof of Theorem C, we can prove an
unstable version of this result.

Theorem H (Theorem 4.2). Let k be a perfect field with cd(k) < ∞. Any
rational nilpotent and 2-effective motivic space X ∈ Spc(k)∗ satisfies étale hy-
perdescent.

Strict A1-invariance for étale sheaves of abelian groups
Let k be a perfect field. Recall that a Nisnevich sheaf of abelian groups A is 1-
strictly (resp. strictly) Nisnevich A1-invariant if Knis(A, 1) ∈ Shvnis(Smk) is A1-
invariant (resp. Knis(A,n) ∈ Shvnis(Smk) is A1-invariant for all n ≥ 0). Morel
showed in [Mor12, Theorem 4.46] that 1-strictly Nisnevich A1-invariant sheaves
of abelian groups are already strictly Nisnevich A1-invariant. This naturally
leads to the analogous question for étale sheaves. Let us say that an étale
sheaf of abelian groups A on Smk is m-strictly étale A1-invariant for m ≥ 1 if
K(A,m) ∈ Shvhét(Smk) is A1-invariant, and that it is strictly étale A1-invariant
if K(A,n) is A1-invariant for all n ≥ 0.

Question 1.4. Let k be a perfect field with cd(k) <∞ and A be an étale sheaf
of abelian groups on Smk. Suppose that A is 1-strictly étale A1-invariant. Is it
true that A is strictly étale A1-invariant?

Using the rigidity result, we can partially answer this question.

Theorem I (Theorem 9.7). Let k be a perfect field with cd(k) < ∞ and A ∈
Shvhét(Smk,Ab) be an étale sheaf of abelian groups. If A is 4-strictly étale A1-
invariant, then A is strictly étale A1-invariant.

In other words, this is a weak version of Morel’s theorem in the étale world.

Remark 1.5. It is unknown to the author if for m ∈ {1, 2, 3} we still have the
implication that m-strictly étale A1-invariant sheaves are already strictly étale
A1-invariant. This is closely related to whether Theorem A holds for m < 4.

Using the equivalence Hi
ét(U,A)

∼= πn−i(K(A,n)(U)) for every smooth k-
scheme U , integers n ≥ i ≥ 0 and étale sheaf of abelian groups A, we can
reformulate the above theorem as the following.

Corollary J. Let k be a perfect field with cd(k) <∞ and A ∈ Shvhét(SmS ,Ab)
be an étale sheaf of abelian groups. If Hi

ét(−, A) is A1-invariant for every i ∈
{0, . . . , 4}, then Hi

ét(−, A) is A1-invariant for every i ≥ 0.
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Étale realization functor
As another application of this theory, we obtain an unstable étale realization
functor:

Theorem K. Let k be a perfect field with cd(k) <∞, and p ̸= char(k) a prime.
There exists an étale realization functor

Rep : Spc(k)∗,nil,2−eff → Shvhét(két)∗,
∧
p .

Here, the left-hand side is the ∞-category of nilpotent and 2-effective pointed
motivic spaces.

Proof. Write e for the exponential characteristic of k. Let X ∈ Spc(k)∗,nil,2−eff .
Then also LZ[ 1e ]

X is nilpotent and 2-effective: Indeed, nilpotence was shown in
[AFH22, Proposition 4.3.8] (they only show that LZ[ 1e ]

X is weakly A1-nilpotent,
but under the assumption that X is nilpotent their proof in fact shows that
LZ[ 1e ]

X is nilpotent). That it is 2-effective was shown in [ABH23, Proposi-
tion 4.3.4]. Hence, Y := LétLZ[ 1e ]

X is étale A1-nilpotent by Theorem C, so in
particular p-completely étale A1-nilpotent by Lemma 3.11. We can therefore
define RepX to be the inverse of the equivalence ιp! from Theorem B, applied
to LpY .

Improving the bounds

Let k be a perfect field and ϵ ≥ 0 be an integer. Recall that SHS1

(k)(ϵ),
the category of ϵ-effective motivic S1-spectra, and SH(k)(ϵ), the category of ϵ-
effective motivic spectra both possess a t-structure [BY20, §6.1]. In particular,
by [BY20, Lemma 6.2], there is an induced functor on the hearts

ω∞ : SH(k)(ϵ)♡ → SHS1

(k)(ϵ)♡.

By [BY20, Bac21b, Fel21], this functor is an equivalence for ϵ ≥ 2 (see also
[ABH23, Theorem 2.2.30 (2)] for a combined proof of this fact). This equivalence
lets us resolve any ϵ-effective motivic space by a tower, where the layers are P1-
infinite loop spaces, cf. Proposition 2.14. All the bounds presented in the above
introduction are derived from the fact that this works for ϵ = 2. If it turns out
that also for ϵ = 1 the above functor is an equivalence, one can improve the
above results as follows:

• In Theorem A, one can replace 4-connective by 3-connective.

• In Theorem C, one can replace 2-effective by 1-effective.

• In Corollary E, one can replace 4-connective by 3-connective.

• In Theorem H, one can replace 2-effective by 1-effective.

• In Theorem I, one can replace 4-strictly by 3-strictly.

• In Corollary J, one can replace {0, . . . , 4} by {0, . . . , 3}.

• In Theorem K, one can replace 2-effective by 1-effective.
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Linear Outline
We begin in Section 2 with background material.

Section 2.1 establishes a criterion for when a geometric morphism of ∞-topoi
preserves limits along certain highly connected towers.

In Section 2.2, we strengthen some results on unstable p-completion from
[Mat24b, Mat24a].

In Section 2.3, we collect key results on P1-Postnikov towers from the work
of Asok–Bachmann–Hopkins [ABH23], which serve as an important tool in our
later arguments.

Section 2.4 collects key facts about hypercomplete étale ∞-topoi.
Finally, in Section 2.5, we show that any n-connective pointed sheaf in an

∞-topos X has a canonical resolution by “free n-connective pointed sheaves”,
i.e. sheaves of the form Sn ∧ T for T ∈ X∗.

Section 3 examines the connection between étale sheaves and A1-invariant
presheaves. In particular, we introduce the notion of (p-completely) étale A1-
nilpotent sheaves, which play a central role in the rigidity theorem.

Section 4 shows that, after rationalization, étale and Nisnevich motivic
spaces become closely related, culminating in Theorem H.

Section 5 provides some vanishing results of p-complete étale motivic spaces,
if p is the characteristic of the base scheme, proving Theorems F and G.

The unstable rigidity theorem is proven in Section 6, where we establish
Theorem B.

In Section 7, we construct a retract S2 → Gm → S2 in the p-complete étale
unstable motivic setting, yielding Theorem D.

Section 8 presents concrete examples of étale A1-nilpotent sheaves, thereby
verifying Theorems A and C and Corollary E.

Finally, Section 9 proves Theorem I, an étale analog of Morel’s theorem on
1-strictly and strictly A1-invariant sheaves of abelian groups.

Furthermore, in Appendix A, we collect some results about Moore–Postnikov
towers for nilpotent morphisms in the setting of ∞-topoi.

Notation
This article is written in the language of ∞-categories, as developed e.g. by
Lurie in [Lur09]. We will use the word anima for an object of the ∞-category
of anima/spaces/homotopy types, whereas we will use the word sheaf for an
object of an ∞-topos X . We will furthermore employ the following notation:
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An ∞-category of anima
Sp ∞-category of spectra [Lur17, §1.4.3]
Sp(−) Stabilization of an ∞-category [Lur17, §1.4.2]
Shvτ (C) ∞-topos of sheaves on a site (C, τ)
Shvhτ (C) ∞-topos of hypersheaves on a site (C, τ),

i.e. the hypercompletion of Shvτ (C)
Ab Category of abelian groups
LQ (Un)stable rationalization functor [Mat24a, §§2, 3]
Lp (Un)stable p-completion functor [Mat24b, §§2, 3]
C∧
p p-complete objects in an ∞-category C, [Mat24b, §§2, 3]

i.e. the essential image of Lp
SmS Category of quasicompact smooth S-schemes
Sét Category of quasicompact étale S-schemes
Spc(S) ∞-category of motivic spaces [BH17, §2.2]
SHS1

(S) ∞-category of motivic S1-spectra [Mor03, §4]
SH(S) ∞-category of motivic spectra [BH17, §4.1]
SHS1

ét (S) ∞-category of étale motivic S1-spectra [Bac21a, §5]
SHét(S) ∞-category of étale motivic spectra [Bac21a, §5]
KMW
n n-th Milnor–Witt K-theory group [Mor12, §2]

We will use without mention that there is a canonical equivalence

Sp(Shvτ (C)) ∼= Shvτ (C,Sp)

between the stabilization of the ∞-category of sheaves on (C, τ) and the ∞-
category of sheaves of spectra on (C, τ), cf. [Lur18, Remark 1.3.2.2 and Propo-
sition 1.3.1.7], and similarly in the hypercomplete case. In particular, an object
E ∈ Sp(Shvτ (C)) will be called a sheaf of spectra.

Recall that there are by construction adjunctions

Σ∞ : Spc(S)∗ ⇄ SHS1

(S) :Ω∞
∗

and
σ∞ : SHS1

(S) ⇄ SH(S) :ω∞.

We also write Σ∞
P1 := σ∞Σ∞ and Ω∞

P1,∗ := Ω∞
∗ ω

∞ for the composed adjunction.
If k is a field, then we define the exponential characteristic of k as

e =

{
1 if char(k) = 0

p if char(k) = p > 0.
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2 Preliminaries

2.1 Limits of highly connected towers
Recall from [Mat24a, Definition 5.1 and Lemma 5.2] that a locally finite di-
mensional cover of an ∞-topos X consists of a jointly conservative collection of
limit-preserving geometric morphisms {p∗i : X → Ui}i∈I , such that moreover Ui
has enough points and is locally of homotopy dimension ≤ ni for some ni ≥ 0
(depending on i). Moreover, any ∞-topos that admits such a cover is automat-
ically Postnikov-complete, cf. [Mat24a, Lemma 5.3]. Recall that a tower (Xn)n
is called locally highly connected (subordinate to the cover {Ui}i) [Mat24a, Def-
inition 6.1 (3)] if (p∗iXn)n is a highly connected tower in Ui for all i ∈ I, i.e. all
the p∗iXn are connected, and for every i ∈ I and k ≥ 1 there exists an Ni,k ≥ 0
such that for all n ≥ Ni,k the map πk(p∗iXn) → πk(p

∗
iXNi,k

) is an isomorphism.
In this section, we will show that under suitable finiteness conditions, geometric
morphisms preserve limits of (locally) highly connected towers.

Proposition 2.1. Let f∗ : X → Y be a geometric morphism of ∞-topoi. Sup-
pose that X is locally of homotopy dimension ≤ N for some N and that Y
admits a locally finite dimensional cover. Let (Xn)n be a highly connected tower
in X . Then the canonical map

f∗limnXn → limn f
∗Xn

is an equivalence.

Proof. Since Y admits a locally finite dimensional cover, there exists a jointly
conservative set of points S of Y such that each point s∗ ∈ S factors through an
∞-topos which is locally of homotopy dimension ≤ Ns for some Ns, cf. [Mat24a,
Definition 5.1 (3)]. It thus suffices to check the equivalence after applying s∗ ∈ S.
Note that we have a commutative diagram of the form

s∗f∗limnXn s∗limn f
∗Xn

limn s
∗f∗Xn

where all maps are limit-assembly maps. Since s∗f∗ is a point of X , the diagonal
map is an equivalence by [Mat24a, Lemma 6.5]. By [Mat24a, Example 6.3], we
see that (f∗Xn)n is highly connected (and thus in particular locally highly
connected). Hence, since s∗ ∈ S, the vertical map is an equivalence by [Mat24a,
Corollary 6.6]. Therefore, also the horizontal map is an equivalence, which is
what we wanted to show.

We want a version of the above proposition where we relax the assumption
that X is locally of homotopy dimension ≤ N . Instead, we only want both X
and Y to admit locally finite dimensional covers. In order to prove such a result
one needs a certain compatibility of locally finite dimensional covers which is
captured by the following straightforward definition.

Definition 2.2. Let X be an ∞-topos with a locally finite dimensional cover
{p∗i : X → Ui}i∈I , and similarly Y be an ∞-topos with a locally finite dimen-
sional cover {q∗j : Y → Vj}j∈J .
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A morphism of ∞-topoi with locally finite dimensional covers consists of a
geometric morphism f∗ : X → Y, a map κ : J → I, and geometric morphisms
f∗j : Uκj → Vj , together with the datum of a commutative square

X Y

Uκj Vj

f∗

p∗κj q∗j
f∗
j

for every j ∈ J .

Proposition 2.3. Let X be an ∞-topos with a locally finite dimensional cover
{p∗i : X → Ui}i∈I , and similarly Y be an ∞-topos with a locally finite dimen-
sional cover {q∗j : Y → Vj}j∈J . Let (f∗ : X → Y, κ : J → I, (f∗j : Uκj → Vj)j) be
a morphism of ∞-topoi with locally finite dimensional covers.

If (Xn)n is a locally highly connected tower in X (subordinate to {Ui}i), then
the canonical map

f∗limnXn → limn f
∗Xn.

is an equivalence.

Proof. Since the q∗j are jointly conservative, it suffices to show that the canonical
map q∗j f

∗limnXn → q∗j limn f
∗Xn is an equivalence for all j ∈ J . So fix j ∈ J

and consider the following commutative diagram:

q∗j f
∗limnXn f∗j p

∗
κj limnXn

q∗j limn f
∗Xn f∗j limn p

∗
κjXn

limn q
∗
j f

∗Xn limn f
∗
j p

∗
κjXn

α

≃

γ

β δ

≃

The two horizontal arrows are given by the morphism of ∞-topoi with finite
dimensional covers, and are thus equivalences by definition. All the other maps
are given by limit-assembly maps. The maps β and γ are equivalences since
p∗κj and q∗j commute with all limits by definition. Moreover, the map δ is an
equivalence by Proposition 2.1, since (p∗κjXn)n is highly connected and Uκj is
locally of homotopy dimension ≤ N for some N by assumption. Hence, also the
map α is an equivalence which is precisely what we wanted to show.

Lemma 2.4. Let X be an ∞-topos locally of homotopy dimension ≤ N with
enough points, and (Xn)n be a highly connected tower in X . Write X := limnXn

Then for all k ≥ 0 the canonical map πk(X) → πk(Xn) is an isomorphism for
all n≫ 0.

Proof. Let k ≥ 0. By assumption, there exists N such that πk(Xn) ∼= πk(XN )
for all n ≥ N . We will show that πk(X) ∼= πk(Xn) for all n ≥ N . Since there are
enough points, and since s∗limnXn

∼= limn s
∗Xn for all points s∗ by [Mat24a,

Lemma 6.5], and s∗πk(−) ∼= πk(s
∗−) since s∗ is a geometric morphism, we

may assume that X ∼= An. The result is now an immediate consequence of the
computation of homotopy groups of the limit as e.g. done in [MP11, Proposition
2.2.9], as the system (πk+1(Xn))n is Mittag–Leffler (it consists of isomorphisms
for n≫ 0).
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2.2 Unstable p-completion
Let X be a Postnikov-complete ∞-topos with enough points. Write Lp : X → X
for the unstable p-completion functor, the Bousfield localization at the class of
p-equivalences, cf. [Mat24b, Section 3], and X∧

p for its essential image, i.e. the
subcategory of p-complete sheaves. The goal of this section is to strengthen
some of the results about Lp from [Mat24b, Section 3] and [Mat24a, Section 6].

Lemma 2.5. Let f : E → F be a morphism in Sp(X ) between 1-connective
sheaves of spectra. Then f is a p-equivalence if and only if Ω∞

∗ f is a p-
equivalence.

Proof. If f is a p-equivalence, then Ω∞
∗ f is a p-equivalence by [Mat24b, Lemma

3.16]. Suppose on the other hand that Ω∞
∗ f is a p-equivalence. Hence, we see

that LpΩ∞
∗ f : LpΩ

∞
∗ E → LpΩ

∞
∗ F is an equivalence. Note that by [Mat24b,

Lemma 3.17] this morphism is equivalent to the morphism

Ω∞
∗ τ≥1LpE → Ω∞

∗ τ≥1LpF.

Since Ω∞
∗ is conservative on connective objects (this can e.g. be checked on

stalks, where it reduces to the same claim about Ω∞
∗ : Sp≥0 → An∗, which is

conservative by [Lur17, Corollary 5.2.6.27]), it follows that τ≥1LpE → τ≥1LpF
is an equivalence. Consider the canonical morphism of fiber sequences

τ≥1LpE LpE τ≤0LpE

τ≥1LpF LpF τ≤0LpF .

∼= Lpf

As Lp is an exact functor, p-completing again yields the morphism of fiber
sequences

Lpτ≥1LpE LpE Lpτ≤0LpE

Lpτ≥1LpF LpF Lpτ≤0LpF .

∼= Lpf

In order to see that f : E → F is a p-equivalence, we have to show that Lpf is
an equivalence. By the above morphism of fiber sequences, it suffices to show
that Lpτ≤0LpE → Lpτ≤0LpF is an equivalence. We will in fact show that both
objects are equivalent to 0. We will show that Lpτ≤0LpE ∼= 0, the proof for
F is the same. Since E is 1-connective, we see that πn(τ≤0LpE) is uniquely
p-divisible for all n (for n > 0 the homotopy object is 0, and for n ≤ 0 use
[Mat24b, Lemma 2.9] applied to the p-equivalence E → LpE). Hence, the claim
follows immediately from [Mat24b, Lemma 2.10], as the standard t-structure
on Sp(X ) is left-separated (cf. e.g. the first paragraph of [Mat24b, Section 3.2],
using that X is hypercomplete). This proves the lemma.

Next, we strengthen [Mat24b, Proposition 3.19] to arbitrary maps of nilpo-
tent sheavesX → Y in X∗, i.e. we remove the assumption that the p-completions
of X and Y are still nilpotent. For this, we need the following cofinality result:
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Lemma 2.6. Let f : X → Y be a morphism in X∗ of pointed connected sheaves.
Then the N-indexed inverse systems (τ≤nfib(X → Y ))n and (fib(τ≤nX → τ≤nY ))n
are cofinal, i.e. for every n there exists morphisms

αn : fib(τ≤nX → τ≤nY ) → τ≤n−1fib(X → Y )

and
βn : τ≤nfib(X → Y ) → fib(τ≤nX → τ≤nY )

such that the compositions βn−1αn and αnβn are just the transition morphisms
on the respective towers. In particular, the towers have equivalent limits.

Proof. A long exact sequence argument shows that the canonical map

τ≤n−1fib(X → Y ) → τ≤n−1fib(τ≤nX → τ≤nY )

is an equivalence for all n. Thus, it suffices to show that the two towers
(τ≤n−1fib(τ≤nX → τ≤nY ))n and (fib(τ≤nX → τ≤nY ))n are cofinal.

Note first that for every n the unit gives a morphism

αn : fib(τ≤nX → τ≤nY ) → τ≤n−1fib(τ≤nX → τ≤nY ).

On the other hand, fib(τ≤nX → τ≤nY ) is n-truncated (as a limit of n-truncated
objects), and hence the map fib(τ≤n+1X → τ≤n+1Y ) → fib(τ≤nX → τ≤nY )
induced by the respective units τ≤n+1X → τ≤nX and τ≤n+1Y → τ≤nY factors
over a map

βn : τ≤nfib(τ≤n+1X → τ≤n+1Y ) → fib(τ≤nX → τ≤nY ).

It is now easy (but tedious) to see that for every n the compositions βn−1αn
and αnβn are just the transition morphisms on the respective towers.

Lemma 2.7. Let f : X → Y be a morphism in X∗ of pointed nilpotent sheaves.
Suppose that X and Y are n-truncated for some n ≥ 0. Then

Lpτ≥1fib(X → Y ) ∼= τ≥1fib(LpX → LpY ).

Proof. Since X and Y are n-truncated, it follows from [Mat24b, Proposition
3.20] that also LpX and LpY are nilpotent. Thus, the lemma is an immediate
consequence of [Mat24b, Proposition 3.19].

Proposition 2.8 (Bousfield–Kan Fiber Lemma). Suppose that X has a locally
finite dimensional cover. Let f : X → Y be a morphism in X∗ of pointed nilpo-
tent sheaves. Then

Lpτ≥1fib(X → Y ) ∼= τ≥1fib(LpX → LpY ).

Proof. Since X has a locally finite dimensional cover, we have equivalences

LpX ∼= limn Lpτ≤nX

and
LpY ∼= limn Lpτ≤nY,

12



see [Mat24a, Proposition 6.12]. Hence, we compute

τ≥1fib(LpX → LpY ) ∼= τ≥1fib(limn Lpτ≤nX → limn Lpτ≤nY )
∼= τ≥1limn fib(Lpτ≤nX → Lpτ≤nY )
∼= τ≥1limn τ≥1fib(Lpτ≤nX → Lpτ≤nY )
∼= τ≥1limn Lpτ≥1fib(τ≤nX → τ≤nY )
∼= τ≥1limn Lpτ≥1τ≤nfib(X → Y )
∼= Lpτ≥1fib(X → Y ).

Here, we used that limits commute with limits in the second equivalence, e.g.
[Mat24a, Lemma 4.2] in the third equivalence, Lemma 2.7 in the fourth equiv-
alence, Lemma 2.6 in the fifth equivalence, and again [Mat24a, Proposition
6.12] and the fact that the p-completion of a connected sheaf is connected, cf.
[Mat24b, Lemma 3.12], in the last equivalence. This proves the lemma.

Remark 2.9. Note that in the proof of Proposition 2.8, we cannot argue as in
Lemma 2.7, because it is unclear (and probably wrong in general) that LpX is
nilpotent for every nilpotent sheaf X ∈ X∗.

In the last part of this section, our goal is a strengthened version of [Mat24a,
Proposition 6.12]: We want to prove that p-completion commutes with limits
along locally highly connected towers, and not just the tower of truncations
(τ≤nX)n. For this, we need the following well-known lemma for which we could
not find a reference in the language of ∞-categories.

Lemma 2.10. Let C be a pointed ∞-category with finite limits, and f : X → Y
and g : Y → Z be morphisms in C. Then there is a canonical fiber sequence

fib(f) → fib(gf) → fib(g).

Proof. Consider the following commutative diagram:

fib(f) ∗

fib(gf) fib(g) ∗

X Y Z.f g

We want to show that the upper left square is cartesian. By definition, the
horizontal rectangle, the vertical rectangle and the lower right square are all
cartesian. Hence, we conclude by applying the pasting law for pullback squares
twice (cf. the dual of [Lur09, Lemma 4.4.2.1]).

The next (very technical) lemma states that p-completion reduces the con-
nectivity of a morphism between nilpotent sheaves roughly by the local homo-
topy dimension of the topos.

Lemma 2.11. Suppose that X is locally of homotopy dimension ≤ N . Let
f : X → Y ∈ X∗ be a morphism between nilpotent sheaves such that fib(f) is
(N + k+2)-connective for some k ≥ 1. Then the fiber fib(Lpf) is k-connective.
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Proof. By Corollary A.4, also the morphism f is nilpotent (cf. Definition A.1
for a definition). Hence, using Proposition A.5, we may choose a Moore–
Postnikov refinement of f , i.e. a sequence of connected sheaves (Xn)n under
X and over Y with X ∼= limnXn, X0

∼= Y , and fiber sequences Xn → Xn−1 →
K(An, kn), where the An ∈ Ab(Disc(X )) are sheaves of abelian groups, and
the kn ≥ 2 are integers, such that kn → ∞ as n → ∞. Since fib(f) is
(N + k + 2)-connective, we may even assume that kn ≥ N + k + 2 for all
n, cf. Lemma A.6. Note that since Y is nilpotent, using [Mat24b, Lemma A.12]
inductively, we conclude that also all the Xn are nilpotent. Moreover, it is
clear that (Xn)n is a highly connected tower. By Proposition 2.8 we see that
LpXn

∼= τ≥1fib(LpXn−1 → LpK(An, kn)). Using the proof of [Mat24a, Lemma
6.11] (where the connectivity of the p-completion of an Eilenberg-MacLane sheaf
is computed), we see that LpK(An, kn) is at least (k + 1)-connective, and the
connectivity tends to infinity as n → ∞. As LpXn−1 is connected, we see by a
long exact sequence argument that already fib(LpXn−1 → LpK(An, kn)) is con-
nected, and hence LpXn

∼= fib(LpXn−1 → LpK(An, kn)). Hence, fib(LpXn → LpXn−1) ∼=
ΩLpK(An, kn) is at least k-connective, again with connectivity tending to in-
finity as n→ ∞. By Lemma 2.10 we have a fiber sequence

fib(LpXn+1 → LpXn) → fib(LpXn+1 → LpY ) → fib(LpXn → LpY ).

Since X0
∼= Y , we can thus inductively prove that also fib(LpXn+1 → LpY ) is

at least k-connective. Moreover, as the connectivity of fib(LpXn+1 → LpXn)
tends to infinity as n → ∞, we conclude that in fact (fib(LpXn → LpY ))n is a
highly connected tower. Additionally, we can compute its limit:

limn fib(LpXn → LpY ) ∼= fib(limn LpXn → LpY ) ∼= fib(LpX → LpY ),

where the second equivalence is Proposition 2.13, using that (Xn)n is a highly
connected tower of nilpotent sheaves. Hence, we conclude from Lemma 2.4
that also fib(LpX → LpY ) is k-connective, which is exactly what we wanted to
prove.

We also need the following result which is a strengthening of [Mat24a,
Lemma 6.11]:

Lemma 2.12. Suppose that X admits a locally finite dimensional cover. Let
(Xn)n be a locally highly connected tower (subordinate to this cover), such that
all the sheaves Xn ∈ X∗ are nilpotent. Then also the tower (LpXn)n is locally
highly connected.

Proof. Since p∗i commutes with the p-completion by [Mat24a, Lemma 6.10], and
preserves nilpotent objects (as it is the left adjoint of a geometric morphism),
we can assume that X is locally of homotopy dimension ≤ N for some N ∈ N
and that (Xn)n is a highly connected tower, and our goal is to show that also
(LpXn)n is highly connected. So let k ∈ N. Since (Xn)n is highly connected,
there exists L ≥ 0 such that for all m ≥ L the fiber fib(Xm → XL) is (k +
N + 3)-connective. We have to find M ≥ 0 such that for all m ≥ M the fiber
fib(LpXm → LpXM ) is (k+1)-connective. The claim follows from Lemma 2.11
using M := L.
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Proposition 2.13. Suppose that X admits a locally finite dimensional cover.
Let (Xn)n be a locally highly connected tower (subordinate to this cover), such
that all the sheaves Xn ∈ X∗ are nilpotent. Then the canonical map LplimnXn →
limn LpXn is an equivalence.

Proof. The proof is identical to that of [Mat24a, Proposition 6.12], but we now
need Lemma 2.12 to see that (LpXn)n is still locally highly connected.

2.3 P1-Postnikov towers
In the sequel we will need that over a perfect field any 2-effective nilpotent mo-
tivic space admits a version of the Postnikov-tower, where the layers are infinite
P1-loop spaces. This is a deep result of Asok–Bachmann–Hopkins [ABH23],
which we now recall:

Proposition 2.14 (Asok–Bachmann–Hopkins). Let k be a perfect field and
X ∈ Spc(k)∗ a pointed nilpotent motivic space. Suppose moreover that X is
q-effective for some q ≥ 2. Then X admits a refined Postnikov tower where the
layers are q-effective infinite loop spaces, i.e. there exists an N-indexed inverse
system X• : Nop → Spc(k)∗,X/ of pointed motivic spaces Xi under X, and fiber
sequences Xi+1 → Xi → Ki, such that

(a) X0
∼= ∗,

(b) for every i, Xi is nilpotent and q-effective,

(c) X ∼= limiXi,

(d) the connectivities of the Ki tend to ∞ as i→ ∞, and

(e) for every i, there exists a motivic spectrum Ei ∈ SH(k) which is 2-
connective and q-effective, and an equivalence Ki

∼= Ω∞
P1,∗Ei. In particular

Ki is 2-connective and q-effective.

Proof. It follows from [ABH23, Construction 4.1.7] that there exist motivic
spaces Xi under X and fiber sequences Xi+1 → Xi → Ki, satisfying (a), (b),
(c) and (d), such that Ki

∼= τ≥(q+1,q)K(Ai, ni) with Ai a strictly A1-invariant
sheaf of abelian groups, ni ≥ 2 and ni → ∞ as i → ∞. Here we use the
notation τ≥(q+1,q) from [ABH23, Definition 4.1.2]. Now the remaining claim
(e) is [ABH23, Remark 4.1.13].

Remark 2.15. In the sequel we will repeatedly use some kind of induction on this
tower. The main strategy will be the following: If a statement for motivic spaces
is stable under limits and holds for sheaves of the form Ω∞

P1,∗G for G ∈ SH(k),
then it holds for any nilpotent 2-effective motivic space.

This version of the Postnikov-tower behaves well with respect to rationaliza-
tion, as captured by the following lemma.

Lemma 2.16. Let k be a perfect field and X ∈ Spc(k)∗ a pointed nilpotent
motivic space. Suppose moreover that X is q-effective, where q ≥ 2. Let R ⊆ Q
be a subring. If X is R-local, then we may assume that also the Xi, Ki and Ei
from Proposition 2.14 are R-local.
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Proof. Choose sheaves Xi, Ki and Ei for all i as in Proposition 2.14. We show
that also the collection of LRXi, LRKi and LREi satisfies (a) to (e) of loc. cit..

First, it follows from [AFH22, Theorem 4.3.11] that LRXi+1 → LRXi →
LRKi is still a fiber sequence. We prove the remaining points:

(a): It is clear that LRX0
∼= LR∗ ∼= ∗.

(b): That LRXi is nilpotent was shown in [AFH22, Proposition 4.3.8] (they
only show that LRXi is weakly A1-nilpotent, but under the assumption that
Xi is nilpotent their proof in fact shows that LRXi is nilpotent). That it is
q-effective was shown in [ABH23, Proposition 4.3.4].

(c): We have X ∼= LRX ∼= LRlimnXn
∼= limn LRXn by combining [AFH22,

Proposition 4.3.8 and Theorem 4.3.9] (which shows that the R-localization of a
motivic space can be computed as the R-localization of the underlying Nisnevich
sheaf) with [Mat24a, Proposition 6.9] (which applies as Shvnis(Smk) admits a
locally finite dimensional cover, cf. [Mat24a, Proposition A.3]).

(d): This follows from [AFH22, Proposition 4.3.8].
(e): It was shown in [ABH23, Lemma 3.2.7 (1) and Corollary 3.2.9] that

LREi is still 2-connective and q-effective. Note that LRKi
∼= LRΩ

∞
P1,∗Ei

∼=
Ω∞

∗ LREi. Indeed, we have Ω∞
P1,∗ = Ω∞

∗ ω
∞, and Ω∞

∗ commutes with LR on
1-connective objects by [Mat24a, Lemma 3.18] (or rather its analog for motivic
spaces, which can be proven in exactly the same way), whereas ω∞ commutes
with LR by [Mat24a, Corollary 2.7] as it preserves filtered colimits by [BY20,
Lemma 6.1].

2.4 Étale ∞-topoi
In this section, we collect some results about the small-étale and smooth-étale
∞-topoi.

Definition 2.17. Let S be a qcqs scheme.

• We write Sét for the category of qcqs étale S-schemes, equipped with the
étale topology, and Shvhét(Sét) for the ∞-topos of étale hypersheaves on
Sét.

• We write SmS for the category of qcqs smooth S-schemes, equipped with
the étale topology, and Shvhét(SmS) for the ∞-topos of étale hypersheaves
on SmS .

Proposition 2.18. Let S be a scheme. A conservative family of points of
Shvhét(SmS) is given by evaluating at Spec(Osh

X,x), the spectrum of the strict
henselization of the local ring of X at x, where X is a smooth S-scheme and
x ∈ X is a geometric point.

Similarly, a conservative family of points of Shvhét(Sét) is given by evaluating
at Spec(Osh

S,s), the spectrum of the strict henselization of the local ring of S at
s, where s ∈ S is a geometric point.

Proof. That these functors are points is [CM21, Example 4.32]. We now prove
that they are jointly conservative. Since we work with hypersheaves, we can
check equivalences on homotopy sheaves and are thus reduced to show that
on the underlying 1-topos those points form a conservative family. This was
proven in [Sta23, Theorem 03PU] for the small étale site, the smooth case
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follows similarly (e.g. by pulling back to various small étale sites Shvhét(Xét) for
X ∈ SmS).

Definition 2.19. Let S be a qcqs scheme, and x ∈ S. Write cd(x) ∈ N ∪ {∞}
for the étale cohomological dimension of the field k(x), cf. [Sta23, Tag 0F0Q].
Similarly, write cd(S) ∈ N ∪ {∞} for the étale cohomological dimension of S.

Definition 2.20. Let S be a qcqs scheme. We say that S is étale bounded
if there is a global bound on the étale cohomological dimension of the residue
fields of S, i.e. supx∈S cd(x) <∞.

Lemma 2.21. Let S be a qcqs scheme of finite Krull-dimension that is étale
bounded. Then also cd(S) < ∞. Moreover, if sups∈S cd(s) ≤ N , then cd(S) ≤
N + dim(S).

Proof. See e.g. the proof of [CM21, Corollary 3.29].

Lemma 2.22. Let S be a scheme, and U → S an étale S scheme. The canonical
functor

Shvhét(Sét) → Shvhét(Uét)

induces an equivalence

Shvhét(Sét)/U ∼= Shvhét(Uét)

Proof. Since morphisms between étale S-schemes are themselves étale [Sta23,
Tag 02GW], we get an equivalence of sites (Sét)/U ∼= Uét, where the slice cate-
gory carries the canonical site structure. Then the result follows from [GAV71,
Exposé III, Proposition 5.4], as all involved ∞-topoi are (hypercompletions of)
1-localic topoi.

Lemma 2.23. Let S be a qcqs scheme of finite Krull-dimension, such that S is
étale bounded. There exists an N ≥ 0 such that Shvhét(Sét) is locally of homotopy
dimension ≤ N . In particular, it is Postnikov-complete.

Proof. Let N := dim(S)+ supx∈S cd(x). This is finite since S is étale bounded.
By [CM21, Corollary 3.29] we see that for every étale S-scheme U → S the coho-
mological dimension of Shvhét(Uét) is ≤ N . Note that Shvhét(Sét)/U ∼= Shvhét(Uét)

by Lemma 2.22. In particular, we see that Shvhét(Sét) is locally of cohomological
dimension ≤ N . Since it is hypercomplete by definition, it follows that it is
locally of homotopy dimension ≤ N , cf. [Lur18, Proposition 1.3.3.10]. It follows
from [Lur09, Proposition 7.2.1.10] that it is also Postnikov-complete.

Lemma 2.24. Let S be a qcqs scheme of finite Krull-dimension, which is more-
over étale bounded. Let p : X → S be a smooth finite type S-scheme. Then X
is étale bounded.

Proof. Let K := sups∈S cd(s), and let M := supx∈X trdeg(k(x)/k(p(x))) be the
supremum over the transcendence degrees. K is finite by assumption, and by
combining [Sta23, Tag 0A3V] with [Sta23, Tag 0A21] we see that alsoM is finite.
We claim that supx∈X cd(x) ≤ K +M . This follows from [Sta23, Tag 0F0T] as
for x ∈ X we have cd(x) ≤ cd(p(x)) + trdeg(k(x)/k(p(x))) ≤ K +M .
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Proposition 2.25. Let S be a qcqs scheme of finite Krull-dimension, which is
moreover étale bounded. Then Shvhét(SmS) admits a locally finite dimensional
cover in the sense of [Mat24a, Definition 5.1]. In particular, it is Postnikov-
complete.

Proof. Arguing as in the proof of [Mat24a, Proposition A.3], one reduces to
the claim that for U ∈ SmS , the ∞-topos Shvhét(Uét) is locally of homotopy
dimension ≤ N for some N and has enough points. The first statement was
proven in Lemma 2.23, as U is étale bounded, cf. Lemma 2.24. The other
statement is Proposition 2.18. That Shvhét(SmS) is Postnikov-complete follows
from [Mat24a, Lemma 5.3].

Proposition 2.26. Let S be a qcqs scheme of finite Krull-dimension, which is
moreover étale bounded. The étale hypersheafification functor Lét : Shvnis(SmS) →
Shvhét(SmS) upgrades to a morphism of ∞-topoi with locally finite dimensional
covers, where we equip the Nisnevich topos with the locally finite dimensional
cover from [Mat24a, Proposition A.3], and the étale topos with the cover from
Proposition 2.25.

Proof. For this, it suffices to note that étale hypersheafification commutes with
restriction to a small étale site, i.e. that for every smooth S-scheme U the
following diagram commutes:

Shvnis(SmS) Shvnis(Uét)

Shvhét(SmS) Shvhét(Uét).

Lét Lét

This follows as already the corresponding diagram of sites commutes.

Definition 2.27. We write ι : Sét → SmS for the inclusion of sites, and

ι! : Shvhét(Sét) ⇄ Shvhét(SmS) : ι
∗

for the induced geometric morphism on the associated hypercomplete ∞-topoi,
i.e. the hypercompletion of the geometric morphism from [Pst22, Proposition
A.11]. Here, ι∗ is given by restriction along ι, and ι! is left Kan extension along
ι, followed by hypersheafification. Note that ι∗ also has a right adjoint ι∗: It
exists before the hypercompletion by [Pst22, Proposition A.13] because ι has
the covering lifting property [Pst22, Definition A.12] .

Lemma 2.28. The functors ι! and ι∗ are fully faithful.

Proof. The functor ι! is fully faithful by [Bac21a, Lemma 6.1], note that in the
reference, e∗ is the name for ι!. Since ι∗ is right adjoint to the right adjoint of
ι!, it is formal that it is also fully faithful (cf. (the dual of) [NPR24, Corollary
2.7] for a fun proof of this fact).

Definition 2.29. Let f : T → S be a morphism of schemes. Pullback along f
defines a morphism of sites SmS → SmT . We write

f∗ : Shvhét(SmS) ⇄ Shvhét(SmT ) :f∗
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for the induced geometric morphism on the associated hypercomplete ∞-topoi,
i.e. the hypercompletion of the geometric morphism from [Pst22, Proposition
A.11]. Here, f∗ is given by restriction along the morphism of sites, and f∗ is
left Kan extension along f , followed by hypersheafification.

Similarly, we have a geometric morphism

f∗ : Shvhét(Sét) ⇄ Shvhét(Tét) :f∗

using the small étale sites.

Definition 2.30. Let S be a scheme, and s ∈ S a geometric point. Write
ρs : S

sh
s := SpecOsh

S,s → S for the canonical morphism from the spectrum of
the strict henselization of the local ring of S at s to S. In particular, using
Definition 2.29 we have adjunctions

ρ∗s : Shvhét(SmS) ⇄ Shvhét(SmSsh
s
) :ρs,∗

and
ρ∗s : Shvhét(Sét) ⇄ Shvhét((S

sh
s )ét) :ρs,∗.

Lemma 2.31. Let S be a scheme and s ∈ S a geometric point. Suppose that
T ∈ SmSsh

s
. Then there exists a cofinal filtered system (s → Ui → S)i of

quasicompact étale neighborhoods of s in S (i.e. Ssh
s

∼= limi Ui), and for every i
a smooth Ui-scheme Ti, together with transition morphisms Ti → Tj making the
obvious diagram commute, such that T ∼= limi Ti. If T is étale over Ssh

s , then
we can arrange that all the Ti → Ui are étale.

Similarly, we can descend any étale cover T ′ → T in SmSsh
s

, or any disjoint
union decomposition T = ⨿jTj.

Proof. Combine [Sta23, Lemma 01ZM] with [Sta23, Lemma 0C0C]. For the étale
statements, we instead use [Sta23, Lemma 07RP], where we additionally use
descent for surjective morphisms [Sta23, Lemma 07RR] for the covers. For dis-
joint union decompositions, we can combine [Sta23, Lemma 01ZP] with [Sta23,
Lemma 0EUU] and again the statement about surjective morphisms.

Lemma 2.32. Let X be an ∞-topos, and T ∈ X an object of homotopy dimen-
sion ≤ N for some N ≥ 0. Let X ∈ X and m ≥ 0. Write f : X → τ≤N+mX for
the canonical map. Then MapX (T, f) is an (m+ 1)-connective map of anima.

Proof. The global sections functor Γ: X/T → An sends k-connective morphisms
to (k − N)-connective morphisms, cf. [Lur09, Lemma 7.2.1.7]. The map f is
(N + m + 1)-connective, and so is f × T : X × T → (τ≤N+mX) × T ∈ X/T .
Note that Γ(f × T ) ∼= MapX/T

(T, f × T ) ∼= MapX (T, f), hence we see that
MapX (T, f) is an (m+ 1)-connective map of anima.

Lemma 2.33. Let S be a qcqs scheme of finite Krull dimension which is more-
over étale bounded, and s ∈ S a geometric point. Let {s → Ui → S}i∈I be a
cofinal system of étale neighborhoods of s, and 0 ∈ I be an initial object. Sup-
pose that T0 → U0 is a scheme over U0 such that T0 → U0 → S is smooth. Let
Ti := T0×U0

Ui and T := T0×U0
Ssh
s

∼= limi Ti. Then for every X ∈ Shvhét(SmS)
we have ρ∗sX(T ) ∼= colimiX(Ti).
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Proof. We first prove the lemma under the additional assumption that X is
N -truncated for some N ≥ 0. Write f∗ : P(SmS) ⇄ P(SmSsh

s
) :f∗ for the

adjunction on presheaves where f∗ is given by precomposition along the pullback
functor f : SmS → SmSsh

s
, and f∗ is left Kan extension. In particular, ρ∗sX ∼=

Létf
∗X. Hence, it suffices to show that (1) f∗X(T ) ∼= colimiX(Ti) and (2)

f∗X satisfies étale hyperdescent.
(1): By definition of left Kan extension we have an equivalence

f∗X(T ) ∼= colim
U,T→f(U)

X(U),

where the colimit runs over the comma category (T ↓ SmS). By the universal
property of the pullback, this category is equivalent to (SmS)T/, where we view
T as an S-scheme. It is left to show that the Ti are cofinal in this category. For
this, let T → U any S-morphism with U ∈ SmS , and we have to show that there
is an i such that T → U factors over T → Ti. This is an immediate application
of [Sta23, Proposition 01ZC].

(2): Since f∗ preserves truncated objects, and since any truncated sheaf is
automatically a hypersheaf, it suffices to show that f∗X is an étale sheaf. Note
that f∗X is a Σ-sheaf (i.e. it sends finite coproducts to products): Indeed, let
(Vj)j be a finite family of smooth schemes over Ssh

s . By Lemma 2.31 we may
assume that we get compatible families (Vj,i)j over a cofinal system of étale
neighborhoods s → Ui → S, such that Vj,i ×Ui S

sh
s

∼= Vi. Now, by (1) we
know that f∗X(⨿jVj) ∼= colim

i
X(⨿jVj,i). Since X is a Σ-sheaf, and since finite

limits commute with filtered colimits in An, we conclude that also f∗X is a
Σ-sheaf. Hence, it now suffices to prove the sheaf condition for an étale cover
V → U consisting of a single morphism. Again, using Lemma 2.31, we can find
compatible étale covers Vi → Ui. We argue as above, using (1) and the fact
that on homotopy groups the totalization of the Čech nerve behaves like a finite
limit, and hence again commutes with filtered colimits.

We end the proof by showing the general statement. So let X ∈ Shvhét(SmS)
be arbitrary. First note that T0 is étale bounded, with some bound K ≥ 0 by
Lemma 2.24. Moreover, by the proof of this lemma, since any Ti is an étale
T0-scheme, we see that it is again étale bounded with the same bound K, and
similarly for the pro-étale T0-scheme T . Hence, all the Ti ∈ Shvhét(SmS) and also
T ∈ Shvhét(SmSsh

s
) have cohomological dimension ≤ N , where N := K+dim(T0),

cf. Lemma 2.21 (as dim(T ) = dim(Ti) = dim(T0)). By the proof of [Lur09,
Proposition 1.3.3.10], using Postnikov-completeness, T and the Ti have in fact
homotopy dimension ≤ N . We now have for every m ≥ 0 a commutative
diagram

(ρ∗sX)(T ) = MapSsh
s
(T, ρ∗sX) MapSsh

s
(T, τ≤N+mρ

∗
sX)

MapSsh
s
(T, ρ∗sτ≤N+mX)

colimiX(Ti) = colimiMapS(Ti, X) colimiMapS(Ti, τ≤N+mX)

∼=

∼=

Here, the top right vertical map is an equivalence since ρ∗s is a geometric mor-
phism, and the bottom right vertical map is an equivalence by the above special
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case whereX was assumed to be truncated. Our goal is to show that the left ver-
tical map of anima is an equivalence, it suffices to show that it is ∞-connective.
For this, we will show that the horizontal maps are both m-connective, since
the left vertical map is independent of m, this then proves the claim. First note
that m-connective maps are stable under filtered colimits. Since T and the Ti
have homotopy dimension ≤ N , the claim now follows from Lemma 2.32.

Lemma 2.34. Let S be a qcqs scheme of finite Krull dimension, that is more-
over étale bounded, and s ∈ S a geometric point. The following squares are
commutative:

Shvhét(Sét) Shvhét((S
sh
s )ét)

Shvhét(SmS) Shvhét(SmSsh
s
)

ρ∗s

ι! ι!

ρ∗s

and

Shvhét(Sét) Shvhét((S
sh
s )ét)

Shvhét(SmS) Shvhét(SmSsh
s
).

ρ∗s

ρ∗s

ι∗ ι∗

Proof. For the first square, is suffices to show that the associated square of
right adjoints commutes. As all the right adjoints are given by restriction along
morphisms of sites, this follows since they already commute on the level of sites.

For the second square, note that there exists a natural transformation

ρ∗sι
∗ unit−−→

≃
ι∗ι!ρ

∗
sι

∗ ∼= ι∗ρ∗sι!ι
∗ counit−−−−→ ι∗ρ∗s

given by the Beck–Chevalley transformation (using the commutativity of the
first diagram). The morphism induced by the unit is an equivalence since ι! is
fully faithful, cf. Lemma 2.28. Hence, it suffices to show that also the morphism
induced by the counit is an equivalence. So let X ∈ Shvhét(SmS). Since ι∗ is
given by restriction, we have to show that for every T ∈

(
Ssh
s

)
ét

the canonical
map

(ρ∗sι!ι
∗X)(T )

counit−−−−→ (ρ∗sX)(T )

is an equivalence. By Lemma 2.31 we may choose étale neighborhoods {s →
Ui → S}i and for every i an étale Ui-scheme Ti such that T ∼= limi Ti. It now
follows from Lemma 2.33 that this morphism is equivalent to the morphism

colimi (ι!ι
∗X)(Ti)

counit−−−−→ colimiX(Ti).

Since Ti ∈ Sét and ι! is given by left Kan extension along the inclusion Sét →
SmS , it follows that this morphism is an equivalence.

Lemma 2.35. Let S be a qcqs scheme of finite Krull dimension, that is more-
over étale bounded. The collection of functors {ρ∗s}s∈S is jointly conservative
on both Shvhét(SmS) and Shvhét(Sét) (where the s are the geometric points of S).
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Proof. We first show that the functors ρ∗s : Shvhét(SmS) → Shvhét(SmSsh
s
) are

jointly conservative. So let f : X → Y be a morphism in Shvhét(SmS) such
that ρ∗sf is an equivalence for all geometric points s. As for the étale topology
strictly henselian local rings form the points of the topos, and we are working
with hypersheaves, it suffices to show that for every T ∈ SmS and geometric
point t ∈ T the morphism f : X(T sh

t
) → Y (T sh

t
) is an equivalence. Fix T and t.

Hence, we have to show that

f : colim
t→U

ét−→T

X(U) → colim
t→U

ét−→T

Y (U) (1)

is an equivalence. Write s ∈ S for the geometric point under t ∈ T , so that
there is a commutative diagram

T sh
t

T

Ssh
s S.

ρt

α β

ρs

In particular, ρ∗
t
β∗f = α∗ρ∗sf is an equivalence. By Lemma 2.33, the equivalence

ρ∗
t
β∗f : ρ∗

t
β∗X(T sh

t
) ∼= ρ∗

t
β∗Y (T sh

t
) may be identified with the morphism

β∗f : colim
t→U

ét−→T

β∗X(U)
≃−→ colim

t→U
ét−→T

β∗Y (U).

Since any étale T -scheme U is in particular a smooth S-scheme, we see that
β∗Z(U) ∼= Z(U) for any Z. Hence, the above equivalence can be identified with
the morphism (1), which proves the claim.

We finish the proof by showing that also the functors ρ∗s : Shvhét(Sét) →
Shvhét((S

sh
s )ét) are jointly conservative. For this, let f : X → Y ∈ Shvhét(Sét) be

a morphism such that ρ∗sf is an equivalence for all geometric points s ∈ S. Then
also ι!ρ∗sf ∼= ρ∗sι!f is an equivalence for all s ∈ S, using Lemma 2.34. Hence, it
follows from the first part that ι!f is an equivalence. Thus, we deduce that f is
already an equivalence since ι! is fully faithful, cf. Lemma 2.28.

Lemma 2.36. Let k be a separably closed field. Then evaluation at k induces
an equivalence Shvhét(két)

≃−→ An.

Proof. Since k is separably closed, the functor Fin → két from finite sets to két
given by sending a set A to ⨿A Spec(k) is an equivalence of categories. Under
this equivalence, the étale topology corresponds to the topology generated by
finite coproduct decompositions. Hence, using [BH17, Lemma 2.4], we see that
Shvhét(két)

∼= PΣ(Fin) (the reference shows this holds before hypercompletion,
and the right-hand side is hypercomplete by [BH17, Lemma 2.6]), i.e. the ∞-
category of product-preserving presheaves on finite sets, which is equivalent to
the ∞-category of anima, cf. [CS23, §5.1.4]. Unwinding the definitions, we see
that this equivalence is precisely given by evaluation at k.

Lemma 2.37. Suppose that k is a separably closed field. Then the functor

(−)(k) : Shvhét(Smk) → An
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given by evaluation at k has a left and a right adjoint. In particular, it pre-
serves all limits and colimits and commutes with p-completion, i.e. Lp(F (k)) ∼=
(LpF )(k) for all F ∈ Shvhét(Smk).

Proof. There is a commutative diagram

Shvhét(Smk) Shvhét(két)

An.
(−)(k)

ι∗

∼= (−)(k)

Since k is separably closed, we have seen in Lemma 2.36 that the right vertical
arrow is an equivalence. Moreover, ι∗ has a left and a right adjoint, cf. Defi-
nition 2.27, hence the same is true for the diagonal functor. That evaluation
at k then also commutes with p-completion follows formally from the fact that
it preserves both p-equivalences and p-complete objects, cf. [Mat24b, Lemma
3.11].

2.5 The canonical resolution of a connective sheaf
Let X be an ∞-topos. In this section, we prove that for every n-connective
sheaf X ∈ X∗,≥n there is a canonical way of writing X as a sifted colimit of
sheaves of the form ΣnT with T ∈ X∗.

Proposition 2.38. Let X ∈ X∗,≥n. Then X is the geometric realization of the
simplicial diagram given by [k] 7→ (ΣnΩn)k+1(X). In particular, X is a sifted
colimit of sheaves of the form ΣnT with T ∈ X∗.

Proof. If we can show that the functor Ωn : X∗,≥n → X∗ is monadic (i.e. is con-
servative and preserves geometric realizations of Ωn-split simplicial diagrams),
then this follows from (the proof of) [Lur17, Proposition 4.7.3.14]. Consider the
following commutative diagram of right adjoints

MonEn
(X∗) MongpEn

(X∗) X∗,≥n

X∗,
fgt

Ωn

∼=

Ωn

where the right horizontal morphism is an equivalence by [Lur17, Theorem
5.2.6.15]. Since fgt : MonEn

(X∗) → X∗ is monadic, it suffices to show that
the forgetful functor MongpEn

(X∗) ↪→ MonEn(X∗) is conservative and preserves
geometric realizations that are fgt-split. The first claim is clear. For the second
claim, we have to show that a fgt-split geometric realization (in MonEn

(X∗)) of
grouplike En-monoids is still grouplike. Grouplike objects are characterized by
certain maps G×G→ G×G being equivalences, cf. [Lur17, Definition 5.2.6.2].
Since geometric realizations that are fgt-split are computed underlying, and
since colimits are universal in X , the result follows.
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3 A1-invariance and étale sheaves
In this section, we will define A1-invariant étale sheaves, and discuss (p-completely)
étale A1-nilpotent sheaves, a variant of nilpotence in an ∞-topos, where the
layers of the refined Postnikov tower are given by (p-completely) A1-invariant
infinite loop sheaves.

Definition 3.1. Let S be a scheme. Write Spcét(S) ⊂ Shvhét(SmS) for the ∞-
category of A1-invariant étale hypersheaves on SmS . As in the Nisnevich case,
there is a Bousfield localization

Lét,A1 : Shvhét(SmS) ⇄ Spcét(S) : ιét,A1

at the projections X × A1 → X for X ∈ SmS . We call objects of this ∞-
category étale motivic spaces over S. We write SHS1

ét (S) := Sp(Spcét(S)) for
the stabilization.

Recall the following lemma:

Lemma 3.2 (e.g. [Mat24b, Lemma A.1]). Let S be a scheme. There is an
adjunction

Lét,A1 : Sp(Shvhét(SmS)) ⇄ SHS1

ét (S) : ιét,A1 ,

such that the following two diagrams are commutative:

Sp(Shvhét(SmS)) SHS1

ét (S) Sp(Shvhét(SmS)) SHS1

ét (S)

Shvhét(SmS)∗ Spcét(S)∗ Shvhét(SmS)∗ Spcét(S)∗.

Lét,A1

Ω∞
∗

ιét,A1

Ω∞
∗Σ∞

Lét,A1

Σ∞

ιét,A1

Lemma 3.3. Let S be a scheme. The functor ιét,A1 : SHS1

ét (S) → Sp(Shvhét(SmS))
is fully faithful, with essential image those étale hypersheaves of spectra that are
A1-invariant. In particular, SHS1

ét (S) is equivalent to the ∞-category with the
same name from [Bac21a, BH21].

Proof. The functor is fully faithful by [Mat24b, Lemma A.2]. Everything in
the essential image is A1-invariant. Indeed, this can be checked after applying
the functors Ω∞

∗ Σn for varying n, but now note that Ω∞
∗ ιét,A1 ∼= ιét,A1Ω∞

∗ by
Lemma 3.2. On the other hand, suppose that E ∈ Sp(Shvhét(SmS)) is A1-
invariant. In particular, the Ω∞

∗ ΣnE are all A1-invariant and thus define an
object of SHS1

ét (S).

Lemma 3.4. Let X be a Postnikov-complete ∞-topos, and T ∈ X a coherent
object of cohomological dimension ≤ N for some N . Then T ∈ X and Σ∞

+ T ∈
Sp(X ) are both compact.

Proof. The second claim follows from the first one since the right adjoint Ω∞

of Σ∞
+ preserves filtered colimits (recall that in any ∞-topos, filtered colimits

commute with finite limits).
Now, τ≤nT is compact in Shvhét(SmS)≤n for every n by [Lur18, Corollary

A.2.3.2]. Let Xi be a filtered system in X . For every n ≥ 0 we have the
following commutative diagram:
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MapX (T, colimiXi) colimiMapX (T,Xi)

MapX (T, τ≤N+mcolimiXi) colimiMapX (T, τ≤N+mXi)

MapX≤N+m
(τ≤N+mT , τ≤N+mcolimiXi) colimiMapX≤N+m

(τ≤N+mT , τ≤N+mXi)

∼= ∼=
∼=

Here, the bottom vertical maps are equivalences by adjunction, and the bottom
horizontal map is an equivalence since τ≤N+mT is compact in X≤N+m, and
τ≤N+m : X → X≤N+m preserves colimits. Hence, also the middle horizontal map
is an equivalence. By the proof of [Lur18, Proposition 1.3.3.10], using Postnikov-
completeness of X , the object T has homotopy dimension ≤ N . Hence, both
top vertical maps are (m + 1)-connective by Lemma 2.32. Hence, also the top
horizontal map is (m+ 1)-connective. Since m was arbitrary, we conclude that
the top horizontal map is ∞-connective, hence an equivalence of anima.

Lemma 3.5. Let S be a qcqs scheme of finite Krull-dimension, that is more-
over étale bounded. The functor ιét,A1 : Spcét(S) → Shvhét(SmS) commutes with
filtered colimits, and the functor ιét,A1 : SHS1

ét (S) → Sp(Shvhét(SmS)) commutes
with all colimits.

Proof. Since ιét,A1 : SHS1

ét (S) → Sp(Shvhét(SmS)) is exact, it commutes with
finite colimits. Therefore, we only have to show that it commutes with filtered
colimits.

As A1-invariant objects are the local objects with respect to the morphisms
T ×A1 → T (resp. Σ∞

+ (T ×A1) → Σ∞
+ T ), it suffices to show that T (resp. Σ∞

+ T )
is compact for every T ∈ SmS .

Any T ∈ SmS has finite cohomological dimension by Lemmas 2.21 and 2.24.
As the étale topology is finitary, we see from [Lur18, Proposition A.3.1.3]
that T ∈ Shvhét(SmS) is coherent. Hence, both T and Σ∞

+ T are compact by
Lemma 3.4, which immediately implies the lemma.

Proposition 3.6. Let S be a qcqs scheme of finite Krull-dimension, that is
moreover étale bounded. The A1-localization functor

Lét,A1 : Shvhét(SmS) → Shvhét(SmS)

preserves connected objects.

Proof. As the étale topology is finitary, étale hypersheaves are stable under
filtered colimits in the ∞-category of presheaves. Hence, the same proof as for
the Nisnevich topology applies (but with Nisnevich sheafification replaced by
étale hypersheafification), see e.g. [Bac24, Lemma 1.2].

Proposition 3.7. Let S be a qcqs scheme of finite Krull-dimension, that is
moreover étale bounded. Let X ∈ Shvhét(SmS)∗. If X is A1-invariant, then also
τ≥1X is A1-invariant.

Proof. Consider the counit τ≥1X → X. Since X is A1-invariant by assumption,
this map factors over the canonical map τ≥1X → Lét,A1τ≥1X. As Lét,A1τ≥1X
is connected by Proposition 3.6, it follows that Lét,A1τ≥1X → X factors over
τ≥1X → X. Hence, we have the following commutative diagram:
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τ≥1X Lét,A1τ≥1X τ≥1X

X,

where the top composition is the identity on τ≥1X. As A1-invariant objects are
stable under retracts (this holds for the local objects of any Bousfield localiza-
tion), the proposition follows.

Lemma 3.8. Let S be a qcqs scheme of finite Krull dimension, that is moreover
étale bounded, and s ∈ S a geometric point. The functor

ρ∗s : Shvhét(SmS) → Shvhét(SmSsh
s
)

from Definition 2.30 preserves A1-invariant sheaves.

Proof. Let X ∈ Shvhét(SmS) be A1-invariant. By definition, the strict henseliza-
tion

Ssh
s

∼= lim
s→U

ét−→S

U

is the limit over all étale neighborhoods U of s in S. Let T ∈ SmSsh
s

, so that by
Lemma 2.31 we may choose a cofinal system of étale neighborhoods s→ Ui → S
and for every i a smooth Ui-scheme Ti such that T ∼= limi Ti. By Lemma 2.33
we have that ρ∗s(X)(T ) ∼= colimiX(Ti). The result follows from A1-invariance
of X and the fact that limi (Ti × A1) ∼= T × A1.

Lemma 3.9. Let S be a scheme of finite Krull dimension that is moreover étale
bounded. The collection of functors

ρ∗s : Shvhét(SmS) → Shvhét(SmSsh
s
)

from Definition 2.30 where s ranges over the collection of geometric points of S
jointly detect A1-invariant objects, i.e. if ρ∗sX is A1-invariant for all s, then X
is A1-invariant.

Proof. Let X ∈ Shvhét(SmS), such that ρ∗sX is A1-invariant for all s. Consider
the canonical map f : X → Lét,A1X. We have seen in Lemma 3.8 that ρ∗sLét,A1X
is A1-invariant. Moreover, since ρ∗s(A1

S ×S T ) = A1
Ssh
s
×Ssh

s
ρ∗sT for every smooth

S-scheme T , it follows immediately that ρ∗s preserves A1-equivalences. In partic-
ular, we see that ρ∗sf is an A1-equivalence between A1-invariant sheaves, hence
an equivalence. This allows us to conclude from Lemma 2.35 that already f is
an equivalence, i.e. X is A1-invariant.

Definition 3.10. Let S be a scheme. Let L : Sp(Shvhét(SmS)) → Sp(Shvhét(SmS))
be a left Bousfield localization. Let X ∈ Shvhét(SmS)∗. We say that X is L-
locally étale A1-nilpotent if there exists a highly connected tower (Xn)n under
X such that the following holds:

1. X0
∼= ∗.

2. X ∼= limnXn.
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3. Each of the morphisms Xn+1 → Xn is part of a fiber sequence Xn+1 →
Xn → Kn where Kn

∼= Ω∞
∗ En is a connected infinite loop sheaf for some

En ∈ Sp(Shvhét(SmS))≥1.

4. For every n the object LEn is A1-invariant.

In the sequel, we will consider the following three special cases:

• If L = id is the identity functor, we will say that X is étale A1-nilpotent.

• If L = Lp is p-completion for some prime p, we will say that X is p-
completely étale A1-nilpotent.

• If L = LQ is rationalization, we will say that X is rationally étale A1-
nilpotent.

Lemma 3.11. Let S be a scheme. Let X ∈ Shvhét(SmS)∗ be étale A1-nilpotent.
Then X is p-completely étale A1-nilpotent for every prime p, and moreover
rationally étale A1-nilpotent.

Proof. Let E ∈ Sp(Shvhét(SmS)) be A1-invariant. Then LpE ∼= limnE//p
n by

[Mat24b, Lemma 2.5], and hence is A1-invariant as a limit of A1-invariant
sheaves. Similarly, LQE can be written as a filtered colimit of copies of E
by [Mat24a, Lemma 2.6]. Hence, it is A1-invariant since A1-invariant sheaves
of spectra are stable under colimits by Lemma 3.5. These two observations
immediately imply the lemma.

Lemma 3.12. Let S be a scheme. Let X ∈ Shvhét(SmS)∗ be étale A1-nilpotent
(resp. p-completely étale A1-nilpotent, resp. rationally étale A1-nilpotent), with
sheaves (Xn,Kn, En) as in Definition 3.10. Then Kn (resp. LpKn, resp. LQKn)
is A1-invariant.

Proof. If X is étale A1-nilpotent, then En is A1-invariant, and hence so is Kn
∼=

Ω∞
∗ En by Lemma 3.2.

If X is p-completely A1-nilpotent, then LpEn is A1-invariant. We have
LpKn

∼= LpΩ
∞
∗ En

∼= τ≥1Ω
∞
∗ LpEn by [Mat24b, Lemma 3.17] (using that En is

1-connective). Hence, LpKn is A1-invariant by Lemma 3.2 and Proposition 3.7.
Similarly, if X is rationally A1-nilpotent, then LQEn is A1-invariant. We

have LQKn
∼= LQΩ

∞
∗ En

∼= Ω∞
∗ LQEn by [Mat24a, Lemma 3.18] (using that En

is 1-connective). Hence, LQKn is A1-invariant by Lemma 3.2.

Lemma 3.13. Let S be a qcqs scheme of finite Krull-dimension, that is more-
over étale bounded. Let X ∈ Shvhét(SmS)∗ be étale A1-nilpotent (resp. p-completely
étale A1-nilpotent, resp. rationally étale A1-nilpotent). Then X (resp. LpX,
resp. LQX) is A1-invariant.

Proof. Let L be one of id, Lp or LQ, and suppose that X is L-locally étale
A1-nilpotent. Choose sheaves (Xn)n, (Kn)n and sheaves of spectra (En)n as in
Definition 3.10. All the sheaves Xn are nilpotent: As X0 = ∗ is nilpotent, this
follows inductively, using the fiber sequence Xn+1 → Xn → Kn and [Mat24b,
Lemma A.12], and the fact that Kn as a connected infinite loop sheaf is also
nilpotent, cf. [Mat24b, Lemma A.11].

Note that LX ∼= limn LXn: for L = id this is by definition, for L = Lp we
use Proposition 2.13, whereas for L = LQ we use [Mat24a, Proposition 6.9] (for
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the latter two cases we need that Shvhét(SmS) admits a locally finite dimensional
cover, which was shown in Proposition 2.25). As A1-invariant sheaves are stable
under limits, it is sufficient to inductively show that LXn is A1-invariant. For
n = 0 this is clear as LX0 = L∗ ∼= ∗. For n ≥ 0 consider the fiber sequence
Xn+1 → Xn → Kn. Applying L we get

LXn+1
∼= τ≥1fib(LXn → LKn),

this is clear if L = id, and follows from Proposition 2.8 in the case of L = Lp,
and from [Mat24a, Lemma 3.13] in the case of L = LQ. As LXn is A1-invariant
by the induction hypothesis, and LKn is A1-invariant by Lemma 3.12, we get
that also LXn+1 is A1-invariant (using again Proposition 3.7).

4 Rational unstable étale motives
In this section we prove that over a perfect field of finite cohomological dimension
any nilpotent and 2-effective motivic space satisfies étale hyperdescent.

Proposition 4.1. Let k be a perfect field, with cd(k) < ∞. Let E ∈ SH(k)

be rational. Then the Nisnevich sheaf of spectra ω∞E ∈ SHS1

(k) satisfies étale
hyperdescent.

Proof. First note that there is an equivalence SH(S)Q ∼= DA1(S,Q) between
the ∞-category of rational motivic spectra and Morel’s A1-derived category
with rational coefficients, cf. [CD19, §5.3.35]; we will use this in the following
without mention. Note that there is a decomposition E ∼= E+ ⊕ E− by [CD19,
§16.2.1]. It follows from [CD19, Corollary 16.2.14] that E− ∼= 0 (as cd(k) <∞),
and thus from [CD19, Theorem 16.2.18] that ω∞E ∼= ω∞E+ satisfies étale
hyperdescent (note that in the reference they use the word descent for the word
hyperdescent).

Theorem 4.2. Let k be a perfect field, with cd(k) < ∞. Let X ∈ Spc(k)∗ be
nilpotent, 2-effective and rational. Then X satisfies étale hyperdescent.

Proof. We use the version of the Postnikov-tower from Proposition 2.14, i.e. we
have a tower of pointed motivic spaces Xn ∈ Spc(k)∗ under X with X0 = ∗,
and 2-effective motivic spectra En ∈ SH(k), together with fiber sequences
Xn+1 → Xn → Ω∞

P1,∗En, and an equivalence X ∼= limnXn. By Lemma 2.16 we
may further assume that all the Xn and En are rational. Thus, as étale hyper-
sheaves are stable under limits, by induction it suffices to show that Ω∞

P1,∗En
satisfies étale hyperdescent for all n. This follows, as already ω∞En satisfies
étale hyperdescent, cf. Proposition 4.1.

5 Unstable étale motives at the characteristic
In this section, we prove some vanishing results for A1-invariant sheaves at the
characteristic.
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Proposition 5.1. Let p be a prime and S be an Fp-scheme of finite Krull
dimension which is moreover étale bounded. If X ∈ Shvhét(SmS) is p-completely
étale A1-nilpotent, then LpX ∼= ∗.

Proof. By definition of étale A1-nilpotent there is a sequence of nilpotent sheaves
Xn under X, with X ∼= limnXn, and fiber sequences Xn+1 → Xn → Kn.
Moreover, Kn

∼= Ω∞
∗ En, where En is a 1-connective étale sheaf of spectra, such

that LpEn is A1-invariant. It follows from [BH21, Theorem A.1] that LpEn ∼= 0,
and hence LpKn

∼= τ≥1Ω
∞
∗ LpEn

∼= ∗, where we used [Mat24b, Lemma 3.17].
Using Proposition 2.8 we see inductively

LpXn+1
∼= τ≥1fib(LpXn → LpKn) ∼= τ≥1fib(∗ → ∗) ∼= ∗.

Hence, using Proposition 2.13, we also get LpX ∼= limn τ≤nLpXn
∼= ∗, which

proves the proposition.

Proposition 5.2. Let p be a prime and k be a perfect field of characteristic p.
Let M ∈ ModHFp(Shv

h
ét(SmS ,Sp))≥2 be a 2-connective sheaf of HFp-modules.

Suppose that Ω∞
∗ M is A1-invariant. Then Ω∞

∗ M
∼= ∗ and M ∼= 0.

Proof. Since M is connective, it is clear that Ω∞
∗ M

∼= ∗ implies M ∼= 0. Hence,
it suffices to prove the first claim. Consider the Artin–Schreier sequence

HFp → HGa
1−F−−−→ HGa

as a fiber sequence in Shvhét(SmS ,Sp). Here, we view Ga := A1 as an étale sheaf
of Fp-vectorspaces. Tensoring with M over HFp gives a fiber sequence

M →M ⊗HFp HGa →M ⊗HFp HGa,

and by rotating twice and applying Ω∞
∗ also a fiber sequence

Ω∞
∗ (ΩM ⊗HFp

HGa) → Ω∞
∗ (ΩM ⊗HFp

HGa) → Ω∞
∗ M.

We claim that applying LA1,nis preserves this fiber sequence, i.e. that we get a
fiber sequence

LA1,nisΩ
∞
∗ (ΩM ⊗HFp

HGa) → LA1,nisΩ
∞
∗ (ΩM ⊗HFp

HGa) → LA1,nisΩ
∞
∗ M.

This follows from [AWW17, Theorem 2.3.3] if we can show that πnis
0 (Ω∞

∗ M) ∼= ∗,
and that πnis

1 (Ω∞
∗ M) is strongly A1-invariant. The second claim follows from

a theorem of Morel [Bac24, Corollary 1.8] since Ω∞
∗ M is assumed to be A1-

invariant and is even an étale sheaf. For the first claim, note that πnis
0 (Ω∞

∗ M) ∼=
πnis
0 (M) ∼= Lnis(U 7→ π0(M(U))). By Zariski descent it therefore suffices to show

that π0(M(U)) ∼= 0 for all affine U ∈ Smk. There is a spectral sequence Ep,q2 =
Hp

ét(U, πq(M)) =⇒ πq−p(M(U)). Since M is 2-connective by assumption, it
therefore suffices to show that Hp

ét(U, πq(M)) = 0 for all p ≥ 2. This is an
immediate application of [GAV71, Théorème X.5.1] since πq(M) is a sheaf of
Fp-vectorspaces by assumption and U was assumed to be affine.

Now, since Ω∞
∗ M is assumed to be A1-invariant, and is moreover even an

étale sheaf, we see that Ω∞
∗ M

∼= LA1,nisΩ
∞
∗ M . We claim that it suffices to

show that LA1,nisΩ
∞
∗ (ΩM ⊗HFp

HGa) ∼= ∗. Indeed, we have seen above that
Ω∞

∗ M is connected as a Nisnevich sheaf, and hence the long exact sequence
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in Nisnevich homotopy sheaves shows that Ω∞
∗ M

∼= ∗. Since Ga admits the
structure of a sheaf of Fp-algebras, we see that HGa is an E∞-algebra in
ModHFp

(Shvhét(SmS ,Sp)). In particular, ΩM⊗HFp
HGa is canonically an HGa-

module. Since Ω∞
∗ and LA1,nis are both lax symmetric monoidal, we see that

LA1,nisΩ
∞
∗ (ΩM ⊗HFp HGa) acquires the structure of a module over the com-

mutative monoid LA1,nisΩ
∞
∗ (HGa) ∼= LA1,nisGa ∼= ∗ (using that the underlying

sheaf of Ga is just A1). Hence, LA1,nisΩ
∞
∗ (ΩM ⊗HFp

HGa) ∼= ∗.

Corollary 5.3. Let p be a prime and k be a perfect field of characteristic p.
Let M ∈ ModHZ(Shv

h
ét(SmS ,Sp))≥3 be a 3-connective sheaf of HZ-modules.

Suppose that LpΩ∞
∗ M is A1-invariant. Then LpΩ

∞
∗ M

∼= ∗ and LpM ∼= 0.

Proof. Note that M//p is an HFp-module (since we assume M to be an HZ-
module). There is a fiber sequence ΩM//p → M → M , which is preserved by
Ω∞

∗ . Applying Proposition 2.8 we thus get an equivalence

LpΩ
∞
∗ ΩM//p ∼= τ≥1fib(LpΩ

∞
∗ M → LpΩ

∞
∗ M).

Since M//p is an HFp-module, we see that Ω∞
∗ ΩM//p is already p-complete.

Hence,
Ω∞

∗ ΩM//p ∼= τ≥1fib(LpΩ
∞
∗ M → LpΩ

∞
∗ M).

Since LpΩ∞
∗ M is assumed to be A1-invariant, and A1-invariant sheaves are sta-

ble under limits and connected covers (see Proposition 3.7 for the latter), we
conclude that Ω∞

∗ ΩM//p is A1-invariant. Therefore, it follows from Proposi-
tion 5.2 that M//p ∼= 0, and hence LpM ∼= 0. In particular, also LpΩ

∞
∗ M

∼=
τ≥1Ω

∞
∗ LpM

∼= ∗, where we used [Mat24b, Corollary 3.18].

Corollary 5.4. Let p be a prime and k be a perfect field of characteristic p.
Suppose that A ∈ Shvét(Smk,Ab) is a sheaf of abelian groups and i ≥ 3 such that
LpK(A, i) is A1-invariant. Then LpK(A,n) ∼= ∗ for all n ≥ 1 and LpHA ∼= 0.

Proof. Note that ΣkHA is in the (shift of the) heart, and hence admits an
HZ-module structure. Moreover, K(A, i) ∼= Ω∞

∗ ΣkHA. Hence, we see from
Corollary 5.3 that LpHA ∼= 0. Now, for any n ≥ 1 we have

LpK(A,n) ∼= τ≥1Ω
∞
∗ ΣnLpHA ∼= ∗,

using [Mat24b, Corollary 3.18].

Remark 5.5. Note that the Proposition 5.2 does not immediately follow from
[BH21, Theorem A.1], as it is not clear that the A1-invariance of Ω∞

∗ M implies
the A1-invariance of M , not even in the case that M is 2-connective (a posteriori
it does as M ∼= 0 in this case). A similar remark applies to Corollaries 5.3
and 5.4.

6 Proof of the rigidity theorem
In this section we prove our main result, the unstable rigidity theorem. Let
S be a qcqs scheme with finite Krull-dimension, such that S is étale bounded.
Moreover, let p be a prime invertible on S.
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Lemma 6.1. The functor ι! : Shvhét(Sét)∗ → Shvhét(SmS)∗ from Definition 2.27
preserves nilpotent objects.

Proof. The statement is true for any geometric morphism, since they commute
with taking homotopy objects [Lur09, Remark 6.5.1.4].

Lemma 6.2. The adjunctions ι! ⊣ ι∗ ⊣ ι∗ induce adjunctions

ιp! : Shv
h
ét(Sét)∗,

∧
p ⇄ Shvhét(SmS)∗,

∧
p : ι∗p

and
ι∗p : Shv

h
ét(SmS)∗,

∧
p ⇄ Shvhét(Sét)∗,

∧
p : ιp∗.

Here, ι∗p and ιp∗ are just given by restriction of ι∗ and ι∗, respectively.

Proof. Note that ι∗ restricts to a functor ι∗p : Shv
h
ét(SmS)∗,

∧
p → Shvhét(Sét)∗,

∧
p ,

since it preserves p-complete objects as a right adjoint (this follows formally from
[Mat24b, Lemma 3.11]). Similarly, ι∗ restricts to a functor ιp∗ : Shvhét(Sét)∗,

∧
p →

Shvhét(SmS)∗,
∧
p . Write ιp! for the composition Lp ◦ ι!|Shvh

ét(Sét)∗,∧p
. It is formal

that this gives adjunctions ιp! ⊣ ι∗p ⊣ ι
p
∗.

Lemma 6.3. The functors ιp! and ιp∗ are fully faithful.

Proof. It suffices to show that the double right adjoint ιp∗ is fully faithful (cf.
(the dual of) [NPR24, Corollary 2.7]). This is clear since ιp∗ is just the restriction
of the fully faithful functor ι∗, cf. Lemma 2.28.

Proposition 6.4. Let X ∈ Shvhét(Sét)∗ be nilpotent. Then ι!X is p-completely
étale A1-nilpotent (and in particular Lpι!X is A1-invariant).

Proof. Since X is nilpotent, we can choose a principal refinement (Xn,Kn)n
of the Postnikov-tower of X with Kn

∼= Ω∞
∗ En for some 2-connective sheaf

of spectra En [Mat24b, Lemma A.15]. Then (ι!Xn, ι!Kn)n is a refinement of
the Postnikov tower of ι!X. Indeed, it is clear that this gives a refinement of
the Postnikov tower of limn ι!Xn. Moreover, ι! commutes with this limit by
Proposition 2.1, as Shvhét(Sét) is locally of homotopy dimension ≤ N for some
N , cf. Lemma 2.23, and Shvhét(SmS) has a locally finite dimensional cover, cf.
Proposition 2.25. Note that ι!Kn

∼= Ω∞
∗ ι!En. It therefore suffices to show that

Lpι!En is A1-invariant, which follows from the proof of [Bac21a, Corollary 6.2],
since Lpι!En ∼= Lpι!LpEn, as ι∗ preserve p-equivalences.

That Lpι!X is A1-invariant now follows from Lemma 3.13.

Definition 6.5. Let X ∈ Shvhét(SmS)∗. We say that X is p-completely small if
the counit ι!ι∗X → X is a p-equivalence, i.e. if and only if Lpι!ι∗X → LpX is
an equivalence. In particular, in this case LpX is in the essential image of ιp! .

Theorem 6.6 (Essential Image). Let W ∈ Shvhét(SmS)∗ be p-completely étale
A1-nilpotent. Then W is p-completely small. In particular, LpW is in the
essential image of ιp! , restricted to the subcategory of p-complete nilpotent objects.

Proof. The “in particular” part follows as both ι! and ι∗ preserve p-equivalences
(since they are left adjoints), and hence Lpι!ι∗ ∼= ιp! ι

∗
pLp. By assumption there

is an N-indexed system (Wn)n under W with limnWn
∼= W , W0

∼= ∗ and fiber
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sequences Wn+1 → Wn → Kn for some sheaves Kn such that Kn
∼= Ω∞

∗ En,
where En ∈ Sp(Shvhét(SmS))≥1 is a 1-connective sheaf of spectra, such that
LpEn is A1-invariant. We proceed in several steps:

Step 1: We prove that LpKn
∼= Lpι!ι

∗Kn. Since En is 1-connective, it
follows from [Mat24b, Lemma 3.17] that LpKn

∼= τ≥1Ω
∞
∗ LpEn. Moreover, it

follows from [Bac21a, Theorem 6.6] that LpEn ∼= Lpι!ι
∗En (this is the stable

rigidity theorem, which needs our assumptions on S. In the reference it is shown
that ι! induces an equivalence on p-complete objects, and hence the above claim
follows since both ι! and its right adjoint ι∗ preserve p-equivalences). Therefore,
we get

LpKn
∼= τ≥1Ω

∞
∗ LpEn

∼= τ≥1Ω
∞
∗ Lpι!ι

∗En
∼= LpΩ

∞
∗ ι!ι

∗En
∼= Lpι!ι

∗Ω∞
∗ En

∼= Lpι!ι
∗Kn,

where we used again [Mat24b, Lemma 3.17] in the third equivalence (as also
ι!ι

∗En is 1-connective as both functors are t-exact, cf. [Lur18, Remark 1.3.2.8]),
and e.g. [Mat24b, Lemmas A.1 and A.3] in the fourth equivalence.

Step 2: We prove that LpWn
∼= Lpι!ι

∗Wn. We prove this by induction on n,
using that for W0 = ∗ the statement is true since all involved functors preserve
the terminal object. Suppose now that LpWn

∼= Lpι!ι
∗Wn. We have

Lpι!ι
∗Wn+1

∼= Lpι!ι
∗fib(Wn → Kn)

∼= Lpfib(ι!ι
∗Wn → ι!ι

∗Kn)
∼= τ≥1fib(Lpι!ι

∗Wn → Lpι!ι
∗Kn),

using in the second equivalence that both ι! and ι∗ preserve finite limits, as both
are (the left adjoints of) geometric morphisms. The last equivalence holds by
Proposition 2.8, since fib(ι!ι

∗Wn → ι!ι
∗Kn) ∼= ι!ι

∗Wn+1 is connected. Analo-
gously, one shows LpWn+1

∼= τ≥1fib(LpWn → LpKn). Thus, we conclude using
the induction hypothesis and the first step.

Step 3: We prove that LpW ∼= Lpι!ι
∗W . We calculate

Lpι!ι
∗W ∼= Lpι!ι

∗limnWn

∼= Lpι!limn ι
∗Wn

∼= Lplimn ι!ι
∗Wn

∼= limn Lpι!ι
∗Wn

∼= limn LpWn

∼= LpW .

The first equivalence holds by definition of W . The functor ι∗ commutes with
the limit since it is a right adjoint, whereas ι! preserves the limit by Proposi-
tion 2.1, using that (Wn)n and hence also (ι∗Wn)n are highly connected towers.
The fourth and last equivalence are applications of Proposition 2.13, using that
Shvhét(SmS) admits a locally finite-dimensional cover by Proposition 2.25. The
fifth equivalence is given by the second step.
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Combining the above results we get the unstable rigidity theorem.

Corollary 6.7 (Étale rigidity for motivic spaces). The functor

ιp! : Shv
h
ét(Sét)∗,

∧
p,nil → Shvhét(SmS)∗,

∧
p

is fully faithful, with essential image those p-complete A1-invariant sheaves that
are the p-completion of a p-completely étale A1-nilpotent sheaf.

Proof. We have seen in Lemma 6.3 that the functor ιp! is fully faithful. Note that
by Proposition 6.4 it factors through the proclaimed essential image. Hence, the
corollary follows from Theorem 6.6.

7 A retract of projective space
In this section let k be an algebraically closed field and p ̸= char(k) a prime
number. We prove that in étale A1-homotopy theory over k there is a retract
diagram LpS

2 → LpP1 → LpS
2. Choose a compatible system of primitive roots

of unity (ζpn)n, i.e. a sequence with ζpn ∈ k× a primitive pn-th root of unity
such that moreover (ζpn+1)p = ζpn for all n. In particular, (ζpn)n defines an
element of Zp(1)(k) = limn k

×[pn].
Recall that in [Bac21a, Section 3] Bachmann constructed (the desuspension

of) a map σ : LpLét,A1P1 → LpS
2, and its stabilization σst : LpLét,A1Σ∞P1 →

LpS2 ∈ SHS1

ét (k) (since k is algebraically closed, we can choose a trivialization
of the twisting space, cf. [Bac21a, Theorem 3.6 (3)]).

Our first goal is the construction of the other map of the retract. For this,
we will work in the Nisnevich topology. We write Lnis,A1 : P(SmS) → Spc(k)
for the motivic localization functor, and

Hnis : Shvnis(Smk,Ab) ∼= Sp(Shvnis(Smk))
♡ → Sp(Shvnis(Smk))

for the embedding of the heart. Similarly, for every n ≥ 1 we write

Knis(−, n) : Shvnis(Smk,Ab) → Shvnis(Smk)

for the Nisnevich-local Eilenberg-MacLane sheaves. We begin by constructing
an element τ0 ∈ π2(LpKnis(Gm, 1))(k):

Construction 7.1. Write A[pn] := ker(A
pn−→ A) for the pn-torsion of a sheaf

of abelian groups A. Using [Mat24b, Corollary 3.18 and Lemma 2.24], we have

π2(LpKnis(Gm, 1)) ∼= π2(LpΣ
1HnisGm) ∼= limnGm[pn] = limn µpn = Zp(1),

and therefore

π2(LpKnis(Gm, 1))(k) ∼= Zp(1)(k) = limn µpn(k).

Under this equivalence, we let τ0 ∈ π2(LpKnis(Gm, 1))(k) be the element given
by the system of roots of unity (ζpn)n.

Lemma 7.2. There is a map ψ : π2LpLnis,A1P1 → π2LpKnis(Gm, 1) such that
τ0 is in the image of this map.
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Proof. We will show that there exists a Nisnevich sheaf F ∈ Shvnis(Smk)∗ that
fits into an exact sequence of Nisnevich sheaves of groups

π2LpLnis,A1P1 ψ−→ π2LpKnis(Gm, 1)
ϕ−→ π1LpF

such that ϕ(τ0) = 0. Recall from the discussion before [Mor12, Theorem 6.29]
that there is a short exact sequence of Nisnevich sheaves of groups

0 → KMW
2 → π1(Lnis,A1P1) → Gm → 0.

Write F := fib
(
Lnis,A1P1 → Knis(Gm, 1)

)
for the fiber of the canonical map

Lnis,A1P1 → Knis(π1(Lnis,A1P1), 1) → Knis(Gm, 1) induced by the right map in
the above short exact sequence. Note that F is connected as π1(Lnis,A1P1) →
Gm is surjective and Lnis,A1P1 ∼= Lnis,A1ΣGm is connected. As π2Knis(Gm, 1) =
0, we see that π1(F ) ∼= KMW

2 .
Since Lnis,A1P1 and Knis(Gm, 1) are nilpotent by [AFH22, Remark 3.4.9] and

[Mat24b, Lemma A.11], it follows from Proposition 2.8 that after p-completing,
we still have

LpF ∼= τ≥1fib
(
LpLnis,A1P1 → LpKnis(Gm, 1)

)
.

Thus, the long exact sequence in homotopy yields the wanted exact sequence.
It is left to show that ϕ(τ0) = 0. As ϕ(τ0) ∈ (π1LpF )(k), it clearly suffices

to show that this group is 0. We have

(π1LpF )(k) ∼= π1Lp(F (k)) ∼= L0π1(F (k)) ∼= L0((π1F )(k))

by Lemma 2.36 and [MP11, Theorem 11.1.2], here L0 denotes the zeroth derived
p-completion functor on the category of groups as defined e.g. in [MP11, Chapter
10.4] (where it is called Ep). Now note that (π1F )(k) = KMW

2 (k) is uniquely
p-divisible as k is algebraically closed, for this combine e.g. [Dég23, Example
2.3.11] with [BT06, Chapter I, Corollary 1.3]. This immediately implies that
L0(π1F )(k) ∼= 0, cf. [MP11, Proposition 10.4.7 (iii)], which is what we wanted
to show.

Construction 7.3. Hence, we can choose an element τ ∈ (π2LpLnis,A1P1)(k)
such that ψ(τ) = τ0. Therefore, τ defines a map S2 → LpLnis,A1P1, and thus
also a map

τ : LpS
2 → LpLnis,A1P1,

which we will also denote by τ .

Bachmann constructed in [Bac21a, Lemma 6.4] (the desuspension of) a map
τst : LpΣ

2S → LpLnis,A1Σ∞P1 in SHS1

(k). His construction depends on a vari-
ety of choices, but he then shows that independently of these choices, τst is an
equivalence. We will show that our map τ stabilizes to one of these maps τst.
For this, let us make the following definition.

Definition 7.4. Let f : LpΣ2S → LpLnis,A1Σ∞P1 ∈ SHS1

(k) be a map, or
equivalently by adjunction (and up to homotopy), f ∈ π2(LpLnis,A1Σ∞P1)(k)
be a homotopy class. We say that f is of stable τ -type if the image of f under
the chain of maps

π2(LpLnis,A1Σ∞P1)(k) → π2((Lnis,A1Σ∞P1)//p)(k) → π1(Lnis,A1Σ∞P1)(k) ∼= KMW
1 (k)

(2)
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is the element [ζp] corresponding to our chosen primitive p-th root of unity. Here,
the first map is the projection out of the limit, the second map is the boundary
map of the cofiber sequence Lnis,A1Σ∞P1 p−→ Lnis,A1Σ∞P1 → (Lnis,A1Σ∞P1)//p,
and the last isomorphism is [Mor12, Corollary 25].

We chose this definition because of the following result.

Proposition 7.5. We have that LpΣ∞τ : LpS2 → LpLnis,A1Σ∞P1 ∈ SHS1

(k)
is of stable τ -type.

Proof. By adjunction, LpΣ∞τ corresponds to a τ̃ ∈ π2(LpLnis,A1Σ∞P1)(k). We
have to show that the image of τ̃ in KMW

1 (k) under the map (2) is [ζp]. For
this, consider the following commutative diagram:

π2(LpLnis,A1P1)(k) π2(LpKnis(Gm, 1))(k)

π2(LpLnis,A1Σ∞P1)(k) π2(LpΣHnisGm)(k) Z(1)(k)

π2(Lnis,A1Σ∞P1//p)(k) π2(ΣHnisGm//p)(k) µp(k)

π1(Lnis,A1Σ∞P1)(k) π1(ΣHnisGm)(k)

KMW
1 (k) Gm(k).

∼=
∼=

∼=

∼=

∼= ∼=
∼=

Here, the black horizontal maps on the left are induced by the map

Lnis,A1Σ∞P1 → Σ∞Knis(Gm, 1) → τ≤1Σ
∞Knis(Gm, 1) ∼= ΣHnisGm,

where the last equivalence follows from the Freudenthal suspension theorem
for ∞-topoi, cf. [DH21, Corollary 4.16]. Note that the bottom red arrow is
an equivalence as k is algebraically closed (see e.g. the short exact sequence
in [Dég23, Corollary 2.3.10] and the fact that the fundamental ideal I(k) =
ker(GW(k) → Z) is zero if k is algebraically closed, as then GW(k) ∼= Z). By
definition of τ the blue composition maps τ to ζp, which is exactly what we
wanted to show for the red composition.

Now, in view of the construction of Bachmann’s τst [Bac21a, Lemma 6.4]
and the proof of [Bac21a, Theorem 6.5], we have the following result.

Theorem 7.6 (Bachmann). Let f : LpΣ2S → LpLnis,A1Σ∞P1 ∈ SHS1

(k) be a
map of stable τ -type. Then LpLét,A1(σstf) is an automorphism.

Proposition 7.7. The (p-completed) suspension spectrum functor

LpΣ
∞ : Shvhét(SmS)

∧
p → Sp(Shvhét(SmS))

∧
p

induces an isomorphism of rings

π0Map(LpS
2, LpS

2) → π0Map(LpΣ
2S, LpΣ2S).
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Proof. We first show that both sides are equivalent to Zp (as groups). Note that
by adjunction, we have π0Map(LpS

2, LpS
2) ∼= π0Map(S2, LpS

2) ∼= π2(LpS
2)(k).

Now, from Lemma 2.37 we see that evaluation at k is a limit-preserving geo-
metric morphism, and in particular commutes with homotopy objects and p-
completion. Hence, the above is equivalent to π2Lp(S2(k)) = π2(LpS

2
top)

∼= Zp.
A similar calculation shows that the right-hand side is also Zp.
Since both abelian groups are endowed with ring structures (via composi-

tion), and since the group Zp has a unique ring structure (after a choice of unit
1 ∈ Zp which is given by the identity morphism), it follows that both groups are
equivalent to Zp as rings. Since the map is induced by a functor, it is clear that
it is a map of rings. But now the only ring map Zp → Zp is the identity.

From now on we will also write τ : LpS2 → LpLét,A1P1 for Lét,A1τ .

Theorem 7.8. The maps τ : LpS2 → LpLét,A1P1 and σ : LpLét,A1P1 → LpS
2

form a retract (up to precomposing τ with an automorphism of LpS2), i.e. there
is a homotopy στ ∼= idLpS2 .

Proof. By Proposition 7.7, the suspension spectrum functor induces an isomor-
phism of rings

π0Map(LpS
2, LpS

2) → π0Map(LpΣ
2S, LpΣ2S).

As by definition LpΣ
∞σ ∼= σst, and LpΣ

∞τ is of stable τ -type by Proposi-
tion 7.5, we see that LpΣ∞(στ) is an automorphism, cf. Theorem 7.6. Hence,
in view of the ring isomorphism above, we see that also στ is an automorphism.
Therefore, up to replacing τ by τ(στ)−1, we see that τ and σ form a retract.

Actually, the retract constructed above is an equivalence after two suspen-
sions. For this, we need the following simple lemma:

Lemma 7.9. The swap endomorphism

swap: Lnis,A1P1 ∧ Lnis,A1P1 → Lnis,A1P1 ∧ Lnis,A1P1

is homotopic to the identity.

Proof. For readability, we will exclude the functor Lnis,A1 from the notation.
The symmetric monoidal suspension spectrum functor Σ∞

P1 : Spc(k)∗ → SH(k)
induces a morphism on homotopy classes of maps

Φ: [P1 ∧ P1,P1 ∧ P1] → [Σ∞
P1P1 ⊗ Σ∞

P1P1,Σ∞
P1P1 ⊗ Σ∞

P1P1]

which maps the swap morphism to the swap morphism. It therefore suffices to
show that Φ is injective, and the stable swap morphism is homotopic to the iden-
tity. Recall the computations of Morel of [(P1)∧n, (P1)∧n] ∼= KMW

0 (k) = GW(k)
for all n ≥ 2, cf. [Mor12, Corollary 24]. Here, GW(k) is the Grothendieck-Witt
ring of k. This then stabilizes to show that Φ is in fact an isomorphism. In
order to prove the second claim, we proceed as follows: under the equivalence

[Σ∞
P1P1 ⊗ Σ∞

P1P1,Σ∞
P1P1 ⊗ Σ∞

P1P1] ∼= GW(k),

the swap morphism corresponds to the element ⟨−1⟩ ∈ GW(k), for this combine
the proof of [Mor03, Lemma 6.1.1 (2)] with [Mor03, Remark 6.3.5]. As k is
algebraically closed, in particular −1 ∈ k× is a square, and we see that ⟨−1⟩ =
1 ∈ GW(k).
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Theorem 7.10. The map

LpLét,A1Σ2τ : LpLét,A1S4 ∼= LpLét,A1Σ2S2 → LpLét,A1Σ2P1

is an equivalence.

Proof. Consider the following diagram where we omit p-completions and étale-
A1-localizations:

S2 ∧ P1 P1 ∧ P1 P1 ∧ P1

S2 ∧ S2 P1 ∧ S2 S2 ∧ P1

S2 ∧ S2 S2 ∧ P1.

τ∧P1

S2∧σ P1∧σ

swap

σ∧P1

τ∧S2

swap swap

swap

S2∧τ

Here, the swap morphisms swap: S2∧S2 → S2∧S2 and swap: P1∧P1 → P1∧P1

are homotopic to the identity, for the first claim this holds since

det


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 = 1

and for the second claim see Lemma 7.9 (using that Lét,A1 and Lp are symmetric
monoidal). Note that the diagram commutes: the top left square by functoriality
of ∧, the bottom left and top right square since ∧ is symmetric monoidal, and the
bottom right triangle is trivially commutative. Since στ = id by Theorem 7.8,
it follows that the red composition on the top and right is the identity. Hence,
also the blue composition on the left and bottom is the identity, proving that
S2 ∧ σ is a two-sided inverse of S2 ∧ τ .

Remark 7.11. It is unknown to the author if already τ is an equivalence. On
the other hand, the retract only exists on S2, i.e. there is no retract LpS1 →
LpGm → LpS

1. Indeed, as S1 is connected, so is LpS1, and in fact one can show
that LpS1 ∼= K(Zp, 1). On the other hand, since Gm is 0-truncated, we get that
LpGm = Gm, cf. [Mat24b, Lemma 3.13]. In particular, LpGm is 0-truncated
and hence LpS1 cannot be a retract of it.

8 Examples of étale A1-nilpotent sheaves
In this section, we will give examples of p-completely étale A1-nilpotent sheaves.
We use those to prove our main theorem, Theorem A, in Corollary 8.8.

Lemma 8.1. Let S be a scheme and E ∈ Sp(Shvhét(SmS)). If LQE is A1-
invariant, and E//p is A1-invariant for all primes p, then also E is A1-invariant.

Proof. We first show that for every prime p, the p-completion LpE is A1-
invariant. Since LpE ∼= limnE//p

n and A1-invariant sheaves are stable under
limits, it suffices to show that E//pn is A1-invariant for all n. We assumed this
to be the case for n = 1. For n > 1, recall that there is a fiber sequence

E//pn → E//pn+1 → E//p,
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and we conclude by induction. Now consider the cartesian fracture square

E
∏
p LpE

LQE LQ
∏
p LpE,

⌟

see e.g. [Mat24a, Corollary 7.3]. By the above, all the LpE are A1-invariant.
Since A1-invariant objects are stable under limits, this holds also for the product.
Moreover, the rationalization of the A1-invariant sheaf of spectra F :=

∏
p LpE

is again A1-invariant: this holds since LQF is given by a filtered colimit of a
diagram involving only F (cf. [Mat24a, Lemma 2.6]) and A1-invariant sheaves
of spectra are closed under colimits, cf. Lemma 3.5. On the other hand, LQE
is A1-invariant by assumption. Hence, so is E as a pullback of A1-invariant
sheaves of spectra.

Lemma 8.2. Let k be an algebraically closed field, X ∈ Smk and x ∈ X a
point. Let F ∈ Shvhét(két) or F ∈ Sp(Shvhét(két)). Then (ι!F )(k) ∼= (ι!F )(Osh

X,x).

Proof. If k is algebraically closed, then Shvhét(két)
∼= An via evaluation at k by

Lemma 2.36. In particular, we see that ι! is equivalent to the constant sheaf
functor (as An is the initial ∞-topos). In particular, s∗ι! ∼= idAn for every point
s∗ : Shvhét(két) → An. Since the points of the étale topos are given by strictly
henselian local rings, cf. Proposition 2.18, the result follows.

Lemma 8.3. Let k be a perfect field with cd(k) < ∞ and write e for the
exponential characteristic of k. Let E ∈ SH(k) be a motivic spectrum such
that multiplication by e is invertible on E. Then Létω

∞E ∈ Sp(Shvhét(Smk)) is
A1-invariant.

Proof. Let k be an algebraic closure of k. Write ρ∗ : Shvhét(Smk) → Shvhét(Smk)
for the geometric morphism from Definition 2.30. By Lemma 3.9 we see that
ρ∗ detects A1-invariance, i.e. it suffices to show that ρ∗Létω

∞E is A1-invariant.
Consider the following diagram:

Sp(Shvhét(Smk)) Sp(Shvnis(Smk)) SH(k)

Sp(Shvhét(Smk)) Sp(Shvnis(Smk)) SH(k),

ρ∗

Lét

ρ∗ ρ∗

ω∞

Lét ω∞

where the functor in the middle is defined in the same way as the functor on the
left, and the functor on the right is its Gm-stabilization. The diagram commutes:
for the left square this holds as all involved functors are induced by morphisms
of sites, and they already commute on the level of sites. For the right square,
it suffices to note that ρ∗ : Sp(Shvnis(Smk)) → Sp(Shvnis(Smk)) commutes with
Gm-loops, i.e. ΩGm

ρ∗X ∼= ρ∗ΩGm
X. For this, see the discussion before [Hoy13,

Lemma A.7]. Therefore, ρ∗Létω
∞E ∼= Létω

∞ρ∗E. Moreover, multiplication by
e on ρ∗E is clearly an equivalence. Hence, we may assume that E ∈ SH(k), i.e.
that k is already algebraically closed.

Write F := Létω
∞E ∈ Sp(Shvhét(Smk)). By Lemma 8.1, it suffices to show

that LQF is A1-invariant and that the F//p are A1-invariant for all primes p.
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We first show that LQF is A1-invariant. Since Lét and ω∞ commute with
filtered colimits (see [BY20, Lemma 6.1] for the latter), it follows from [Mat24a,
Corollary 2.7] that LQF ∼= Létω

∞LQE. We have seen in Proposition 4.1 that
ω∞LQE satisfies étale hyperdescent, hence we see that Létω

∞LQE ∼= ω∞LQE,
which is A1-invariant.

We finish the proof by showing that F//p is A1-invariant. If p = e, then
multiplication by p is invertible on F by assumption, and hence F//p = 0 is A1-
invariant. Hence, we may assume that p ∈ k×. Note that F//p is p-complete,
and hence by [BH21, Theorem 3.1] it suffices to show that F//p is small, i.e.
that ι!ι∗(F//p) → F//p is an equivalence. Since we work in the étale topology,
it hence suffices to show that (ι!ι

∗F//p)(Osh
X,x) → (F//p)(Osh

X,x) is an equiva-
lence for every X ∈ Smk and x ∈ X, cf. Proposition 2.18. In fact, by [Mil80,
Chapter II, Remark 2.17 (b)] we may check this on closed points (we can use
the 1-categorical result since we work with hypersheaves and hence can check
equivalences on homotopy sheaves). So pick an X ∈ Smk and x ∈ X a closed
point. This implies that k(x) is a finite (hence algebraic) field extension of k.
Since k is algebraically closed, it follows that k = k(x). In particular, we see
that Osh

X,x
∼= Oh

X,x. We first show that (F//p)(Osh
X,x)

∼= (F//p)(k). Indeed, since
both Osh

X,x and k are strictly henselian, and F//p ∼= Létω
∞E//p, it suffices to

show that (ω∞E//p)(Osh
X,x)

∼= (ω∞E//p)(k). Since Osh
X,x

∼= Oh
X,x this follows

from [AD18, Theorem 1.2] as p ∈ k× and multiplication by p2 is null on E//p.
Now consider the following equivalences

(F//p)(k) ∼= (ι!ι
∗(F//p))(k) ∼= (ι!ι

∗(F//p))(Osh
X,x).

Here we used that k is living in the small étale site and Lemma 8.2. Combining
these equivalences yields (F//p)(Osh

X,x)
∼= (ι!ι

∗(F//p))(Osh
X,x) which is what we

wanted to show.

Proposition 8.4. Let k be a perfect field with cd(k) < ∞ and write e for the
exponential characteristic of k. Let X ∈ Spc(k)∗ be a nilpotent and 2-effective
motivic space that is Z[ 1e ]-local. Then LétX ∈ Shvhét(Smk)∗ is étale A1-nilpotent.
In particular, LétX is still A1-invariant.

Proof. Choose motivic spaces Xn and P1-infinite loop spaces Kn = Ω∞
P1,∗En

with En ∈ SH(k) a 2-connective 2-effective motivic spectrum as in Proposi-
tion 2.14. We may moreover assume that multiplication by e is invertible on En
by Lemma 2.16.

As Lét is a geometric morphism, it preserves finite limits, and hence we get
fiber sequences LétXn+1 → LétXn → LétKn, where LétKn

∼= LétΩ
∞
P1,∗En

∼=
Ω∞

∗ Létω
∞En is a connected infinite loop sheaf. We moreover have LétX ∼=

limn LétXn: for this, note that as the connectivity of the Ki tends to ∞ as
i → ∞, the tower (Xn)n is highly connected. Hence, the claim follows from
Proposition 2.3, using that the étale hypersheafification functor Lét upgrades
to a morphism of ∞-topoi with locally finite dimensional cover, cf. Proposi-
tion 2.26. Hence, we are reduced to show that Létω

∞En is A1-invariant. This
was shown in Lemma 8.3.

It follows now from Lemma 3.13 that LétX is in particular A1-invariant.

Lemma 8.5 (Stability under retracts). Let X,Y ∈ Shvhét(Smk)∗. Suppose that
there exists a retract LpX

i−→ LpY
r−→. If Y is p-completely small, then so is X.
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Proof. By assumption LpY ∼= Lpι!ι
∗Y , and we have to show that LpX ∼=

Lpι!ι
∗X. For this, consider the commutative diagram

Lpι!ι
∗LpX Lpι!ι

∗X LpX

Lpι!ι
∗LpY Lpι!ι

∗Y LpY .

i

∼=

i

∼= ∼=

Since ι! and ι∗ preserve p-equivalences (as they are left adjoints), the left hor-
izontal maps are equivalences. By assumption the vertical maps admit retrac-
tions, and the lower right horizontal map is an equivalence. As equivalences are
stable under retracts, we conclude that the upper right horizontal map is an
equivalence. This is precisely what we wanted to prove.

We now use the last few lemmas and the retract from Theorem 7.8 to show
that in fact over a perfect field k any A1-invariant 4-connective étale sheaf is
p-completely small. We start with the case of an algebraically closed field and
then deduce the general case.

Corollary 8.6. Let k be an algebraically closed field, p ̸= char(k) a prime and
X ∈ Shvhét(Smk)∗. If X is 4-connective and A1-invariant then X is p-completely
small, i.e. LpX ∼= Lpι!ι

∗X.

Proof. By Proposition 2.38 there is an equivalence X ∼= colimiWi, with Wi of
the form Wi

∼= Σ4Vi for some Vi ∈ Shvhét(Smk)∗.
Suppose for the moment that we know that Lét,A1Wi is p-completely small.

We show that the same is true for X. For this, note that we have maps

X = colim
i

Wi → colim
i

Lét,A1Wi → Lét,A1colim
i

Lét,A1Wi.

Since A1-equivalences are stable under colimits, and since X is A1-invariant, we
see that

Lét,A1colim
i

Lét,A1Wi
∼= Lét,A1colim

i
Wi

∼= Lét,A1X ∼= X.

In particular, by construction we therefore have a retract diagram

X → colim
i

Lét,A1Wi → X.

By assumption the map ι!ι∗Lét,A1Wi → Lét,A1Wi is a p-equivalence for all i, and
since both ι! and ι∗ commute with colimits, and p-equivalences are stable under
colimits, we see that the canonical map ι!ι

∗colimi Lét,A1Wi → colimi Lét,A1Wi

is a p-equivalence. Hence, also the retract ι!ι∗X → X is a p-equivalence, i.e. X
is p-completely small.

It remains to show that Lét,A1(S4 ∧ Z) is p-completely small for every Z ∈
Shvhét(Smk)∗. By applying Theorem 7.8 twice (here we use our assumption that
k is algebraically closed), there is a retract

LpLét,A1(S4 ∧ Z) → LpLét,A1(P1 ∧ P1 ∧ Z) ∼= LpLét,A1(S2 ∧G∧2
m ∧ Z).

Write Y := LZ[ 1e ]
Lnis,A1(S2 ∧G∧2

m ∧ ιnisZ) ∈ Spc(k)∗ for the Nisnevich local ver-
sion (where we also invert the exponential characteristic e of k). This is clearly

40



2-connective and 2-effective. Hence, we see that LétY is étale A1-nilpotent,
cf. Proposition 8.4, and in particular A1-invariant by Lemma 3.13, whence
LZ[ 1e ]

Lét,A1(S2 ∧ G∧2
m ∧ Z) ∼= LétY . Thus, LpLét,A1(S4 ∧ Z) is a retract of

LpLétY (for this note that LpLZ[ 1e ]
∼= Lp as functors since p ̸= e by assump-

tion, and p-completion in particular inverts Z[ 1e ]-local equivalences). Since by
Lemma 3.11 LétY is also p-completely étale A1-nilpotent, it is in particular
p-completely small by Theorem 6.6. Hence, we see that the same is true for
Lét,A1(S4 ∧ Z) using Lemma 8.5.

We now generalize the above corollary to arbitrary perfect fields of finite
étale cohomological dimension.

Proposition 8.7. Let k be a perfect field with cd(k) < ∞, p ̸= char(k) a
prime and X ∈ Shvhét(Smk)∗. If X is 4-connective and A1-invariant, then X is
p-completely small, i.e. Lpι!ι∗X ∼= LpX.

Proof. Let k be an algebraic closure of k. Consider the geometric morphisms
ρ∗ : Shvhét(Smk) ⇄ Shvhét(Smk) :ρ∗ and ρ∗ : Shvhét(két) ⇄ Shvhét(két) :ρ∗ from
Definition 2.30, both left adjoints are conservative by Lemma 2.35. Moreover,
ι∗ρ∗ ∼= ρ∗ι∗, as well as ι!ρ∗ ∼= ρ∗ι! by Lemma 2.34. As ρ∗ is conservative, it suf-
fices to show by [Mat24b, Lemma 3.11] that ρ∗ι!ι∗X → ρ∗X is a p-equivalence.
By the above, this is equivalent to the morphism

ι!ι
∗ρ∗X → ρ∗X.

As ρ∗X is 4-connective (since ρ∗ is a geometric morphism) and A1-invariant by
Lemma 3.8, it follows from Corollary 8.6 that ι!ι∗ρ∗X → ρ∗X is a p-equivalence.

Corollary 8.8. Let k be a perfect field with cd(k) <∞ and p ̸= char(k). Then

ιp! : (Shv
h
ét(két)∗)

∧
p → (Shvhét(Smk)∗)

∧
p

induces an equivalence between the full subcategory of (Shvhét(két)∗)
∧
p consist-

ing of those sheaves that are the p-completion of a 4-connective sheaf, and the
full subcategory of (Shvhét(Smk)∗)

∧
p consisting of those sheaves that are the p-

completion of a 4-connective A1-invariant sheaf.

Proof. From Lemma 6.3 we see that ιp! is fully faithful. First, let Y ∈ Shvhét(két)∗,≥4

be 4-connective. Note that ιp! LpY ∼= Lpι!Y (since ι! preserves p-equivalences as
a left adjoint), and by Proposition 6.4 this sheaf is A1-invariant. Moreover, ι!Y
is 4-connective since ι! is a geometric morphism.

To prove the corollary, it thus suffices to show that if X ∈ Shvhét(Smk)∗,≥4 is
4-connective and A1-invariant, then LpX is in the essential image of ιp! restricted
to the full subcategory of (Shvhét(két)∗)∧p consisting of those sheaves that are the
p-completion of a 4-connective sheaf. By Proposition 8.7 we see that LpX ∼=
Lpι!ι

∗X ∼= ιp! Lpι
∗X. Since ι∗ is a geometric morphism, we see that ι∗X is

4-connective.
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9 Application: Étale strict A1-invariance
In this section, we use our rigidity result to prove a weak version of Morel’s the-
orem that strongly A1-invariant Nisnevich sheaves of abelian groups are strictly
A1-invariant. For this, we need the following list of definitions.

Definition 9.1. Let S be a scheme. Let A ∈ Shvét(SmS ,Ab) be an étale sheaf
of abelian groups. We say that A is

• n-strictly étale A1-invariant for some n ∈ N if K(A,n) ∈ Shvhét(SmS) is
A1-invariant,

• strictly étale A1-invariant if A is n-strictly étale A1-invariant for all n ∈ N,

• p-completely n-strictly étale A1-invariant for a prime p and n ∈ N if
LpK(A,n) ∈ Shvhét(SmS) is A1-invariant,

• p-completely strictly étale A1-invariant for a prime p if A is p-completely
n-strictly étale A1-invariant for all n ∈ N,

• rationally n-strictly étale A1-invariant for some n ∈ N if LQK(A,n) ∈
Shvhét(SmS) is A1-invariant,

• rationally strictly étale A1-invariant if A is rationally n-strictly étale A1-
invariant for all n ∈ N,

Lemma 9.2. Let S be a scheme. Let A ∈ Shvét(SmS ,Ab) be an étale sheaf
of abelian groups, and 1 ≤ n ≤ m. If A is m-strictly étale A1-invariant (resp.
p-completely, resp. rationally), then A is n-strictly étale A1-invariant (resp. p-
completely, resp. rationally).

Proof. We have K(A,n) ∼= Ωm−nK(A,m). As limits of A1-invariant sheaves are
A1-invariant, the statement follows. For the p-complete or rational versions of
the statement, note that LpK(A,n) ∼= τ≥1Ω

m−nLpK(A,m), and LQK(A,n) ∼=
τ≥1Ω

m−nLQK(A,m) by Proposition 2.8 and [Mat24a, Lemma 3.13]. To show
that these sheaves are A1-invariant, it suffices to note that the connected cover
functor preserves A1-invariance, cf. Proposition 3.7.

Lemma 9.3. Let S be a qcqs scheme. Let A ∈ Shvét(SmS ,Ab) be an étale sheaf
of abelian groups, and n ≥ 1. If A is n-strictly étale A1-invariant, then A is
rationally n-strictly étale A1-invariant.

If n ≥ 2, and A is n-strictly étale A1-invariant, then A is p-completely
(n− 1)-strictly étale A1-invariant for all primes p.

Proof. By assumption, K(A,n) is A1-invariant, we have to show that the same
is true for LpK(A,n− 1) and LQK(A,n).

We first prove that LQK(A,n) is A1-invariant. Note that we have equiva-
lences

LQK(A,n) ∼= Ω∞
∗ LQΣ

nHA
∼= Ω∞

∗ colimN ΣnHA
∼= colimN Ω∞

∗ ΣnHA
∼= colimNK(A,n),
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where the colimit is over the N-indexed diagram from [Mat24a, Lemma 2.6]. In
the third equivalence, we used that Ω∞

∗ commutes with filtered colimits (combine
[Lur09, Corollary 5.3.6.10] with the fact that filtered colimits commute with
finite limits in any ∞-topos, cf. [Lur09, Example 7.3.4.7]). Since A1-invariant
sheaves are stable under filtered colimits by Lemma 3.5, and K(A,n) is A1-
invariant by assumption, the result follows.

We now show that if n ≥ 2 also LpK(A,n− 1) is A1-invariant. For this,
note that we have equivalences

LpK(A,n− 1) ∼= τ≥1Ω
∞
∗ LpΣ

n−1HA

∼= τ≥1Ω
∞
∗ limk Σ

n−1HA//pk

∼= τ≥1limk Ω
∞
∗ Σn−1HA//pk

∼= τ≥1limk fib

(
K(A,n)

pk−→ K(A,n)

)
.

Here we used [Mat24b, Lemmas 3.17 and 2.5] in the first and second equivalence,
that Ω∞

∗ preserves limits as a right adjoint in the third equivalence, and that

Σn−1HA//pk ∼= fib

(
ΣnHA

pk−→ ΣnHA

)
in the last equivalence. Hence, as A1-invariant sheaves are stable under limits
and connected covers (cf. Proposition 3.7 for the latter), it suffices to show that
K(A,n) is A1-invariant, which holds by assumption.

Proposition 9.4. Let k be a perfect field with cd(k) < ∞ and p ̸= char(k) be
a prime. Let A ∈ Shvét(Smk,Ab) be an étale sheaf of abelian groups. Suppose
that A is m-strictly étale A1-invariant for some m ≥ 4. Then A is p-completely
strictly étale A1-invariant, and LpHA is an A1-invariant sheaf of spectra.

Proof. It suffices to show that LpHA is A1-invariant. Indeed, then for any n ≥ 1
we have LpK(A,n) ∼= τ≥1Ω

∞
∗ ΣnLpHA by [Mat24b, Corollary 3.18]. Hence, it is

A1-invariant as both Ω∞
∗ and τ≥1 preserve A1-invariant sheaves, cf. Lemma 3.2

and Proposition 3.7.
Now, it is enough to show that ι!ι∗HA → HA is a p-equivalence, as then

LpHA ∼= Lpι!ι
∗HA is A1-invariant by the proof of [Bac21a, Corollary 6.2]. For

this, it is clearly enough to show that Σmι!ι
∗HA → ΣmHA is a p-equivalence.

Since Ω∞
∗ commutes with both ι! and ι∗, and detects p-equivalences between 1-

connective objects by Lemma 2.5, it thus suffices to show that ι!ι∗Ω∞
∗ ΣmHA→

Ω∞
∗ ΣmHA is a p-equivalence. Since Ω∞

∗ ΣmHA ∼= K(A,m) and m ≥ 4, this
follows from Proposition 8.7.

Proposition 9.5. Let k be a perfect field. Let A ∈ Shvét(Smk,Ab) be an
étale sheaf of abelian groups. Suppose that A is rationally 1-strictly étale A1-
invariant. Then A is rationally strictly étale A1-invariant.

Proof. First note that for every n ≥ 1 we have LQK(A,n) ∼= K(AQ, n) us-
ing e.g. [Mat24a, Proposition 3.12]. It follows from [V+00, Proposition 5.27]
that Knis(AQ, n) ∼= Két(AQ, n). But if Knis(AQ, 1) is A1-invariant, then so is
Knis(AQ, n) by Morel’s theorem [Bac24, Theorem 1.7].
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Proposition 9.6. Let k be a perfect field with p = char(k) > 0, and A ∈
Shvét(Smk,Ab) be an étale sheaf of abelian groups. Suppose that A is p-completely
3-strictly étale A1-invariant. Then LpHA ∼= 0 and LpK(A,n) = ∗ for all n ≥ 1.
In particular, A is p-completely strictly étale A1-invariant, and LpHA is A1-
invariant.

Proof. This is a reformulation of Corollary 5.4.

Theorem 9.7. Let k be a perfect field with cd(k) <∞. Let A ∈ Shvét(Smk,Ab)
be an étale sheaf of abelian groups. Assume that A is 4-strictly étale A1-
invariant. Then A is strictly étale A1-invariant.

Proof. We have to show that A is m-strictly étale A1-invariant for every m ≥ 1.
From [Mat24a, Theorem 8.7] we have a pullback square

K(A,m) τ≥1

∏
p LpK(A,m)

LQK(A,m) LQτ≥1

∏
p LpK(A,m).

⌟

We have to show that the top left object is A1-invariant. As limits of A1-
invariant sheaves are A1-invariant, it suffices to show that the other objects
in the above diagram are A1-invariant. That LpK(A,m) is A1-invariant for
every p was shown in Proposition 9.4 if p ̸= char(k), and in Proposition 9.6 if
p = char(k), using that LpK(A, 3) is A1-invariant by Lemma 9.3. Moreover, that
LQK(A,m) is A1-invariant is exactly Proposition 9.5, again using Lemma 9.3.
Now also τ≥1

∏
p LpK(A,m) is A1-invariant as a connected cover of a limit of

A1-invariant sheaves, cf. Proposition 3.7. For the object in the bottom right
corner we compute

LQτ≥1

∏
p
LpK(A,m) ∼= LQτ≥1

∏
p
τ≥1Ω

∞
∗ LpΣ

mHA [Mat24b, Corollary 3.18]

∼= LQτ≥1

∏
p
Ω∞

∗ LpΣ
mHA [Mat24a, Lemma 4.2]

∼= LQτ≥1Ω
∞
∗

∏
p
LpΣ

mHA (Ω∞
∗ is a right adjoint)

∼= τ≥1Ω
∞
∗ LQ

∏
p
LpΣ

mHA [Mat24a, Lemma 3.15].

Now LpHA is A1-invariant (again by Proposition 9.4 if p ̸= char(k), and by
Proposition 9.6 if p = char(k)), and hence so is the product over all primes. Since
Ω∞

∗ and τ≥1 preserve A1-invariant sheaves by Lemma 3.2 and Proposition 3.7, it
thus suffices to show that LQ on Sp(Shvét(Smk)) preserves A1-invariant sheaves
of spectra. This holds since LQE is given by a filtered colimit of a diagram
involving only E (cf. [Mat24a, Lemma 2.6]), and A1-invariant sheaves of spectra
are closed under colimits, cf. Lemma 3.5. This proves the theorem.

A Nilpotent morphisms
Let X be an ∞-topos. In this section we discuss nilpotent morphisms in X .
We essentially copy the contents from [AFH22] about nilpotent morphisms of
motivic spaces to the setting of an ∞-topos.
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Definition A.1. Let f : E → B be a morphism in X∗. We say that f is
nilpotent if the fiber fib(f) is connected, and the action of π1(E) on πn(fib(f))
is nilpotent for every n.

Remark A.2. Let X ∈ X∗. Then X is nilpotent if and only if X → ∗ is nilpotent.

Lemma A.3. Let q : E2 → E1 and p : E1 → E0 be two morphisms in X∗, such
that fib(q), fib(p) and fib(pq) are all connected. If p and q are nilpotent, then
so is pq.

Proof. The proof of [AFH22, Proposition 3.3.2] can also be used for the ∞-topos
case.

Corollary A.4. Let f : E → B be a morphism in X∗. Suppose that E and B
are nilpotent, and that fib(f) is connected. Then also f is nilpotent.

Proof. This is an application of Lemma A.3 for q = f : E → B and p : B → ∗,
using Remark A.2 and the assumption that B, E and fib(f) are connected.

Proposition A.5 (Principal Moore–Postnikov tower). Let f : E → B be a
morphism in X∗. If f is nilpotent, then there is a system of sheaves Ei under E
and over B with E0

∼= B, such that E ∼= limiEi, and such that there are fiber
sequences

Ei+1 → Ei → K(Ai, ni)

with Ai ∈ Ab(Disc(X )) and ni ≥ 2, such that ni → ∞ as i→ ∞.

Proof. The proof of [AFH22, Corollary 4.2.4] can also be used for the ∞-topos
case.

Lemma A.6. Let f : E → B be a morphism in X∗. If f is nilpotent, and fib(f)
is k-connective for some k ≥ 2, then we may assume that in the situation of
Proposition A.5 the integers ni are ≥ k.

Proof. This is immediate from the construction.
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