MONADIC RESOLUTIONS FOR GENERALIZED SPACES

TOM BACHMANN, ANTON ENGELMANN, AND KLAUS MATTIS

ABsTrACT. We extend the work of Bousfield and Kan [BK72| on monadic resolutions of spaces to
oo-topoi, with applications to genuine G-equivariant spaces (G a finite group) and motivic spaces over
a perfect field. In particular, we give a proof of the principal fibration lemma in this context. We apply
the principal fibration lemma to prove convergence of several kinds of monadic resolutions in unstable
equivariant and motivic homotopy theory. For example, we show that, over an algebraically closed
field, the unstable Adams—Novikov spectral sequence (i.e., the monadic resolution corresponding to the
algebraic cobordism spectrum MGL) converges for all nilpotent, connected, 2-effective motivic spaces.
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1. INTRODUCTION

Unstable homotopy theory is concerned with the study of spaces and their maps. Because spaces are
nonlinear and wildly complicated, a standard strategy is to pass to linear invariants that are easier to
compute and compare, such as homology. An evident question arises, which is how much information
is lost in this process?, or how much of a space can we recover from its homology? When taking into
account enough structure on the homology, there is a natural “best possible approximation” we can
extract from the homology, known as the Bousfield-Kan completion (of a space at a homology theory).
In their remarkable work [BK72], Bousfield and Kan identified essentially two situations in which the
Bousfield-Kan completion can be described somewhat explicitly:

Theorem (Bousfield-Kan). Let X € Spc, be a pointed nilpotent space.
o Ifp is a prime and the homology theory is HF,,, then the corresponding Bousfield—Kan completion
coincides with the unstable p-completion.
o If S C Z is a multiplicative subset and the homology theory is HZ[S™'], then the Bousfield-Kan
completion coincides with the unstable S-localization.

For example, the Bousfield-Kan completion of any nilpotent space at HZ recovers the space itself.

The aim of this article is to provide a treatment of the ideas of Bousfield-Kan in modern language, and
apply them to other kinds of spaces. In particular, we will prove a Bousfield-Kan completion theorem
for categories of sheaves as well as genuine equivariant and motivic spaces.

1.1. Digression: categorical formulation. Let
L:C=2D:R

be an adjunction between presentable co-categories. Suppose we attempt to study the oco-category C
through the lens of the functor L. A first observation is that if X € C, then the object LX € D carries
additional structure, e.g., the (adjunction) map L(RL)X ~ (LR)LX — LX. In a more structured way,
we can observe that C':= LR: D — D is a comonad, and LX is a coalgebra for the comonad C (see
[Lurl7, the dual of Proposition 4.7.3.3] and the discussion thereafter). A natural question would be to
ask if X can be recovered from LX with this additional structure. It is clear that this is not possible
in general, as we now explain. An L-equivalence in C is a map inverted by L. These form a strongly
saturated class of small generation, and so, there is an associated Bousfield localization functor L: C — C
[Lur09, §5.5.4]. We can thus factor our starting adjunction as

C = LC = Coalg(D) = D,

where the first adjunction is a Bousfield localization and the third is a forgetful/cofree adjunction.
Clearly the best we can hope for is that the middle adjunction is fully faithful, perhaps on some suitable
subcategory of LC.

Remark 1.1. Note that the composite
ch Coalg~(D) —» C

(where the second functor is right adjoint to the first) is equivalent to the cobar construction (also called
the Bousfield-Kan completion)
X — CB(X) = [1}mA(RL)"+1X.
nje

By construction, this object is L-local and receives a map from X. So we can rephrase our initial question
as follows: for which X € C is the canonical map

LX — CB(X)
an equivalence?

1.2. Results. Our results fit into the categorical framework of the previous section. Typically, in addi-
tion to C = D we pick a ring A € CAlg(D) and consider the composite adjunction

C = Mod4(D).

We denote the resulting Bousfield localization by La. Our goal is to exhibit (ideally many) examples
of X € C such that L4 coincides with the Bousfield-Kan completion of X (for the above adjunction).
Moreover, we seek to identify L4 in more familiar terms. In order to do this, we prove results about
Bousfield-Kan completions in a relatively general context. For a summary, see Section 1.4. We then apply
these general results in settings of interest, and combine them with additional assumptions and techniques
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specific to the settings, to obtain useful criteria in these specific situations. Here we concentrate on
explaining the latter.

1.2.1. Sheaves. Our first application is the case where C = X is an appropriate co-topos and D = Sp(X)
is its stabilization. Recall that in this case there are notions of unstable n-completion and unstable S-
localization, see Section C, [Mat24b, Section 3| and [Mat24a, Section 3]. Generalizing the situation for
classical spaces, these are given by Bousfield localization endofunctors

L, Ln: X — X.

We can only understand these functors to a reasonable degree on nilpotent sheaves, i.e., sheaves built
out of infinite loop sheaves in a controlled manner [Mat24b, Appendix A.2].

Theorem A (Sheaves, Theorem 6.8). Let X be an oco-topos admitting a locally finite-dimensional cover
[Mat24a, Definition 5.1] (see Example 6.4 for examples), let A € CAlg(Sp(X)>o), and let X € X, be
nilpotent. Then, depending on my(A) we can identify LaX as:

o (A) ‘ Localization functor L 4
ST1ZcQ LgX
Z/n L, X

In these cases, we can moreover compute the localization of X with respect to A by the totalization
formula

LaX ~ 75, lim(Q*A @ noe)e (X)),

1.2.2. Equivariant spaces. Our second application is to genuine equivariant homotopy theory. For a finite
group G, we denote by Spc(BG) ~ Px(Fing) the co-category of genuine G-spaces, and by SH(BG) its
stabilization at representation spheres. See Section 6.3 for more details.

Theorem B (Equivariant homotopy theory, Theorems 6.20, 6.23 and 6.25). Let G be a finite group,
A € CAlg(SH(BG)>0), and X € Spc(BG). a nilpotent and (1, G)-connective (see Definition 6.9) G-
space. Then, depending on wy(A) we can identify Lo X as:

o (A) Additional assumptions | Localization functor L
S~'my(1) LsX

mo(1)/n L,X

S=Z |Gl e S i« Lgi* X

Z/p G a finite p-group L,X

In these cases, we can moreover compute the localization of X with respect to A by the totalization
formula

LaX ~ lim(Q*A $oo) (X)),

1.2.3. Motivic spaces. Our final application is to motivic homotopy theory. We fix a perfect field k and
denote by Spc(k) the oco-category of motivic spaces over k [Mor99, MV99|. Denote its stabilization at
P! by SH(k). See Section 6.4 for more details.

Theorem C (Motivic homotopy theory, Theorems 6.39, 6.41, 6.48 and 6.51). Let k be a field, A €
CAlg(SH(k)*?), and X € Spc(k). a resolvable motivic space (see Definition 6.32, e.g. any nilpotent
2-effective motivic space, cf. Remark 6.33). Let L be given as follows (depending on my(A).):

o (A) Additional assumptions | Localization functor L
S7hmo (1)« Ls
mo(1)«/n Ly
S™H (o (L)« /) cda(k) <00 Ls
mo(1)«/ (1) cda(k) < oo Ly

Then in these cases we can identify the Bousfield-Kan completion of X as

LX ~ 71 lim(Q¥ A ® yeoyet(X).

Moreover, in the two cases where L = Lg, also LX ~ LaX (for X resolvable).
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Remark 1.2. Contrary to the situations in Theorems A and B or when L = Lg, in the completion
situation, i.e., L = L,,, we are unable to identify the homological localization L 4. The issue is that, in
contrast with L,,, it is not clear that if X is L a-local, then also 7>1 X is. In other words, in contrast with
the usual completion, it is not clear that discrete objects are L -local. See also [Mat24b, Conjecture
5.24] for further discussion.

1.3. Application: unstable Adams spectral sequences. The cosimplical object CB® obtained by
the monadic resolution functor yields an unstable spectral sequence, which is a generalization of the
classical unstable Adams spectral sequence, internal to the co-topos X.

Proposition (Déglise-Pawar). Let L: X, = D :R be an adjunction and X € X,. Then for F, =
fib(Tot™ CB® X — Tot™ ' CB® X), there is an unstable spectral sequence

ET? =n, . (F.) = m,_,(Tot CB®* X).
Proof. This follows from [DP24, Examples 2.32 and 2.37] for the tower (Tot™ CB®),,. O

Since we were able to identify the object Tot CB®* X in many cases, this spectral sequence takes a
more digestible form, as recorded in the following theorem.

Theorem D. The following unstable spectral sequences exist:

(1) Let X be an oo-topos admitting a locally finite-dimensional cover, A € CAlg(Sp(X)>o) and
X € X, be nilpotent.

o (A) ‘ Spectral Sequence
STZcCQ| By =n,_(F)=n,_(LsX)
Z/n B =, (F) =1, (LX)
(2) Let G be a finite group, A € CAlg(SH(BG)>o), X € Spc(BG). be nilpotent and (1,G)-
connective.
7o (A) Additional assumptions | Spectral Sequence
S7my(1) By =m, (F)=m, . (LsX)
mo(1)/n B =, (F) =, (LnX)
sz Gl e s By =n,_(F) = m,_,(i«Lsi*X)
Z/p G a finite p-group EY=n,_(F) =7, (L,X)
(3) Let k be a field, A € CAlg(SH(k)*’) and X € Spc(k). be resolvable.
o (A) Additional assumptions | Spectral Sequence
S7ime(1). By =m, (F)=r, . (LsX)
mo(1)u/n B = (F) = 1o (LuX)
S (g (1)a/n) | edalk) < o0 B =n, (F) = m,_,(LsX)
mo(1)+/(nym) | eda(k) < oo BV =m,  (Fy) = 1, (LnX)

1.4. Ingredients of the proof. We consider a fairly general adjunction
L: X, =7D:R.

To make progress, we shall assume that X is an co-topos. The case of sheaves is immediately applicable,
as is the equivariant case because genuine G-spaces form a presheaf co-topos. With slightly more effort,
using that motivic spaces are constructed as a localization of an oco-topos, these will also fall into this
setup.

In order to understand the Bousfield-Kan completion lima(RL)*t1X, we need to look at a more
refined object. Namely, we want to consider the tower of partial totalizations as a pro-object

T5(X) = lAHSn ¢(RL)**(X) € Pro(X).

As pioneered in work of Bousfield, Farjoun and others (see e.g. [Dro73, Sul74, Gro75, EH76, AMSG6,
Bou87]), pro-spaces behave like spaces in many ways, and similarly the co-category Pro(X’) behaves in
many ways like an oco-topos. It turns out that the category behaves even more like an oco-topos when
considering a localization, namely Pro(X<s ). Here X, C X is the subcategory of truncated objects.

Ezample 1.3. One way in which Pro(X.,) behaves more like an oo-topos than Pro(X) is that in the
former co-category, geometric realizations are universal (i.e. stable under pullback), whereas in the latter
they are (in general) not.
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Remark 1.4. One advantage of working with pro-objects over totalizations is that the implicit infinite
limit in a totalization does not interact well with connectivity in the case of co-topoi of positive homotopy
dimension. In fact, in the main example we have in mind (i.e. motivic spaces), the underlying oco-topos
has infinite homotopy dimension, and so even sequential inverse limits can drop connectivity arbitrarily.

Another advantage is that one can prove that the pro-object T% is compatible with geometric realiza-
tions (and thus principal fibrations) under relatively weak assumptions.

These properties will be made precise in Section 2. As we will see below, a major point will be
the study of group actions in Pro(X<~ ). The key takeaway is the comparison of Pro(Grp(X<,)) and
Grp(Pro(X<)) which are not equivalent, see Example 2.14. Nonetheless, the canonical comparison
functor Pro(Grp(X<o)) — Grp(Pro(X<)) is fully faithful, and if G € Grp(Pro(X<«)) is pro-connected,
then, surprisingly, it lies in the essential image of this functor, see Theorem 2.15. For those groups in
the essential image (which we will call levelwise groups), one can lift the co-bundle theory of [NSS14] to
the oo-category of pro-truncated objects. Namely, we obtain the following theorem:

Theorem E (Propositions 2.11 and 2.17 and Example 2.18). Let G € Grp(Pro(X<)) be a levelwise
group. Then QBG ~ G. Moreover, there is a canonical equivalence between maps f: X — BG and
objects F with a G-action, given by sending f to fib(f) with the induced action by G = QBG. If F is an
object with a G-action, we get a fiber sequence

F— FJG — BG.

Once this machinery is set up, we proceed to investigate the functor 7«73 (i.e. the reflection of 7%
into Pro(X<)). Our main result about it is a version of Bousfield and Kan’s principal fibration lemma,
whose proof will concern the first half of this article:

Theorem F (Theorem 5.7). The functor T«ooT8: X — Pro(Xi <o) preserves those fiber sequences
F — E — B where B is simply connected and F is connected, and LF, LQAB satisfy certain connectivity
assumptions (see Section 3 for more details).

This theorem will allow us to induct on the principalized Postnikov tower of any good enough nilpotent
sheaves in X, thus essentially reducing the convergence question to the case of an infinite loop sheaf.

1.5. Organization. In Section 2, we establish properties of pro-truncated objects in co-topoi alluded to
above, in particular the principal fibration theory. Then in Section 3 we introduce notation and common
assumptions for the rest of the article, most importantly, the adjunction X = D and the axioms (C),
(M) and (S). Section 4 investigates compatibility of the localization functor L with fiber sequences. In
a sense our main results are contained in Section 5: here we prove that, under a certain fairly general
list of assumptions, the Bousfield-Kan completion functor 7., Tot® CB preserves principal fibrations.
We then come to Section 6, where we establish our applications to sheaves, equivariant spaces and
motivic spaces. We conclude with some appendices: in Section A we recall how to extract (co)simplicial
data out of adjunctions, in Section B we prove a well-known fact about the stable analog of Bousfield—
Kan completion, in Section C we extend the unstable p-completion theory of [Mat24b| to unstable
n-completion (n not necessarily prime), and in Section D we establish a minor extension of Levine’s
convergence theorem in motivic homotopy theory.

1.6. Notation and conventions. We freely use the language of oco-categories as set out in [Lur09,
Lurl7]. A space will be an object of the co-category Spc of spaces/homotopy types/oco-groupoids/anima,
and a sheaf will be an object of an co-topos. Here is a table of some of the notation that we use.

notation meaning reference/definition
Pro(C) oo-category of pro-objects Section 2.1
c constant pro-object functor Section 2.1
mat X materialization of a pro-object Section 2.1
Xeoo truncated objects Section 2.2
T<oo pro-truncation Section 2.2
Grpd(C) oo-category of groupoid objects Section 2.4
Grp(C) oo-category of group objects Section 2.4
L,R, D standard setup Section 3
L homological localization functor Section 4
CB* cobar resolution Section 5.1
e monadic resolution tower Section 5.1
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cn total fiber of the codegeneracy cube Section 5.3
S total fiber of the face cube Section 5.3
L, unstable n-completion functor [Mat24b, §3], Section C
Lg unstable S-localization functor [Mat24a, §3]
Spc(BG) genuine G-spaces Ps(Fing)
S?—lsl(BG) G-equivariant S'-spectra Sp(Spc(BG))
SH(BG) genuine G-spectra Section 6.3
w,E Mackey functor valued homotopy objects | Section 6.3
A Burnside ring Mackey functor e.g. [LMSMS6, §V.9]
Smy smooth quasi-compact k-schemes
Spc(k) motivic spaces Section 6.4
S’;‘-ls1 (k) motivic Sl-spectra Sp(Spc(k))

SH(k motivic spectra Section 6.4
Spc(k)> ) | v-effective motivic spaces [ABH24, §3], Remark 6.26
7, (X)) stable motivic homotopy sheaves Remark 6.27
SH(k)Y heart of the homotopy t-structure Remark 6.27
SH(k)vet very effective motivic spectra Remark 6.27
H(X) stable effective motivic homotopy sheaves | Remark 6.27
SH (k) heart of the effective t-structure Remark 6.27
fnsSn effective cover and slice functors Remark 6.28
KMW Milnor-Witt K-theory homotopy module
KM Milnor K-theory homotopy module
n motivic Hopf map

1.7. Acknowledgments. We are greatly indebted to Mike Hopkins for providing invaluable support at
several stages of this project. During its completion, we benefited from conversations with many people,
among them Aravind Asok, Robert Burklund, Emmanuel Farjoun, Marc Hoyois, Lorenzo Mantovani and
Georg Tamme.
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2. HOMOTOPY THEORY IN PRO-TOPOI

Throughout we let X be an co-topos [Lur09, Definition 6.1.0.4]. In this section we will show that the
oo-category Pro(X< ) of pro-truncated objects in X’ behaves in some ways like an oo-topos. In particular,
we will study the relationship between groupoids and (some kind of) epimorphisms in Pro(X<) (see
Proposition 2.11), and between group actions and maps to classifying spaces (see Proposition 2.17). This
culminates in our replacement for principal fibration theory in Pro(X..): for a pro-connected group
G € Grp(Pro(X<)) there is an equivalence between G-torsors and maps to BG, given as usual by taking
G-orbits respectively taking fibers (see Example 2.18 and Theorem 2.15).

2.1. Pro-objects. Given a possibly large oo-category C, we denote by Pro(C) the oco-category of pro-
objects in C [BGH18, §0.11.6]. One possible definition is Pro(C) = Ind(C°P)°P. This comes with the
constant object functor

¢: C — Pro(C),

characterizing Pro(C) via a universal property: Pro(C) has cofiltered limits and any functor out of C
into an oo-category with cofiltered limits extends uniquely along ¢ to a functor out of Pro(C) preserving
cofiltered limits. We note the following further facts:

o c preserves finite limits (see the dual of [Lur09, Proposition 5.3.5.14]).
e The association C +— Pro(C) canonically assembles into a functor

Pro(—): Cateo

Any object in Pro(C) can be presented as a cofiltered limit of constant objects.
c is fully faithful.
If C has cofiltered limits, then ¢ has a right adjoint mat: Pro(C) — C, given by mat lim; ¢X; ~

— Catgo
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From this we can deduce that there is an equivalence Fun(I, Pro(C)) ~ Pro(Fun(Z,C)) for any finite poset
I [Lur09, Proposition 5.3.5.15]. It follows, for example, that Pro(C). ~ Pro(C.). However, this fails for
infinite diagrams: in general, the canonical functor

Pro(Fun(7,C)) — Fun(Z, Pro(C))
is neither fully faithful nor essentially surjective. We will revisit this theme several times in what follows.

2.2. Pro-truncated objects. We write X, C X for the subcategory of truncated objects, and
Pro(X<s) C Pro(X) for the subcategory of pro-truncated objects. The latter inclusion has a left
adjoint

Teoo = hin Pro(7<y): Pro(X) — Pro(X<o)
called protruncation; see [BGH18, §4.1.2]. It is pro-induced by the functor X — Pro(X..) given by
X ~ lim, c7<, X. It preserves all limits [HHW22, Proposition 3.9] (the reference only proves it for the
oo-topos of spaces, but the proof works for an arbitrary oco-topos).

Recall the notion of almost finite colimits from [Hai24, Definition 1.9] (and in particular the notion of
n-colimit-cofinal functors, cf. [Hai24, Definition 1.7]). Let us give an example of almost finite colimits:

Lemma 2.1. Geometric realizations of both simplicial and semisimplicial objects are almost finite.

Proof. We have to show that both A°P and A™:°P have n-colimit-cofinal approximations by a finite
category. Since the inclusion AM:°P s AP ig colimit-cofinal (see [Lur09, Lemma 6.5.3.7]), it suffices to
prove this for AP, For any n consider the functor AP — Ainiop Tt is clear that AP is a finite
category, and the functor is n-colimit-cofinal by [Du23, Example 6.14]. B (|

The first part of the next proposition was proven by Haine for the oo-category of spaces, cf. [Hai24,
Proposition 1.17], and is the main motivation for considering the notion of almost finite colimits.

Proposition 2.2 (Haine). Almost finite colimits in Pro(X<) are universal and commute with cofiltered
limits. In particular geometric realizations (of either simplicial or semisimplicial objects) in Pro(X<)
are universal and commute with cofiltered limits.

In order to prove this, we will use two further properties of Pro(7<y,).

Lemma 2.3. Let f: X — Y be a morphism in Pro(X). Then T« f is an equivalence if and only if
Pro(r<,)(f) is an equivalence for all n.

Proof. This is immediate from the facts that 7., =~ lim, Pro(7<,) and Pro(r<,) =~ Pro(7<,) © T<co.
(The latter holds because Pro(X<,) C Pro(X<s) C Pro(X) and the truncations are left adjoints to the
appropriate inclusions.) O

The following lemma is an extension of [DH21, Proposition 4.13] to pro-objects in co-topoi.
Lemma 2.4. Let X be an co-topos. The pullback functor
Fun(A2, Pro(X)) — Pro(X)
sends Pro(T<n41)-equivalences to Pro(7<,)-equivalences.

Proof. By 2-out-of-3, it suffices to show that the n-truncated pullback functor inverts the map of spans
U=V« W)= (Pro(t<pn+1)(U) = Pro(t<p+1)(V) < Pro(r<n+1)(W)). Since all functors in sight
preserve cofiltered limits, this reduces to the case where U, V, W are constant, which is a special case of
[DH21, Proposition 4.13]. O

Also note the following general fact about categories of pro-objects:

Proposition 2.5. Let C be any oco-category with finite colimits. Then finite colimits commute with
cofiltered limits in Pro(C).

Proof. Mapping to objects ¢X with X € C is jointly conservative, and turns cofiltered limits to filtered
colimits (and finite colimits to finite limits). Hence, the claim follows from the corresponding dual result
about spaces, cf. [Lur09, Proposition 5.3.3.3]. O

Proof of Proposition 2.2. We first show that almost finite colimits commute with cofiltered limits in
Pro(X<), which is slightly easier. Using Lemma 2.3 and the fact that Pro(7<,) preserves colimits
(being a left adjoint) and cofiltered limits, it suffices to prove the same statement about Pro(X<,).
But almost finite colimits in Pro(X<,,) are just finite colimits, and finite colimits always commute with
cofiltered limits in categories of pro-objects by Proposition 2.5.
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Now we show that almost finite colimits are universal in Pro(X<). Using Lemmas 2.3 and 2.4 we
reduce to proving the same statement for Pro(X<,+1). But almost finite colimits in this category are
finite colimits, so the result holds by [Hai24, Lemma 1.1]. O

2.3. Epimorphisms and connected pro-objects. Write Fun(A, )P C Fun(A, &) for the full sub-
category spanned by those morphisms that are effective epimorphisms [Lur09, the discussion after Corol-
lary 6.2.3.5].

Definition 2.6. We say that f € Fun(Al,Pro(X)) is a levelwise effective epimorphism if under the
canonical equivalence Pro(Fun(A!, X)) ~ Fun(A!, Pro(X)) the morphism f corresponds to an object in
the full subcategory Pro(Fun(A!, X)°P).

We write Fun(A!, Pro(X))®P! € Fun(Al, Pro(X)) for the full subcategory of levelwise effective epi-
morphisms, so that there is a canonical equivalence Fun(A!, Pro(X))°P! ~ Pro(Fun(A!, &')°Pi).

We say that f € Fun(Al, Pro(X...)) is a levelwise effective epimorphism if it is one considered as
an object of Fun(Al, Pro(X)), i.e., if it can be presented as a cofiltered limit of effective epimorphisms
between truncated objects (use that 7<, preserves effective epimorphisms and hence 7., preserves
levelwise effective epimorphisms).

Remark 2.7. If f: X — Y is a morphism in X, then f is an effective epimorphism if and only if 7y(f)
is surjective (as a map of sheaves, i.e., an epimorphism in the l-category X<g), essentially by [Lur09,
Corollary 6.2.3.5]. In particular, we see that g: U — V in Pro(X) is a levelwise effective epimorphism if
and only if Pro(mg)(g) is a levelwise surjection.

Definition 2.8. We say that an object X € Pro(X), is pro-connected if the map x — X is a levelwise
effective epimorphism. We write Pro(X). >1 C Pro(&X), for the full subcategory of pro-connected objects.

Lemma 2.9. Let X € Pro(X). be an object. X is pro-connected if and only if X lives in the full
subcategory Pro(X, >1) C Pro(X,) ~ Pro(X)..

Proof. Suppose first that X € Pro(X, >1). Then there exists a cofiltered limit presentation X = lim; cXj,
with X; connected. In particular, * — X; is an effective epimorphism for all ¢, which shows that * — X
is a levelwise effective epimorphism.

Suppose on the other hand that * — X is a levelwise effective epimorphism. Thus, this map can be
written as a cofiltered limit of effective epimorphisms 4, — X; in X,. Set X = X; I14, . Then since
¢ preserves colimits and finite colimits commute with cofiltered limits in pro-objects by Proposition 2.5,
we find

lim X ~ lim ¢X; My, ca, * ~ limcX; ~ X.
K3 K3 3

(Indeed lim; cA; = * by assumption.) By construction X/ is connected (as effective epimorphisms are
stable under cobasechange, cf. [Lur09, Corollary 6.5.1.17 with n = 0]), concluding the proof. O

2.4. Groupoids. Let C be either X', Pro(X), or Pro(X<), so that we can speak about the co-category
Fun(A!,C)°P! cf. Section 2.3. By a groupoid in C we mean an object of Fun(A°P, C) satisfying the Segal
condition [Lur09, Proposition 6.1.2.6 (4”)]. Left Kan extending to A% and restricting to AP_; ~ Al
yields a functor |—|, participating in an adjunction -

|—|: Fun(A°P,C) = Fun(A',C) : N.

By construction, the right adjoint is given by right Kan extending to A%” and then restricting to A°P. Tt
is clear that the image of N is contained in Grpd(C). If C = X, then the image of |—| consists of effective
epimorphisms, cf. [Lur09, Lemma 6.2.3.13] (using that each of the morphisms X,, — |X,| factors over
Xo).

Lemma 2.10. If C = Pro(X) or C = Pro(X<«), then the image of |—| consists of levelwise effective

epimorphisms.

Proof. By Remark 2.7, we have to see that for any X, € Grpd(C) the map Pro(m)(Xo) — Pro(mo) (| Xe|)

is a levelwise surjection. Now, Pro(mp)(| Xe|) =~ Pro(wo)(colimAizj,op X,.) by [Lurl7, Lemma 1.2.4.17]
1

and [HP23, Proposition A.1] (since Pro(my) commutes with the colimit, and Pro(X<) is a 1-category),
and hence the question depends only on the finite diagram X,|mj.or. The result now follows using the
<1

equivalence Pro(Fun(A2°P| X)) ~ Fun(AX°P Pro(X)), and by using [Lur09, Lemma 6.2.3.13] on each
level. - - O

We write Grp(C) C Grpd(C) for the full subcategory of group objects, i.e. those U, such that Uy = .
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Proposition 2.11. (1) We have an equivalence Fun(Al, Pro(X.))°?' ~ Pro(Grpd(X<s)), and
thus Pro(X<s)s,>1 =~ Pro(Grp(X<w)).
(2) The composite

Pro(Grpd(X<o0)) ~ Fun(Al, Pro(X< o)) 25 Grpd(Pro(Xeoo))

1s the canonical functor.
(3) The functor N: Fun(A!, Pro(X< )P — Grpd(Pro(X.w)) is fully faithful.
(In fact the first two statements hold for all of Pro(X).)

Proof. (1) The fact that Fun(Al, Pro(X))®?! ~ Pro(Grpd(&X)) follows immediately since by definition
Fun(A!, Pro(X))®®' ~ Pro(Fun(A', X)) and Fun(A!, X)°P! ~ Grpd(X); for the latter see [Lur09,
Theorem 6.1.0.6].

To get the result for pro-truncated objects, it will suffice to show that the equivalence Fun(A!, X')Pt ~
Grpd(X) restricts to an equivalence Fun(A!, X, )" ~ Grpd(X<o.). Let us first assume that f: X — Y
is an effective epimorphism, such that both X and Y are in X, say in X<y for some M > 0. Now,
N(f) is (the restriction of) the right Kan extension of f to A,. As right Kan extensions are computed
using limits, and X<y C X is stable under limits, we see that N(f) € Grpd(X<pr) € Grpd(X<oo). For
the other direction, assume that X, € Grpd(X<o). Pulling back Xy — | X,| along itself yields X; — X
(since N(]Xo|) =~ X,). This map being truncated [Lur09, Lemma 5.5.6.14], we deduce that Xy — | X,|
is also truncated [Lur09, Proposition 6.2.3.17]. Thus, | X,| is truncated by Lemma 2.12 below.

That this equivalence restricts further to an equivalence Pro(X<o)«,>1 = Pro(Grp(X<)) is clear.

(2) Holds by construction.

(3) We want to show that |[N(—)| = id. Since geometric realizations commute with cofiltered lim-
its (Proposition 2.2), so does the functor |—| (and so does N, being a right adjoint). Any object in
Fun(Al, Pro(X. .. ))P! being a cofiltered limit of effective epimorphisms in X, we reduce to such (con-
stant) objects. This case follows from the same result for X, for which see [Lur09, Theorem 6.1.0.6]
(where N is even an equivalence). O

We used the following fact, for which we could not locate a reference.

Lemma 2.12. Let X be an co-topos and f: X — Y € X an n-truncated effective epimorphism. Then
X is (n+ 1)-truncated if and only if Y is (n + 1)-truncated.

Proof. 'Y is (n+ 1)-truncated then so is X by [Lur09, Lemma 5.5.6.14]. We establish the converse. Let
L: P(C) & X : R be a presentation of X as a left exact localization of a presheaf co-topos [Lur09, Defini-
tion 6.1.0.4]. Recall that both R and L preserve i-truncated morphisms and objects [Lur09, Proposition

5.5.6.16]. Write RX 1 ¥y — RY for the epi-mono factorization [Lurl7, Example 5.2.8.16 for n = —1]
of Rf. Since Rf is n-truncated and Yy — RY is (—1)-truncated (whence n-truncated), RX — Yj is
also n-truncated (apply [Lur09, Proposition 5.5.6.16] in P(C),gy). As X — Y is an effective epimor-
phism and L preserves epi-mono factorizations, we see that Lfy ~ f. Using once more that L preserves
i-truncated maps, we see that we may replace X by P(C) and thus reduce to X = Spc. In this case the
claim follows by examination of the long exact sequence of homotopy groups. [l

Thanks to the above result, the following makes good sense.

Definition 2.13. We call objects in the essential image of the fully faithful functor Pro(Grpd(X<)) —
Grpd(Pro(X<«)) levelwise groupoids. Levelwise groups are defined similarly.

Ezample 2.14. For any group G € Grp(Pro(X<)), Proposition 2.11 supplies us with a map G —
OBG(:= N|G|), which is in fact the initial map to a levelwise group. However, not all groups are levelwise
groups, as the following example shows. Consider the pro-set G := limy cG}, where G, = [72%, 2%] CR
is a closed interval (considered as a set), and the transition morphisms are given by inclusion. We define
a group structure on G as the inverse limit of the maps G411 X Gg+1 — Gj sending (z,y) to x+y (where
the addition is the addition from R). We claim that G is not a levelwise group. For this, consider the
initial map to a levelwise group G — Q2BG; it suffices to show that this map is not an equivalence. This
can be checked after materializing. The left-hand side yields mat(G) = limy G, = NGy, = {0}. It thus
suffices to show that mat(QBG) = Qmat(BG) # . In fact, m (mat(BG)) # 0, as we shall show now.
Denote by By e the following inverse system of semi-simplicial diagrams:

Bk7. = (* é: Gk E Gk+1 X Gk+1 g Gk+2 X Gk+2 X Gk_;,_g . )
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Then |limy ¢By o] ~ BG. Using that in pro-truncated spaces cofiltered limits commute with geometric
realizations (even of semisimplicial objects), and ¢ is a fully faithful left adjoint (with right adjoint
the materialization) we deduce that mat(BG) =~ limy BGy, where BGy := |Bg.e|. Thus, m of the
materialization is nonzero if we can find a compatible family of nonzero elements in the 71 (BGy). Indeed,
such a family then defines a nonzero element of limg, 71 (BGy), and there is a surjection m (limg BGy) —
limg, 1 (BGy). For every x € G, we get an element [z] € m1(BGy). There is a canonical map BGy, — BR
(where we view R as a discrete group) which maps the loop [z] to the corresponding loop [z] € m1 (BR),
and thus those elements are all distinct (and in particular nonzero if = is nonzero). Now set x,, =

(L] (] € m1(BG,,), the 2"-fold product (in 7;) of the loop represented by k. Since in BG,,—1 we
impose the relation [5-] - [5k] = [577], it follows that @, maps to z,,_1. By the argument above, this

compatible family is nonzero (as it gets mapped to [1] € BR), thus proving the claim.
We have the following useful criterion for detecting levelwise groups.

Theorem 2.15. Let G € Grp(Pro(X<,)) be pro-connected, i.e., the unit x — G is a levelwise effective
epimorphism. Then G is a levelwise group.

For the proof, we need the following identification of the &;-structures on the two different bar con-
structions one can perform on an £-group, for which we were unable to locate a proof in the literature.
For any oo-category C with finite products and geometric realizations, and any G € Grp(C), write
BeG € Fun(A°P,(C) for the corresponding simplicial object, and B¢G = BG = |B,G| € C for the

geometric realization.

Proposition 2.16. Let C be an oco-category with finite products and all colimits, such that geometric
realizations commute with finite products (e.g. X or Pro(X<)). There is an equivalence of functors

Grp(Be) ~ Barp(cy: Grp(Grp(C)) — Grp(C).

Proof. Let Cy C C be a small full subcategory closed under finite products. Consider the commutative
diagram
Grp(Crp(Co)) —"— CGrp(Grp(P(Co))) “= Grp(CGrp(C))

Il Il

Grp(P(Co)) —™— Grp(C),

where y: Cp — P(Cp) and colim: P(Cy) — C preserve finite products (whence groups) and the vertical
arrows are Grp(B) respectively Ba,p. An equivalence between the left hand vertical arrows thus yields
an equivalence between the two composites Grp(Grp(Cp)) — Grp(C). Writing C as the filtered colimit of
small full subcategories Cy closed under finite products, we can reduce from arbitrary C to C = P(Cy).
In fact, since Grp(C) ~ Grp(C.), we may reduce further to C = P(Cp).. Le., from now on we can (and
will) assume that C = X, for an co-topos X.

Note that Grp(Grp(C)) C Fun(A°P x A°P C) and under this inclusion, the different directions in which
we can take geometric realizations on a bisimplicial object correspond to the two functors Grp(B¢) and
Barp(cy- In particular, since colimits commute, we see that

B o Grp(B) ~ B o Bgyp: Grp(Grp(C)) — C.
The result follows since in an oco-topos X, the functor B: Grp(X.) ~ Grp(X) — X, is fully faithful
[Lur09, Lemma 7.2.2.11]. O

Proof of Theorem 2.15. Consider the commutative diagram

Grp(Pro(X<u))

Grp(Pro(Q2
p(Pro(Q)) J{GTP(Q)

Grp(Pro(Grp(X<oo))) —— Grp(Grp(Pro(X<x)))

lB lB

Pro(Grp(X<oo)) ———— Grp(Pro(X<o)),

where the horizontal functors forget that a group is levelwise. The square commutes by naturality of
the classifying sheaf functor B. The triangle commutes already before applying Grp(—): Indeed, all
the involved functors preserve cofiltered limits, hence we may check this on constant objects, where it
is clear. Let G € Grp(Pro(X<s)) be pro-connected. Our goal is to show that G is in the essential
image of the bottom horizontal functor. Chasing the commutative diagram, it suffices to show that the
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right-hand composite sends G to itself. By Proposition 2.16, we see that B(Grp(Q2)(G)) ~ Grp(BQ)(G).
The result follows since BQX ~ X for any pro-connected X € Pro(X<).; indeed this was shown in
Proposition 2.11(1). O

2.5. Group actions. Let C be an oo-category with pullbacks and I-indexed colimits. Given B €
Fun(Z,C), the functor colim;: Fun(/,C),;g — C/colim, p admits a right adjoint F': T' = B X gcolim; B)
d(T). Here d: C — Fun(I,C) is the diagonal functor. By construction, F' lands in the subcategory
Fun(l ,C)jaét C Fun(Z,C),p of cartesian diagrams, the full subcategory spanned by those natural trans-
formations n: B’ — B that are cartesian in the sense of [Lur09, Definition 6.1.3.1].

Now we specialize to C = Pro(X<s) and I = A°. Let G € Grp(Pro(X<~)). Recall that then
Fun(A°P, Pro(X<OO))‘;@§fG can be seen as encoding objects with a G-action [NSS14, Definition 3.1]. We
obtain an adjunction

[—|: Fun(AOp,Pro(X<oo))7§fG = Pro(X<oo) /B : F.

Proposition 2.17. If G is a levelwise group, then the above adjunction is an adjoint equivalence.

Proof. Let a = (X — BG) € Pro(X<)/Be. Then a = lim; ca; in Fun(A!, Pro(X<s)), where a;: X; —
B; € X, with B; connected (where lim; B; ~ BG). Since geometric realizations commute with cofiltered
limits in Pro(X<s) (Proposition 2.2) we find |Fa| ~ T« lim; | F;o;|, where

|=|: Fun(A°P, X) 95 o5, & X/p, + Fi

is the canonical adjoint equivalence [Lur09, Theorem 6.1.3.9 (3)]. It follows that the counit |Fa| — a is
an equivalence.

We now prove the same for the unit. We first treat a special case. By Lemma 2.19 below, the forgetful
functor U : Fun(A°P, Pro(X<Oo))‘/3‘"§fG — Pro(X<) has a left adjoint, sending X € Pro(X<s) to G x X.
Write s: * — BG for the canonical map. Comparing universal properties we see that |G x X| ~ sy X, and
so the object underlying F|G x X| is * Xxpg X ~ FBG x X, which by Proposition 2.11 is just G x X. It
follows that the unit G x X — F|G x X| ~ G x X is homotopic to the identity map, and so in particular
an equivalence. To treat the general case, first observe that U is conservative and preserves geometric
realizations (since geometric realizations commute with finite products in Pro(X<,)), hence is monadic,
so any object in Fun(AOp,Pro(X<oo))7a§fG can be written as a geometric realization of objects of the
form G x X, cf. the proof of [Lurl7, Proposition 4.7.3.14]. Since both |—| and F' preserve geometric
realizations (the former being a left adjoint, and the latter by Proposition 2.2), we conclude. (I

If G is acting on an object F' € Pro(X<), by abuse of notation we also write F' for the associated
cartesian diagram Fy — B,G, and write F//G = |F*| for the homotopy quotient of the group action.
By construction, this comes equipped with maps F' — F//G — BG.

Ezample 2.18. If G is a levelwise group acting on F' € Pro(X<), then F — F/G — BG is a fiber
sequence. (This is a reformulation of the fact that the counit of the above adjunction is an equivalence.)

We used the following fact, for which we could not find a reference.

Lemma 2.19. Let C be an oco-category with finite products and G € Grp(C). The forgetful functor
U: F‘lln(AOp7C)7"§fG — C has a left adjoint F' such that for X € C the counit X — UFX is given by the

canonical map X ~ X xx — X x G.

Proof. Increasing the size of the universe if necessary, we may assume that C is small. The claim implies
that (FX), ~ G" x X, so it suffices to prove it in the larger oo-category P(C). We may thus assume
that C is an co-topos. Now Fun(AOp,C)i%rfG ~ C/pg [Lur09, Theorem 6.1.3.9 (3)]. Writing s: * — BG
for the canonical map, the functor U identifies with s* and so the left adjoint F' is given by s;. It follows
that UF X ~ X xpg *. The result follows by considering the following diagram of pullback squares

UFX G *
| | |
X * BG.
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3. SETUP FOR THE REST OF THE ARTICLE

Throughout this article, we will work with the data of an adjunction of oco-categories
Ly: X=D:R.
Here X is an co-topos, D is stable and presentably symmetric monoidal, and L. is symmetric monoidal.
We write L: X, — D for the induced functor. We assume given D“d C D, which is the non-negative
part of a t-structure (thus DS>10 is closed under colimits and extensions in D). We denote by D4 C D

the localizing subcategory generated by D;IO and call it the subcategory of solid objects. Objects in DSZI%
are called solid connective. We are concerned with the following azioms:

(C) The restricted functor R: DS>1‘01 — X preserves sifted colimits.
(M) For X € X, and E € DY} we have LX ® E € DI,
(S) (1) We have LR(D;I%) c Dld.
(2) For E € 'D;l‘% the canonical map m LRE — m, E is an isomorphism. (Here m; refers to the
t-structure specified by DSld )
(3) R: DI — X is conservative.

For convenience, we denote by X:}‘in C X, the subcategory of objects which are n-connective and
such that LX € DI,

3.1. First consequences. The following result is standard:

Lemma 3.1 (Stable splitting). Let X,Y € X,.. Then there is a split cofiber sequence
LX®LY 5 L(X xY)—> LIXAY),
natural in X and Y.

Proof. Apply L to the cofiber sequence X VY — X xY — X AY, and use that L(X VYY)~ LX ® LY
to construct a splitting of the inclusion. O

Lemma 3.2. The functor R: D — X factors canonically over Grp(X). Moreover, if aziom (C) is
satisfied, then for every E € Dszlg, there is an equivalence BRE ~ RYE.

Proof. Since D is stable, we have Grp(D) ~ D, and since R preserves products, we get an induced functor
D ~ Grp(D) — Grp(X) that refines R. For the second statement, note that X E can be computed as the
geometric realization of the simplicial object

OﬁEEE@EE“',

see e.g. [BH21b, Lemma 2.7]. But under the canonical equivalence Grp(D) ~ D, this is just the bar
construction of the group structure on E. Now, since R commutes with sifted colimits of objects in DSZI%

by assumption, and E (and thus also E®") is in Dg%, the result follows. O

Remark 3.3. We will frequently use the following statement: Suppose that X, is a simplicial object in a
stable oo-category £ with a t-structure. If there exists an n such that Xo € £5,41 and X; € &>, for all
i >0, then | X,| € E>y41. Indeed, this follows immediately from [Lurl?7, Proposition 1.2.4.5].

Lemma 3.4. (1) Aziom (C) implies that RDIY C X, 5.
(2) Azioms (C) and (S1) together imply that RDSZI% c asld

*,>n"
(3) Aziom (M) implies that for X € X, >, and E € Ds_l‘;ln we have LX @ E € Dszli+m.
(4) Axioms (C), (S1) and (S3) together imply that every object in ’DSZI‘;IL can be written as a sifted
colimit of objects of the form LX, for X € X:lgn
(5) Azioms (C), (S) and (M) together imply that for E € Dszlfl with m > 1 we have fib(LRE — F) €

sld
D>n+1

Proof. (1) We prove the claim by induction on n, the case n = 0 being vacuous. Now let E € Dilfl with
RE € X, >,; it suffices to show that REE € X, >,41. But REE ~ BRE by Lemma 3.2. The result
follows from the fact that the bar construction takes n-connective objects to (n 4 1)-connective objects;
see [Lurl7, Remarks 5.2.2.19 and 5.2.6.17].

(2) Arguing inductively again, suppose E € Dilfl with LRE € Dilfb. Then LRYFE is the geometric
realization of a simplicial object LRS, with LRS; = LR(E®") € DSld. Since LRSy = 0 € DY}, it
follows that [LRS.| € D4 .| as needed (Remark 3.3).
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(3) This is clear if X ~ X" X’. It follows in general since X, >, is generated under (sifted) colimits by
objects of this form, see for example [Mat25, Proposition 2.39].

(4) Note that by definition and (2) the adjunction L + R restricts to an adjunction L: X4 =
D4 . R. Hence, the result follows from the proof of [Lurl7, Proposition 4.7.3.14] if we can show that
this induced adjunction is monadic. For this, it suffices to show that R: D4 — Xflg is conservative
and preserves sifted colimits. Conservativity follows immediately from (S3). Since both ’D;hi c Dgd and
Xflgn C X, are closed under (sifted) colimits (for the first, note that this is true for any t- structure,
and for the second use that both n-connective objects, and objects that under L map to DSld are closed
under colimits), this is an immediate consequence of (C).

(5) We first treat the case n = 1. The functor D¢ — D E s fib(LRE — E) (which is well-
defined by (S2) and (2)) preserves sifted colimits by (C). Thus, to prove that it takes values in Dszlg, by
(4) we need to check this only for objects of the form E = LX, where X € A5'd . In this case the map
LRE — F is split and so induces an epimorphism on 73, as needed. Now we pff)ve the case of general n
by induction. Thus assume given E € Dﬁld with fib(LRE — FE) € DS>1‘3L 41- Consider again the simplicial

object S, from (2). We note that
LR(E® FE)~ L(RE x RE) ~ LRE ® (LRE ® LRE) ® LRE,

(using Lemma 3.1) with LRE ® LRE € DSZI%H (use (1), (3) and recall n > 1), and similarly for the
higher terms. It follows that the fiber of the canonical map |LRSe.| ~ LRYE — Y E ~ |S,| is the
geometric realization of a simplicial object with entries fib(LRS, — S, ), i.e., a sum of “cross terms”

(like LRE ® LRE) and copies of fib(LRE — E). Both of these lie in DS>1‘3L+1, and the degree zero term

vanishes, whence by Remark 3.3 the geometric realization itself lies in DY% , ,. This proves the claim. [

Proposition 3.5. Aziom (M) implies the following. Let F — E — B be a fiber sequence, B connected
and F € X', . Then fib(LE — LB) € DY In particular, if F,B € X34, then also E € X', .

Proof. Writing F ~ F/QB and B ~ x//QB, we see that £ — B is a colimit of maps of the form
prx: FF x X — X. It will be enough to show that fib(L(F x X) — LX) € Dszlfl. But by Lemma 3.1,
LFxX)~LF®LX & (LF ® LX), so the fiber is LF @ (LF ® LX), which lies in Dszkril by M). O

Example 3.6. As a particular case of the last part of Proposition 3.5, we see that if F, B € Xf}gn then
also F x B e X5'¢, .

4. HOMOLOGICAL LOCALIZATION

The left adjoint functor L,: X — D induces a Bousfield localization L: X — X such that for a
morphism « in X, L« is an equivalence if and only if Lo is. This exists by the general theory of
Bousfield localizations in presentable co-categories, as outlined in [Lur09, §5.5.4]. We say that X € X is
L-complete if it is a local object for L, and that a morphism f: X — Y in X is an L-equivalence if Lf
(or equivalently Lf) is an equivalence.

Remark 4.1. Note that L preserves the terminal object and hence defines an endofunctor of X,. Moreover,
L|x, is the Bousfield localization functor corresponding to L: X, — D. (Indeed given a morphism « in
X, we have L(a) @ L(idgo) ~ L4 (), so that L(«) is an equivalence if and only if L () is.)

Remark 4.2. The functor L preserves finite products, since L, is symmetric monoidal.

Theorem 4.3 (Bousfield-Kan fiber lemma). Let Li: X — D be a left adjoint, symmetric monoidal
functor from an co-topos to a presentably symmetric monoidal, stable co-category. Assume that D has
a left-separated t-structure (i.e., has no nonzero oco-connective objects) compatible with the symmetric
monoidal structure such that Ly (X) C Dxq.

Let F - E — B € X, be a fiber sequence. Assume that B and LB are simply connected. Then
LF >LE—LBisa fiber sequence.

Proof We shall first prove the result under the additional assumption that LOB ~ QLB. Set F =
ﬁb(LE — LB) This is L-complete; it thus suffices to show that the canonical map F — F is an L-
equivalence, or equivalently an L -equivalence (Remark 4.1), i.e., that L4 F — L+F is an equivalence.
Recall that F' has an action by QB such that £ ~ F/QB [NSS14, Proposition 3.8], and similarly
LE ~ F / QLB. Moreover, since F' — F' arises from a map of fiber sequences, this map intertwines
the actions along QOB — QLB. Since the latter map is in fact an L-equivalence (by our additional
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assumption) and L, is a symmetric monoidal functor, we obtain an augmented &;-algebra G = L, QB
acting on Ly F — L+F with quotients given by L, FE and L+LE ~ L, FE. In particular, G acts on
cof (L4 F — L+F) with contractible quotient. Writing the quotient of the group action as geometric
realization, we find that

cof (L4 F — Ly F) £ cof(L.F - L. F)® G E cof (L4 F - L F) GG g o ‘

We will inductively show that cof(LiF — L+F ) is n-connective for every n; the case n = 0 holds
trivially. So assume we know that cof (L F — L F') is n-connective (and hence so are the other objects
of the geometric realization). It now follows from [Lurl7, Proposition 1.2.4.5] that

0 = mn(0) ~ Coeq (7rn cof (Lo F — Ly F) @ mo(G) = 7y cof (Ly F — L+F)) .

Since by assumption QB is connected, mo(G) = mo(L4+QB) ~ mo(1), which implies that the two maps in
the coequalizer are equal (in fact, they are isomorphic to the maps obtained by an analogous diagram
where we act with 1 using the unit map 1 — G, i.e., the trivial action). Thus, 0 = 7, cof (L4 F — L F),
concluding the induction. We showed that cof (L F — L+F ) is co-connective, hence zero by assumption,
as desired.

It remains to prove that LOB ~ QﬁB, or equivalently, since QLB is L-complete, that the canonical
map QB — QLB is an L-equivalence. Since B and LB are connected, BQB ~ B and BQLB ~ LB.
Since B — LB is an L-equivalence by construction, we see that QB — QLB becomes an L-equivalence
after applying the bar construction. Write X := QB, and Y := QLB. Thus, since L commutes with
colimits, we see that

0= |Leof(B*X — B*Y)| = |0 £= Leof (X = Y) £= Leof(X x X -V x V) g ’

By assumption both X and Y are connected, whence Lcof(X — Y) € D>;. We will inductively
show that Lcof(X — Y) € Ds,, which implies the claim since D is left-separated. So assume that
Lcof(X - Y) € D>, for some n > 1. For k > 2, the k-th term of the above geometric realization is also
in Ds,,: Indeed, the k-th term is given by L cof (X *¥ — Y **) which by stable splitting, Lemma 3.1, is
the direct sum of the following objects:

e Leof(X =),
o Lcof(X*k=1 — yxF=1) and
o Leof(X AN XXF-L 5 Yy AYXE-L),

The first object is in D, by assumption, and the second object by induction on k (or the assumption, if
k = 2). The third object is even in D>, 41: applying the octahedral axiom to X AX**~1 — Y AX>F=1
Y A Y**~1 we obtain a cofiber sequence

Leof(X = Y)®@ LX*F 1 5 Leof (X AX P 5 Y AYXF ) 5 LY @ Leof (X *F1 — y @b

where the outer terms are both in D>, (by what we already concluded above and using that LX**~1
and LY are in D>1), and thus the same is true for the middle term.

Our next goal is to identify the three maps Lcof(X x X — Y xY) — Lcof(X — Y). Since L
commutes with the cofiber, and the stable splitting is functorial, it will suffice to analyze the three maps
L(X x X) — LX (and for Y, which is analogous). By definition of the bar construction, these maps are
given by L(pry), L(pry) and L(m), where m: X x X — X is the multiplication map on the loop space.
We claim that under the stable splitting equivalence, the following diagrams commute:

L(X x X) L(X x X)
y l W} lﬁ w
LX (Too) LXpLXPLXANX) (0 P 0) LXpLXDLXANX) ) LX.

Here, m is defined as the third component of the induced map. For the left diagram, this is true by
construction. For the right diagram, it is only necessary to identify L(m) on the first two components.
Since the first inclusion LX — L(X x X) is induced by the map X = X V* — X x X, and since m is
the multiplication of a group object where the unit is given by * — X, it follows that the composition
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X — X x X &% X is homotopic to the identity, even before applying L. The same argument works for
the second component.
In particular, under the stable splitting equivalence, we see that L(pr;) — L(m) + L(pry) ~ —m o prj.
Consider now the associated spectral sequence of the above simplicial object C, as explained in
[Lurl?7, §1.2.4]. It has signature

Efyq = Hp(DKun(Wq(OO))) = 7Tp+q|C-| =0,

where DK"" denotes the associated unnormalized chain complex of a simplicial object in an abelian
category. By the identification of the maps in the simplicial object done above, we see that for every ¢
the associated unnormalized chain complex looks as follows:

—mq(cof(mx —my ))prg

0 <& (L cof(X — Y))

Tg(Leof(X = Y)? @ mg(Leof( X AX Y AY)) - .

Note that we use here that the map X — Y is a map of loop spaces, so that we get a map mx — my.
In particular,

H, (DK™ (74(Cl,))) = coker (mq(cof(mx — my)): mg(Lcof (X AN X =Y AY) = mg(Leof(X = Y)))).

By the connectivity estimates done above, we see that 7, Lcof (X AX — Y AY) = 0, whence Ell’”Jrl =

Hy, (DK™ (7,,41(Ch))) ~ m(Lcof(X — Y)). By inspection, no differential goes in or out of this group,
therefore it survives to the F..-page. Since we know that the spectral sequence converges to 0, we get
that 7, (L cof(X — Y')) = 0. This concludes our induction. O

Remark 4.4. The above proof can be simplified somewhat by using Bar-Cobar duality. Specifically:

(1) The functor (—)/G = (—) ®¢ 1 upgrades to an equivalence between G-modules and BG-
comodules, thus is conservative.

(2) The functor (—) = B(—) ~ 1 ®_) 1 upgrades to an equivalence between augmented connected
&1-algebras and coaugmented simply connected £1-coalgebras, so is conservative as well.

We included direct arguments in our special case to keep the proof more self-contained.

Remark 4.5. The assumption that LB is simply connected often does not apply for co-topoi of positive
homotopy dimension. This restricts the usefulness of the above fiber lemma. However, it can be utilized to
prove more general fiber lemmas by reducing to the case of a presheaf co-topos; see [Mat24b, Proposition
3.19] and [Mat25, Proposition 2.8]. Moreover, for rationalization it is always true (at least for co-topoi
with enough points) that LB is still simply connected, cf. [Mat24a, Proposition 3.12].

5. BOUSFIELD-KAN COMPLETION

The main goal of the section is to prove a generalized version of Bousfield and Kan’s Principal Fibration
Lemma in our more general context (see Section 3). This is achieved in Theorem 5.7 which states that,
assuming the axioms (C), (M), and (S), the generalized Bousfield-Kan completion functor preserves
certain fiber sequences.

We begin the section by recalling how to define the functor of pro-objects T : X, — Pro(X,) associated
to the adjunction L 4 R. Our next order of business is to show that T preserves finite products
(Proposition 5.1). So far we have not used any axioms. Making heavy use of the axioms, we next show
that 7o, T* preserves geometric realizations of connected solid object (Corollary 5.6) and that each
of the functors T™ preserves connected solid objects (Corollary 5.4). The main theorem follows fairly
straightforwardly from this.

5.1. Setup. Out of the adjunction L: X, = D : R we construct an augmented cosimplicial endofunctor
CBS : X, — Fun(A4, A,), see Construction A.1. Informally, CBY. looks like

id — RL — (RL)> = (RL)>--- .

Taking partial totalizations, we obtain

T" = Tot" CB® = lim CB*: X, — X.
<n
assembling into a tower
e T2 5T S 10,
We also denote by T'® the associated pro-object, i.e., T® = lim,, ¢I™ = lima ¢CB*: X, — Pro(X,), which
comes equipped with an augmentation ¢ — T°°.
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5.2. Products.
Proposition 5.1. The functor T®: X, — Pro(X,) preserves finite products.

Proof. As T* preserves the terminal object, it suffices to show that T preserves binary products. Let
X,Y € X,. Consider the augmented cosimplicial object

CB)%)?
WAL ((CB)1)

Out of this, we can construct a double augmented cosimplicial object as follows:

Fun(X,, X,)? 020, y2 =X,y

CB:r xW? eval

Vit AL x Ay 5 Fun(&,, X)) x X &% &,

Informally, VJ:" looks like the following picture (where we do not draw the codegeneracy maps):

mooom I

(RL)>(X xY) = (RL)>(RLX x RLY) = (RL)*((RL)?>X x (RL)?Y) §

I I I

RL(X xY) — RL(RLX x RLY) == RL((RL)*X x (RL)?Y) =} -

I I I

X XY ——— RLX x RLY ———= (RL)?X x (RL)*Y S

By definition we have
hincv"*l = liglcCB'(X xY)=T"(X xY).
Similarly, we have the following equivalence:
lim ¢V ~1* = lim eval(c, W*)
A A
= liin c(CB*(X) x CB*(Y))
~ limc¢CB*(X) x limc¢CB*(Y)
A A
=T*(X)xT*(Y),
where we used that ¢ commutes with finite limits and that A is a cosifted category. Hence, we get a span
T*(X xY) ~limcV® ' — lim ¢V*® « limeV 5 ~ T*(X) x T*(Y).
A AXA A
The proposition follows if we can show that the arrows are equivalences. For this, it suffices to show
that for every n > 0 both V™*® and V*" are split cosimplicial objects, cf. Remark A.3. Unwinding the
definitions, we see that
V'® = (RL)™((CB)L(X) x (CB)L(Y)).
This in turn is equivalent to
(RL)"R (L(CB)%.(X) @ L(CB)S.(Y) & (L(CB)%.(X) ® L(CB)%.(Y))) ,
using Lemma 3.1. But now both L(CB)% (X) and L(CB)$ (Y') are split by Proposition A.4, and so are
their sums and tensor products. Similarly, we see that
VI (CB)Y ((RL)™H(X) x (RL)"™(Y)) = (CB)Y (R(L(RL)"(X) x L(RL)"(Y))),
since R commutes with products as it is a right adjoint. This is also split by Proposition A.4. O
5.3. Connectivity. From now on to the end of the section, we will assume the axioms (C), (M), and (S).
We shall be utilizing the codegeneracy cubes and the face cubes, whose total fibers we denote respectively
by
cC": X, - X, and S":D—=1D.

Informally speaking, the codegeneracy cubes are made out of the codegeneracy maps in the cosimplicial
object CB*®, whereas the face cubes are made out of the face maps of the simplicial object extracted from
the adjunction L - R. For a careful definition of both cubes see Definition A.7. We use two main facts
about these cubes:
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e We have
(Cubel) C" ~RS"L,

i.e., the codegeneracy maps in the cobar construction for X are just obtained by applying R
to the face maps of the bar construction for LX. See Proposition A.10 for a reference.
e We have the fiber sequence

(Cube2) Q" — T — T,

i.e., C™ relates to an inductive construction of T'*. (This follows from [Lurl7, Corollary 1.2.4.18]
together with the pointwise formula for right Kan extensions. Note that the stability assumption
in the statement of loc. cit. is not actually used in the proof, just pointedness.)

Lemma 5.2. The functor S™: DSZI‘% — D4 sends i-connected maps to (n + i)-connected maps.

Proof. Let (Ay) be the desired statement about S™, let (B,,) be the (a priori weaker) statement that S™
sends DI to DIY,  (for i > 1). We shall prove that (B,) implies (4,) and (A,) implies (B, 1). Since
SY =1id, both (Ag) and (By) are trivial; hence by induction we will prove what we want.

(A,) = (Bpt1): Let E € DY The map LRE — E has fiber in D¢ |, by Lemma 3.4(5). Hence, by
(A,), the fiber of S"(LRE) — S™(E) lies in DI¢, |, . But this fiber is S"T!(E) by Proposition A.11,
proving the claim.

(Bn) = (A,): Let F — X — Y be a fiber sequence in D with X,Y € D¢ and F € DI, We write
Y =~ cof (F — X) as the geometric realization of the simplicial object Y, with entries Y; = X & F®!. Since
S™ preserves sifted colimits, we find that fib(S™(X) — S™(Y)) is the geometric realization of the simplicial
object F,, with F} = fib(S"(X) — S™(X & F®")). Note that S"(A® B) ~ S"(A4) & S"(B) & S™(A, B),
defining a new functor S™(—, —). In terms of this we have Fy ~ QS™(F%") @ QS™(X, F®'). In particular
Fy = 0. By (B,) we know that S™(F%) € D4 .. Using Remark 3.3, it will thus suffice to show that

>n+i*
S™(X,F) e DY) ,;. We shall prove more generally that for Z € DL} we have S"(X,Z) € DI ..

When ¢ = 1 this follows from (B,) (S™(X, Z) being a summand of S™(X @ Z)). Inductively, assume

the claim proved for ¢ and let ¥Z € 'DSZI?H. Then S™(X,XZ) ~ |S™(X, Z®*)| (as S™(X, —) preserves
sifted colimits, being a summand of S™(X @ —)). Since each term in the simplicial object lies in DSZI?

(by induction) and the zeroth term is zero, the claim follows (again by Remark 3.3). O
Proposition 5.3. Let FF — X — Y € X, be a fiber sequence with X,Y € X*S}dzl and F € Xf}dzi (with
i>1). Then

fib(T"(X) — T"(Y)) € X34,
Proof. Recall the fiber sequence (Cube2). By induction using Proposition 3.5, we thus reduce to showing

that the functor Q"C™ has the desired property. Now Q"C™ ~ RQ"S™L by (Cubel), so by Lemma 5.2
it is enough to show that fib(LX — LY) € Dszlf This is Proposition 3.5 again. O

Corollary 5.4. The functor T™ preserves X:ldzl (fori>1).

Proof. Tt is clear that T™ (%) = x, so this is the special case of Proposition 5.3 applied to a map to the
terminal object. O

5.4. Geometric realizations.
Proposition 5.5. The functor T™ preserves sifted colimits of connected solid objects.

Proof. We prove the claim by induction on n, the case n = 0 being clear since T = RL preserves sifted
colimits of connective solid objects by axiom (C). Let X, € ngl be a sifted diagram. By induction, we
know that |77 (X, )| =~ T™(| Xe|). We have

|Qn+lCn+1(X.)| (é) |RQn+15n+l(LX.)| (,:2) R|Qn+lsn+1 (LX.)|

Y rartisnti(r)x.)) ¥ artlonti((x.)),

where (1) holds by (Cubel), (2) holds because Q™15 +1 preserves solid connected objects (Lemma 5.2)
and R preserves sifted colimits of solid connected objects (C), and (3) holds because Q15"+ is a
total fiber computed in a stable co-category and hence preserves all colimits that are preserved by
(LR)*, in particular sifted colimits of solid connected objects. Recall the fiber sequence (Cube2). Using
that pullbacks preserve sifted colimits in X with connected base [Lurl7, Lemma 5.5.6.17], we see that
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QIO (X)) — [T"FH(X,)| — |T™(X,)| is a fiber sequence. We now have a morphism of fiber
sequence
QO (X)) —— [TTH(XL)] —— [T (X))

! l I

QUIOmHY([X]) —— THH(IXL]) —— (X))
The left- and right-hand maps are equivalence by what we have already said, and the base is connected,
so we can conclude by using e.g. [NSS14, Proposition 3.8]. O

Corollary 5.6. The functor T-s,1® preserves geometric realizations of connected solid objects.
Proof. Immediate from Propositions 2.2 and 5.5. O

5.5. Fiber sequences. We now have everything to prove our version of the celebrated Principal Fibra-
tion Lemma of Bousfield and Kan [BK72].

Theorem 5.7 (Principal Fibration Lemma). Assume azioms (C), (M) and (S).
Let F - E — B € X, be a fiber sequence with B simply connected and F,Q)B € X:,ldzl' Then
Teood *F = TeooT*E — T T* B is a fiber sequence.

Proof. We know that QB is a group acting on F' with quotient F/QB ~ E [NSS14, Proposition 3.8]. By
Proposition 5.1, 7., T*QB is a group acting on 7., T*F. Note that QB™ x F € ngl for all n,e >0
(Example 3.6). Thus, Corollary 5.6 implies that the quotient is

Teoo T FllT<ooT*QB ~ 7 ) T*(FJQAB) ~ 7« T*E.

Since T*QB is pro-connected by Corollary 5.4, it is a levelwise group by Theorem 2.15, and so by
Example 2.18 we have a fiber sequence

T<OOT.F — T<OOT.E >~ T<OOT.F//T<OOT.QB — BT<OCT.QB

Using once more that 7.7 preserves geometric realizations and finite products (of connected solid
objects) we learn that BrcT*QB ~ 7., T*BQB, which is the same as 7.,,7*B, as needed. (]

6. APPLICATIONS

In this final section we reap the fruits of the previous sections to prove generalized versions of Bousfield
and Kan’s [BK72| convergence of their completion functor. We will start with an adjunction

TP C=E:Q%,

where C is some co-category of generalized spaces, and £ is an associated co-category of spectra. We will
pick A € CAlg(€) and write C as a localization of an oo-topos X. Putting D = Mod4(€), we obtain a
composed adjunction

X=C=&E=2D
to which we shall apply the results of the previous sections.

There are four classes of examples for this broad framework that we have in mind. In Section 6.1 we
consider the case X = C = Spc the usual oco-category of spaces, and £ = Sp the usual oo-category of
spectra. We thus provide an account of the original results of Bousfield and Kan. We will assume that
A is connective. The behavior of the completion is then strongly influenced by mg(A), which we shall
assume to be either a subring of Q of the form S~!Z, or a quotient of Z, whence Z/n. Depending on
this, the Bousfield-Kan completion coincides in favorable cases (i.e., for nilpotent spaces) with either the
unstable S-localization or the unstable n-completion.

Next in Section 6.2 we generalize somewhat, by allowing C = X to be an oo-topos satisfying some
mild assumptions. We still set & = Sp(X) and assume that m,(A) is a constant sheaf S~'Z or Z/n.
Again we prove that the Bousfield-Kan completion (or more precisely, its connected cover) agrees (for
nilpotent sheaves) with an unstable S-localization or n-completion functor.

Our next example, treated in Section 6.3, is C = Spc(BG), i.e. the oo-category of genuine G-
equivariant spaces. We only consider finite groups G. We can set X = C, since Spc(BG) is a presheaf
topos. However, we no longer set £ = Sp(Spc(BG)). Indeed, as the practice of genuine equivariant stable
homotopy theory shows, a much more useful co-category of spectra is SH(BG), obtained by inverting
on Spc(BG). all the representation spheres. We again pick A € SH(BG)>o. But now my(lsyma)) = A
(the Burnside ring Mackey functor) is no longer the constant presheaf Z, and so more options arise for
moA. We treat four cases, (1) mpA = S71A, (2) m1pA = A/n, (3) 1pA = S~'Z and (4) myA = Z/p. Cases
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(1) and (2) behave very similarly to the previous situations, and we call them Burnside resolutions.
Cases (3) and (4) are more delicate. We call them Z-resolutions.

Our final example is the oco-category of motivic spaces C = Spc(k), where k is a perfect field; see
Section 6.4. As in the equivariant case, the correct co-category of spectra is not the naive stabilization,
but rather the co-category of motivic spectra &€ = SH(k). Moreover, in contrast to the previous three
examples, C is not a topos, and so we must specify X = Shvyis(Smg). As in the sheaves case, X has
positive (even infinite) homotopy dimension, so care has to be taken with completions and connectivity
assumptions. As in the equivariant case, m,(1). is more complicated than just Z, and so more options
arise for my(A).. Here we treat the cases my(A)x = S my(1x)«, my(A)x = mo(1)./n (which we call
Milnor-Witt resolutions) and my(A)x = S™ my(1k)s/n, To(A)x = mo(1k)«/(n,n) (which we call Milnor
resolutions).

6.1. Spaces. We set X = Spc. In this subsection we explain how our results specialize to those of
Bousfield-Kan [BK72]. Our presentation is designed as a drop-in replacement for loc. cit.

Let A € CAlg(Sp)>o such that my(A) is either a subring of Q or a quotient of Z, so that my(A4) ®z
mo(A) = mo(A). Set D = Moda(Sp), DL§ = D> and Ly = A®EY. Hence, we have Spci'd, D Spe. >n
for all n > 0. The axioms are readily verified. (In fact, this is a special case of the situation of Section 6.2,
where we verify the axioms more fully in Lemma 6.5.) In particular, for X € D>y we have

7T1(LRX) ~ 7T1(X) X7 7T0(A) ~ ’/Tl(X) ®7|-O(A) 7T0(A) X7 7T()(A) ~ 7T1(X),
whence (S2) is satisfied. To emphasize the dependence on A, we denote the localization functor (in the
sense of Section 4) by L and the completion functor (in the sense of Section 5) by T%.

Let us recall the stable analog. On Sp~, we can define a Bousfield localization L%, where L5 («) is
an equivalence if and only if @ ® A is one. _(In fact, for E € Sp~, L% E coincides with the totalization of
corresponding monadic resolution, see e.g. [Man24, Theorem 1.0.4], but we do not need this.) Its effect
can be described explicitly, see Proposition B.1:

(1) If mpA = Z/n then L E ~ E/ = lim; E/n’.
(2) If mpA = S71Z C Q then L E ~ ST'E (so that m. (L5 E) ~ m.(E) @ mo(A)).

We can now state the main result of this section.

Theorem 6.1 (Bousfield-Kan [BK72]). (1) Let X € Spcs be connected and nilpotent (i.e. w1 (X) is

nilpotent, with nilpotent action on 7,(X) for all n > 2). The canonical map LaX — Tot 78X
is an equivalence. In fact, if mo(A) C Q then already the canonical map TeoolaX — T3 X
18 an equivalence.

(2) For E € Sps, the canonical map LaQ®E — Q>®LSLE is an equivalence.

(8) Let F — E — B be a fiber sequence of pointed, connected, nilpotent spaces, with B simply
connected. Then f/AF — f/AE — f/AB s a fiber sequence.

(4) Let Xo be a tower of pointed, connected, nilpotent spaces with X = lim; X;. Assume that the
connectivity of X — X; tends to infinity with i. Then LaX ~lim; LsX;.

Note that this result supplies us with a recipe to compute LaX (or equivalently Tot T'§) for X pointed,
connected and nilpotent. Indeed, X being nilpotent, we can find fiber sequences X; 1 — X; — B; where
B; is a simply connected Eilenberg—Mac Lane space, the connectivity of the B; tends to infinity with 4,
and X ~ lim; X;. By (2) we know L4 B; (in particular we know its homotopy groups), whence by (3) we
can inductively understand L 4X;. Finally, by (4) we have L aX ~ lim; L 4X;. The following formulae
can be inductively deduced from the stable situation:

Example 6.2. Let mgA C Q and X be simply connected. Then mlaX ~ X @ moA. In particular if
oA =7 then Ly X ~ X.

Ezample 6.3. Let mgA = Z/p, X simply connected and 7, X finitely generated for all n. Then melaX ~
T X ® Zg.

The proof runs slightly differently depending on if mpA C Q or not, with the former case being
somewhat easier. We treat this first.

Proof of Theorem 6.1 when mgA C Q. We first prove (2). It is clear from the definitions that QL5 F

is L-local. It thus suffices to show that Q°F — QL5 F is an L-equivalence. We can write L% F as the

filtered colimit of a diagram of copies of E, with maps given by multiplication by elements in ZNm(A)*.

It thus suffices to show: if E € Sps, and n € Z N mp(A)*X, then LQ>®(E % E) is an equivalence.

Observe that LQ™E ~ lim; LO>(E<;): Indeed, the map Q*E — Q> (E;) is (i + 1)-connective, and L



20 TOM BACHMANN, ANTON ENGELMANN, AND KLAUS MATTIS

preserves connectivity of maps (Proposition 3.5). In particular, the map LQ™E ~ lim; LQ>(E<;) has
oo-connective fiber, and thus is an equivalence. Therefore, we are reduced to the case that E is bounded.
Appeal to Theorem 4.3 shows that given a fiber sequence £y — Fy — E3 with E3 € Sp~,, the result for
E; and E3 implies the result for E,. This way, working through the principalized Postnikov tower, we
reduce to the case where F is concentrated in a single degree, whence, a connected HZ-module. This
oo-category is generated under sifted colimits by E = Y HZ itself, and so we reduce to this single case.
Now Q®°FE ~ S! and Q*(n: E — E) is indeed the degree n map from S! to itself. Upon stabilization,
this corresponds to the multiplication by n map from the semiadditive structure (as this might be checked
on 7 (X*°S1) ~ 71 (S') by the Hurewicz theorem), and so becomes inverted upon ® A, as needed.

Theorem 4.3 now implies the special case of (3) when B is a simply-connected Eilenberg—Mac Lane
space. From this we deduce by induction that if X is pointed, connected, nilpotent and truncated, then
w*f)AX ~ 7. X QmA.

Now we show a special case of (4), namely, the one where there are fiber sequences X;11 — X; — B;
with B; simply connected Eilenberg—Mac Lane spaces, with connectivity tending to infinity. Setting
X' = lim; L4 X;, the key point is to show that the connectivity of X’ — L4X; tends to infinity with 3.
For this it suffices to show that the connectivity of L AXir1 — L AX; tends to infinity with 7. But we
have the fiber sequences [A/AXi_H — ﬁAXi — ﬁABi (Theorem 4.3), so the claim follows.

Now we prove (1) for arbitrary (pointed, connected, nilpotent) X. Present X ~ lim; X; with fiber
sequences X;11 — X; — B; where B; is a simply-connected Eilenberg-Mac Lane space and the con-
nectivity of the B; tends to infinity. Since the connectivity of X — X; tends to infinity with 7, so
does the connectivity of T*X — T°X,; by Proposition 5.3. Consequently, 7oooT°*X =~ lim; 7o T*X;.
Similarly, 7eooLaX ~ lim; L4 X; (via the special case of (4) above), and so it will be enough to show
that LaX; — T<ooT*X; is an equivalence (in Pro(Spc<oo)). Since the fiber sequences X;+1 — X; — B;
are preserved by 7o T* (Theorem 5.7) and by L, (via the special case of (3) above), we are reduced to
proving the claim for the B;. But, T°B; ~ T*L 4 B;. Now note that LB, ~ QOOZkalmc(Bi) for some
k. But Sl (B;) is a (S71Z = my(A))-module, and hence also admits the structure of an A-module.
Therefore, L 4B is in the image of R, and thus the cosimplicial object is split by Proposition A.4.

The general case of (3) is now an immediate consequence of Theorem 5.7 (T<o.T® preserves fiber
sequences), and the general case of (4) follows from Proposition 5.3 (T'® preserves connectivity). O

Proof of Theorem 6.1 when mgA = Z/n. We again first prove (2). To begin with, let £ € Sp~,, and
consider the fiber sequence F — E — L% E. Then F is connected and 0 = L%F = F’, so that
multiplication by n is an equivalence on F. As before Q> L5 F is L-local, and so it suffices to prove that
Q*FE — Q®L%E is an L-equivalence. Writing L5/ E as the cofiber of F — E, rewriting the cofiber as a
geometric realization, using semiadditivity of Sp and the fact that 2°° preserves sifted colimits, we find
that QLS E ~ Q> (F) Q> (F). Hence,

We have seen in the previous proof that multiplication by n is invertible on *°Q>F', and thus LQ>®F =
0. It follows that L4 Q>®F ~ A and so L Q® L5 E ~ L, Q> (FE), as needed. Now suppose that £ € Sps;.
Applying Theorem 4.3 to the fiber sequence Q®°E — * — QX E (note that we already know that
LO®YE = Q> L5 F is simply connected) we deduce that

LAQ®E ~ QL Q®YE ~ QQ®LIYE ~ QF L E,

as required.

As in the previous proof, this implies the special case of (3) when B is an Eilenberg—Mac Lane space.
From this we deduce by induction that if X is pointed, d-connected, nilpotent and truncated, then LaX
satisfies the same assumptions.

Using the exact same argument as in the previous proof yields the special case of (4).

Next we prove (1) in the special case where X is a simply connected Eilenberg-Mac Lane space. Denote
the functor Tot T by F'. Let B be an abelian group. For i > 0 we have QF K (B,i+3) ~ FK(B,i+2),
since F preserves fiber sequences (Theorem 5.7). We thus obtain an Q-spectrum G = (FK(B,i+2));>0
as well as a map of Q-spectra f: $2H B — G (inducing in each level the map K(B,i+2) — FK(B,i+2)).
We claim that the fiber of multiplication by n on f is an equivalence. Indeed, by Theorem 5.7 again,
the functor F preserves the fiber sequences F; — K (B,i+2) % K(B,i+2) and F; — K(B/n,i+1) —
K(B[n],i + 3). But both B[n] and B/n are A-modules, whence FK(B/n,i+ 1) ~ K(B/n,i+ 1) and
FK(B[nl],i + 3) ~ K(B[n],i + 3) by Proposition A.4, from which we deduce F'F; ~ F;, proving the
claim. Consequently, the map X2H B — G is an n-equivalence, so an L5{-equivalence, whence by (2) we
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deduce that LoK(B,i+2) ~ LAFK(B,i+2). Since FK(B,i+ 2) is clearly L-local, we have proved
FK(B,i+2) ~ LaK(B,i+2), for any i > 0.

Finally, we prove the general case of (1). Writing X = lim; X; with X;1; — X; — B; and B; simply
connected Eilenberg-Mac Lane spaces of connectivity tending to oo, as in the previous proof we find
that FX ~ lim; I'X;, and there are fiber sequences F' X;,1 — FX; — FB;. Since the same holds for ﬁA
in place of F' by the special cases of (3) and (4) we established, showing that FX ~ L, X reduces to
showing that F'B; ~ IA/ABz-. This we treat just before.

The general cases of (3) and (4) follow as in the previous proof. O

6.2. Sheaves. In this subsection we show the analog of Theorem 6.1 for (nice enough) co-topoi. Let X
be an co-topos which admits a locally finite-dimensional cover [Mat24a, Definition 5.1]. In particular, X
is Postnikov-complete [Mat24a, Lemma 5.3] and has enough points (this is part of the definition).

Example 6.4. There are two main examples of such X: Any oco-topos locally of homotopy dimension
< N (e.g., a presheaf co-topos) admits a locally finite-dimensional cover [Mat24a, Example A.1], and the
Zariski, Nisnevich and étale co-topoi on smooth X-schemes, where X is some nice enough base scheme,
cf. [Mat24a, Proposition A.3] and [Mat25, Proposition 2.25]. The existence of a locally finite-dimensional
cover is a technical assumption that guarantees that certain homological localization functors (such as
unstable p-completion) commute with the limit along (weak) Postnikov towers.

Let A € CAlg(Sp(X))>0 be a connective sheaf of commutative ring spectra, such that m,(A) is a
constant sheaf of commutative rings with values either a subring of Q or a quotient of Z. As in the case
of spaces we get my(A) ®z m(A) =~ m5(A). Set D = Moda(Sp(X)), DL = D5 and Ly = A ® TF.
Therefore, we also get Xj}gn D X, >y, for all n > 0. Since X is Postnikov complete, it follows that the
t-structure defined by D> is left complete.

Lemma 6.5. The azioms (C), (M) and (S) hold for the adjunction L 4 R.

Proof. The functor R: DI — X is given by the composition Mod4(Sp(X)>0) — Sp(X)>0 — X; for
the axioms (C) and (S3) it therefore suffices to show that both functors preserve sifted colimits and
are conservative. For the first this is [Lurl7, Proposition 4.8.5.8 (4) and Corollary 4.2.3.7 (2)]. For the
second, since we have enough points, both statements can be checked on stalks, where the statements
reduce to [Lurl?7, Corollary 5.2.6.27].

Axiom (M) follows since already LX € D3 for all X € X', and D4 is stable under tensor products.
The same argument shows axiom (S1). - -

For axiom (S2), let E € D¢, By the Hurewicz theorem we have 7, (Y RE) ~ 7, (E) and thus

T (LRE) ~ 7, (F) ®z 1y (A) = 71 (E) ®p, () mo(A4) @z mo(A) = 7y (E). U
We can again identify the localization functors:

Lemma 6.6. Let E € Sp(X)>o and X € X, be nilpotent. If my(A) = S™'Z C Q, then
(1) LS{E ~ S™'E, and
(2) LyX ~ LsX, where Lg is the unstable S-localization functor, cf. [Mat24a, §3].
Analogously, if my(A) = Z/n, then
(1) [:i‘tE ~ B =limy E/n* =], B, and
(2) LyX ~L,X ~ Hp‘n L, X, the product over the unstable p-completion functors, cf. [Mat24b, §3].

Proof. For the stable identifications see Proposition B.1. We thus identify the unstable localization
functors.

Suppose that m,(A) = S~17Z. We first construct a natural transformation Lg — L 4, and then
show that it is an equivalence on nilpotent sheaves. By definition, Lg is the Bousfield localization at
morphisms fi, : U x (S® A ST) XAk 17 (8" AS1) wheren > 0,U € X, k€ Sand k: S* — St is
multiplication by k. Hence, by the universal property, it suffices to show that L 4 inverts those morphisms,
i.e., that L inverts those morphisms. Using the stable splitting, Lemma 3.1, we reduce to showing that
A@X>(8" A ST AR gn A S1) is an equivalence. This map is equivalent to (A LA A) @ ¥+, which
is an equivalence since k € S. Thus, we get a natural transformation ¢: Lg — L 4, such that ¢x is
a L-equivalence for all X € X,. Let X € X, be nilpotent. In order to see that ¢x is an equivalence,
it thus suffices to show that LgX is L-local. Since X is nilpotent, working through the layers of a
principalized Postnikov tower using [Mat24b, Lemma A.15] as well as [Mat24a, Lemma 3.13, Lemma
3.18 and Proposition 6.9], we see that LgX lies in the closure under limits of Q5! Sp(X)>s. We
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conclude since the class of L-local objects is closed under limits, Q2> converts L3-local objects into
L-local objects, and 2571 Sp(X)>2 = QL5 Sp(X)>2 (by (1)).

Suppose now that my(A4) = Z/n. Let f: X — Y € X. By the stable identification, we know that f
is an L-equivalence if and only if f is an n-equivalence in the sense of Definition C.2. Thus, we see that
L A >~ L,, and the claim thus follows from Theorem C.6. O

We need the following fact about highly connected towers:

Lemma 6.7. Let X € X, be a sheaf, and let (X;); be a highly connected tower in X, (in the sense of
[Mat24a, Definition 6.1], i.e., the connectivity of X;+1 — X; tends to oo) under X. Then X — lim; X;
is an equivalence if and only if the connectivity of X — X; tends to co.

Proof. Assume first that X ~ lim; X;. We want to argue as in [Mat25, Lemma 2.4] that the connectivity
of X — X tends to co. Unfortunately, the reference requires X to be locally of homotopy dimension < N
for some N. The same proof works in our case, but using [Mat24a, Corollary 6.6] instead of [Mat24a,
Corollary 6.5].

Suppose on the other hand that the connectivity of X — X, tends to co. Write Y := lim; X;, so
that there is a canonical map X — Y. By the above, the connectivity of ¥ — X; tends to oo, hence,
by two-out-of-three, the connectivity of X — Y tends to co. Since this is independent of i, we see that
X — Y is co-connective, hence we conclude by hypercompleteness. ([

Theorem 6.8. Let X' be an oo-topos which admits a locally finite-dimensional cover, and let A €
CAlg(Sp(X)>o) with myA either a constant subsheaf of Q or a constant quotient sheaf of Z.

(1) Let X € X, be nilpotent. The canonical map LaX — 7>1 Tot T3 X is an equivalence. In fact, if
mo(A) € Q, then already the canonical map T<OO.EAX — TeooT* X s an equivalence.

(2) For E € Sp(X)s, the canonical map LaQ®E — 751Q%L5LE is an equivalence. In fact, if
mo(A) € Q, then already the canonical map LaQ®E — Q>® LS E is an equivalence.

(8) Let F — E — B be a fiber sequence of pointed nilpotent sheaves. Then the canonical map
LiF — 7>1 fib (ﬁAE — ﬁAB) is an equivalence. In fact, if mq(A) C Q, then already LAF —
fib (LuE — LaB) is an equivalence.

(4) Let X be a tower of pointed, nilpotent sheaves with X = lim; X;. Assume that the tower is
locally highly connected subordinate to some cover U (in the sense of [Mat24a, Definition 6.1]).
Then the canonical map f/AX — lim; IA/AXi s an equivalence.

Proof of Theorem 6.8 if my(A) = S71Z. Under the identifications of L5 and L4 from Lemma 6.6, (2),
(3) and (4) follow from [Mat24a, Lemma 3.18, Lemma 3.13 and Proposition 6.9], respectively.

Now we prove (1), so let X € X, be nilpotent. Write F' := T'§. We can present X ~ lim; X; with
fiber sequences X;1; — X; — B; where B; is an Eilenberg-Mac Lane space and the connectivity of
the B; tends to infinity, cf. [Mat24b, Lemma A.15]. By (3) and (4), the functor L, preserves these
fiber sequences and the limit appearing in the tower, and similarly F' preserves these fiber sequences by
Theorem 5.7. Noting that (X;); is a highly connected tower (under X) we deduce from Lemma 6.7 and
Proposition 5.3 that the connectivity of FX — F X, tends to infinity with i, even uniformly in the levels
of the pro-object. By definition of 7., it follows that 7o F X >~ 7o lim; FX;. We have thus reduced
to the case where X = Q°%* M for some sheaf of abelian groups M and k > 2. Since both sides invert
L-equivalences, we can replace X by L X, and we have to see that X — T<ooF'X is an equivalence. By
(2) we know X = LoQ°%FM ~ Q°¥FS—1M. The result follows from Proposition A.4, since S~1M is
an (S7'Z = 7y A)-module, whence an A-module. O

Proof of Theorem 6.8 if wy(A) = Z/n. We will use without mention the identifications of L% and L
from Lemma 6.6. Then (2) is Lemma C.16, (3) is Lemma C.17, and (4) is Lemma C.18.

We now establish (1). Since 7>1: X, — X, >1 is a right adjoint it preserves limits. Similarly, the
functor L4 restricts to X, >; (this follows from [Mat24b, Lemma 3.12]), and the restricted functor
preserves appropriate fiber sequences (by Lemma C.17). Thus, as in the proof for my(A) = S™1m,(1),
we reduce to the case X = Q°Y¥M an Eilenberg-Mac Lane sheaf, with k > 2. Write F := 75, Tot T =
T>1mat T« T%. Then

G(M) := (FQ®XFM, FQ*YF M, ...) € Sp(X, >1) ~ Sp(&X),
since F' preserves loops as above. The functor G also preserves fiber sequences of 2-connective spectra.

There is a canonical map X*M — G(M), which is an equivalence whenever M is a finite extension
of A-modules, essentially by Proposition A.4. It follows that ¥*M — G(M) is an n-equivalence, i.e.,
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induces an equivalence on fibers of multiplication by n. Since ¥£¥M is connected, this implies that also
Y*M — 751G(M) is an n-equivalence (this follows easily from e.g. [Mat24b, Lemma 2.9 and Corollary
2.11]; note that in the proof there it is never used that p is a prime). Hence, using Lemma C.16, we see
that

QFSFM — Q%°751G(M) =~ F(Q°XFM)

is also an m-equivalence. Since the target is n-complete by construction, this concludes the proof. (I

6.3. Equivariant spaces. Let G be a finite group. We will now apply our machinery to the study
of G-equivariant spaces, whose co-category we denote by Spc(BG). By Elmendorf’s theorem [ElmS83,
Theorem 1] this is equivalent to an co-category of presheaves

Spc(BG) ~ Px(Fing).
Here Fing denotes the 1-category of finite G-sets. In particular, Spc(BG) is a topos locally of homotopy
dimension 0, so various results of the previous sections apply.
An additional complication which arises is that the appropriate notion of stabilization in this situation
1
is not the naive one, i.e., SH° (BG) = Sp(Spc(BG)) only plays a minor role in the theory. Instead, the

category of genuine G-spectra is obtained by inverting the regular representation sphere S¢ € Spc(BG).,
(see [LMSMS86, §1.2] or [Cno24, Definition 4.1] for an co-categorical definition),

SH(BG) = Spe(BG).[(S9)~);
this fits into the usual adjunction
2%°: Spe(BG). = SH(BG) Q.
A helpful alternative picture is the description as spectral Mackey functors [GM24, Narl6], i.e.,
SH(BG) ~ Fun™ (Span(Fing)°?, Sp),

where Span(Fing) denotes the (2, 1)-category of spans in finite G-sets [BH21b, Appendix C|. The sta-
bilization functor Spc(BG) — SH(BG) factors over SHS' (BG), cf. [Rob13, Corollary 4.24]. This in

turn yields an adjunction o*: SHSl(BG) = SH(BG) :w™. Alternatively the adjunction is obtained
from the canonical functor Fing — Span(Fing) by passing to spectral presheaves via left Kan extension
and restriction. In particular, the left adjoint o> preserves compactly generating families by [Lur09,
Proposition 5.5.8.10(6)] and construction, and hence w® is conservative and preserves all limits and
colimits.

The above spectral Mackey functor description makes it clear, for example, that SH(BG) has a t-
structure with heart the abelian category of Mackey functors Fun*(Span(Fing)°P, Ab). Given X €
Spce(BG), we write 7;(X) € Fun™ (Fing?, Set) for the zero-truncation of Q°X, i.e.,

,(X)(T) = [T4 A S, X].

Similarly, given E € SH(BG) we denote by 7;(X) € Fun™ (Span(Fing)°P, Ab) the homotopy objects in
the t-structure; one then has
7 E|ping ~ myQF°S'E.

In order to apply our machinery in this situation, we need to construct a t-structure on SH(BG)
such that if E is 1-connective in the t-structure, then X*°Q>°F — F induces an isomorphism on the
first homotopy object. Note that the above t-structure (with homotopy objects m; F) will not do (unless
G = 1): by the tom Dieck splitting theorem [tD75, Satz 2| we see that for F € SH(BG) with m,E =0
for ¢ < 0 we have

™ (EQ%E)(x) = @ m(B)(G/H)wa.
(H)CG
Here, WH = NgH/H denotes the Weyl group. This cannot agree with 7, (E)(*) unless m (E)(G/H) =0
for all proper subgroups H. Inspired by this, we make the following definition.

Definition 6.9. For H < G we define [(H) = max{r|H < H; < --- < H, = G}, by convention I(G) = 0.
Let n > 0. We define X € Spc(BG). to be (n, G)-connective if for every H < G and i < n+ I(H) we
have 7;(X)(G/H) = *. Similarly, for n € Z we call E € SH(BG) (n,G)-connective if Q*°X'F is
(n + 1, G)-connective for all i > —n.

Remark 6.10. In other words, we require that Map,(G/H;, X) is (n + l[(H))-connective, where [(H) is
the maximal length of a proper chain of subgroups of G starting at H. Note that I(H) is bounded by
the number of prime factors (with multiplicity) of [G : H], and so in particular by [G : H] itself.
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Ezample 6.11. Since Map(S°, S%) is 1-connective (S decomposes as S' smash the reduced regular
representation sphere) and S¢|spc(pr) =~ (SH)MEH] we see that S is (1, G)-connective. More generally
for X € Spc(BG)y, and n > 1 (S9) " A X is (n, G)-connective.

Lemma 6.12. Let X € Spc(BG). and E € SH(BG) be (n, G)-connective (n > 0 for X ).
(1) °X is (n,G)-connective.
(2) Q*FE is (n,G)-connective (provided n > 0).
(3) 7> X,7<;X are (n,Q)-connective for i > 0.
(4) > E,7<;E are (n,G)-connective for i € Z.
(5) Assuming n > 1, the fiber of E°Q>®E — E is (n + 1, G)-connective.

Proof. (2) follows immediately from the definition, and (3) and (4) are clear since 7>, T<; commute with
fixed points (i.e. evaluating at G/H).

Let us prove (1). Let X € Spc(BG) be (n, G)-connective and H < G. For every i < n+ I(H) there is
an equivalence 7, (X X)(G/H) ~ @ )< g 7;(X°(X(G/H")wp)) by the tom Dieck splitting. Since by
assumption X (G/H') is (n + I(H'))-connective and ¥°°: Spc — Sp preserves connectivity, (1) follows.

Now we prove (5). Write F := fib(Z*°OQ®F — E). As ¥°QO>F is (n, G)-connective by (1) and (2), it
follows that I is (n—1, G)-connective. It is left to show, that the morphisms ;) (E*°Q*E)(G/H) —
iy (E)(G/H) are isomorphisms for all H < G and i = n, and epimorphisms for i = n + 1. Since
n > 0, we may as well check this after applying Q2°°. But then X*°Q*F — FE splits, so the surjectivity
(at i = n 4+ 1) is clear. Finally, by the tom Dieck splitting, we have that

() (EXQYE)G/H) = 1y (E)G/H) & @D mpsan (ENG/H wr
(H')<H
Now for H' < H we have l(H') > I(H), and so 7,, ;) (E)(G/H")wpr = 0. This concludes the proof. [

Now let A € CAlg(SH(BG)>¢) such that m,(A) is idempotent. Furthermore, set X = Spc(BG),
D = Moda(SH(BG)), Ly = A® X and

DSEI% ={F € Mod4s(SH(BG))| E is (0, G)-connective}.
Using Lemma 6.12(1), we have for all n > that
Spc(BG)sd {X € Spc(BG). | X is (n,G)-connective}.

*>n—

Let us observe the following about the interaction of the two ¢-structures.

Lemma 6.13. Let E € SH(BG)>o and F € SH(BG)Y. Then E® F € SH(BG)LY. Moreover, for
H C G we have
T (E ® F)(G/H) ~ (2" E) @ myy (F(G/H)).

Proof. The first statement being stable under colimits in £, we may assume F = X°G/H. In this
case (X*°G/Hy ® F)(G/H') ~ F(G/H x G/H'), the orbit ¥3°G/H being self-dual. Now G/H x G/H'
decomposes into a finite sum of G/H"”, for H” subconjugate to H’. Thus, I(H"”) > I(H') and so the
connectivity of F(G/H x G/H') is at least as high as the connectivity of F(G/H’), as was to be shown.

For the final statement, we may assume H = G. Let Lg: SH(BG) — SH(BG) denote the localization
annihilating ¥3°G/H for all proper subgroups H. This is a smashing localization, (—)€ induces an
equivalence LeSH(BG) ~ Sp, and ®%(—) = Lg(—)%, essentially by definition, see [LMSM86, Corollary
11.9.6] and [MNN17, Theorem 6.11]. Thus, we find

T0((E® F) (%)) ~ 1y(E ® F)(x) = 15(E @ T<oF) () ~ my(La(E) @ T<0F) (%) =~ 10(®° E) @ mo(F (%)),
using that 7<qF' ~ LeT<oF (and Lg is smashing). O
Lemma 6.14. The azioms (C), (M) and (S) hold for the adjunction L 4 R.

Proof. Since DSld is accessible and closed under colimits and extensions, it is indeed the nonnegative
part of a t-structure [Lurl7, Proposition 1.4.4.11].
Consider the commutative diagram

SHS (BG)so " SH(BG)so +—— DY

o | /

Spc(BG).



MONADIC RESOLUTIONS FOR GENERALIZED SPACES 25

The functor R is given by the composition form the top right to the bottom left. For axioms (C) and
(S3) it therefore suffices to show that all functors in the composition preserve sifted colimits and are
conservative. The first one is monadic and preserves finite colimits, w® is conservative and preserves
all colimits by the discussion above, and the claim for the vertical 2°° is contained in the proof of
Lemma 6.5.

Axiom (M) is immediate from Lemma 6.13.

Axiom (S1) is immediate from Lemma 6.12(1,2).

For (S2), let E € D3{. Using Lemma 6.12(5) and Lemma 6.13 we compute

W1+Z(H)(LRE>(G/H) ~ 7Tl+l(H)(A X E)(G/H) ~ Wo(QHA> X 7T1+Z(H)E(G/H)
Since E € SH(BG)Y{ is an A-module, 7y E(G/H) is a (27 A)-module. But myA is idempotent,

whence so is mo® A, and so mo(®7 A) @ w1y E(G/H) ~ 14 E(G/H), as needed. O

We will study L 4 and Tot T3 for various choices of A in the next few subsections. They will be related
to the usual unstable S-periodization and n-completion functors. This is based on the following.

Lemma 6.15. Let S C Z, and let E € SH(BG) be 1-connective. Denote by Lg: Spc(BG) — Spc(BG)
the unstable S-localization functor. Then LgQ™®E ~ Q>®S~1E.

Similarly denote by Ly, : Spc(BG) — Spc(BG) the unstable n-completion functor from Definition C.2.
Then L,Q®F ~ Q>E}.

Proof. Since w*>: SH(BG) — SHS (BG) preserves limits, colimits and 1-connective objects, we may

replace SH(BG) by SH® 1(BG) throughout. This being the stabilization of a presheaf oco-topos, we
conclude by [Mat24a, Lemma 3.18] and Lemma C.16. O

Many of our arguments will rely on decomposing genuine G-spaces into infinite loop spaces of genuine
G-spectra. The usual Postnikov tower is not sufficient for this. Indeed, if X € Spc(BG)., then m,(X)
is (for i > 2) a coefficient system, i.e., an object of Fun™ (Fing}, Ab). The corresponding Eilenberg-Mac
Lane space is the infinite loop space of a genuine G-spectrum if and only if the coefficient system extends
to a Mackey functor, which is not true in general. Luckily, we can actually build all coefficient systems
out of Mackey functors, in an appropriate sense.

Lemma 6.16. Let G be a finite group. Every coefficient system C € Fun™ (Finy, Ab) admits a resolution
by Mackey functors
0=-C—C"=C'—... 0N =0,

i.e.:

e Each C' is the coefficient system underlying a Mackey functor.

o The above sequence of coefficient systems is exact.
Moreover, the following hold:

e The resolution is functorial in C.

e The number N is independent of C' (in fact N < |G|).
o Let H < G such that whenever K < H we have C(G/K) = 0. Then also C*(G/H) = 0.

Proof. The adjunction 0 4w can be restricted to an adjunction on the heart F': Fun™ (Fin®’, Ab) =
Fun”™ (Span(Fing)°P, Ab) :U, see [BBD82, Proposition 1.3.17(iii)|. In particular, this is the free-forgetful
adjunction between coefficient systems and Mackey functors. For C' € Fun™ (Fingy, Ab) define C* :=
UF(coker(C'=2 — C'1)) (set C~1 := C,C° := 0). This construction is clearly functorial in C. Exactness
follows by construction from the fact that for any coefficient system D, the canonical map D — UFD is
injective. In fact, by the tom Dieck splitting, we have

UFD(G/H)~ @ D(G/H)wn.
(H')<H
This also immediately proves the last bullet point. The only thing that remains to be done is to show
that CV = 0 for N large enough. For this, note that the tom Dieck splitting formula from above implies
that if D(G/H') = 0 for all H' properly subconjugate to H, then UFD(G/H) ~ D(G/H) and so
(UFD/D)(G/H) = 0. The construction of C* thus implies that C*(G/H) = 0 as soon as i > [(H). O

Now let X € Spc(BG). be (1, G)-connective. Note that then X (G/H) is simply connected for every
proper subgroup H. From this it follows that X is nilpotent if and only if X (x) is nilpotent. Applying a
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functorial principalized Postnikov tower construction sectionwise, we can build a principalized Postnikov
tower for X. Thus, we obtain fiber sequences

Xi—i—l - X; = K(Ai7 n; + 1) S SpC(BG)*

Here each A; is a coefficient system, n; > 1, and there are compatible maps X — X; of connectivity
tending to infinity with i. Moreover, m,(X;) is a subquotient of m,(X), and A, is a subquotient of
7,,. (X). This implies that each X; is (1, G)-connective and each K(A;,n; + 1) is (2, G)-connective.

Ln;

Construction 6.17. We refer to the data above as a (1, G)-connective principalized Postnikov tower
for X.

Remark 6.18. Let A be a coefficient system and n > 1 such that K(A,n) is (2, G)-connective. Rewriting
the resolution of Lemma 6.16 as a system of short exact sequences, we obtain fiber sequences K(A;, n) —
K(M;,n) = K(A;11,n) with A; = A, M; a Mackey functor and A; = 0 for ¢ sufficiently large. Moreover,
each K(A4;,n) and K(M;,n) are (2, G)-connective, by the last claim of that lemma.

Combining Construction 6.17 and Remark 6.18 yields our desired decomposition of nilpotent (1, G)-
connective spaces into (2, G)-connective infinite loop spaces.

6.3.1. Burnside Resolutions. In this subsection, we assume that m,(A) is either S~'m,(1) for S C Z\ 0
or my(1)/n for n € N.
We can identify the associated localization functors.

Lemma 6.19. Let E € SH(BG)>o and X € Spc(BG).. nilpotent. If my(A) = S~ my(1), then
(1) LS{E ~ S™'E, and
(2) LyX ~ LsX, where Lg is the unstable S-localization functor, cf. [Mat24a, §3].
Analogously, if my(A) = my(1)/n, then
(1) ]3ng ~ B\ =limy E/n* = L. Ep, and
(2) LaX ~L,X ~ Hp‘n L, X, the product over the unstable p-completion functors, cf. [Mat24b, §3].

Proof. The identification of L% is Proposition B.1. The tom Dieck splitting theorem implies that
o= SHS (BG) — SH(BG) is conservative. Suppose first that m,(A) = S~!my(1). Then a map
f:Y — Z of G-spaces is an A-equivalence if and only if ¥%° f is an S-equivalence (by the stable identifi-
cation), if and only if ¥ (f) is an S-equivalence (by conservativity). Thus, it follows from Lemma 6.6
that for X € Spc(BG). nilpotent we have L4 X ~ LgX. The case my(A) = m,(1)/n is treated similarly,
additionally using Theorem C.6. O

Theorem 6.20. (1) Let X € Spc(BG), be nilpotent and (1,G)-connective. The canonical map
LaX — TotT$X is an equivalence. In fact, if my(A) = S~ my(1), then already the canonical
map T<OoﬁAX — Teoo TR X is an equivalence.

(2) For E € SH(BG)s the canonical map LaQ®E — QL E is an equivalence.

(8) Let F — E — B be a fiber sequence of pointed nilpotent G-spaces. Then the canonical map
LAF — fib (iAE — IA/AB) s an equivalence.

(4) Let Xo be a tower of pointed, nilpotent G-spaces with X = lim; X;. Assume that the tower is
highly connected. Then the canonical map LaX — lim; LaX; is an equivalence.

Proof of Theorem 6.20 if my(A) = S~ my(1) . Under the identifications of L 4 and L% from Lemma 6.19,
(3) and (4) follow from [Mat24a, Lemma 3.13 and Proposition 6.9], respectively. Statement (2) then
follows by combining Lemmas 6.15 and 6.19.

We now prove (1). Let X be nilpotent and (1,G)-connective. Working through a principalized
Postnikov tower, as in the proof of Theorem 6.8, we can reduce to the case that X = K(C,k) for a
coefficient system C' and k& > 2. Note that as pointed out in Construction 6.17, the space K(C,k)
is (2, G)-connective. (A key point is that by Construction 6.17, we never leave the world of (1,G)-
connective G-spaces, and so our axiomatics apply.) Using Lemma 6.16, Remark 6.18, and Theorem 5.7
(we can use the latter since in all the fiber sequences the base is (2,G)-connective), this reduces to
the (2, G)-connective G-space X = Q*¥*M, where M is a Mackey functor. Since both sides invert
L-equivalences, we can replace X by L4X, and we have to see that X — T<ooX'3 X is an equivalence.
By (2) we know X = L4Q%%FM ~ Q®°%¥S~1M. The result follows from Proposition A.4, since S~ M
is an (S7!my(1) = m(A))-module, whence an A-module. O
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Proof of Theorem 6.20 if mo(A) = my(1)/n . We will use without mention the identifications of L3/ and
L4 from Lemma 6.19. Then (3) is Lemma C.17, and (4) is Lemma C.18. Moreover, (2) follows by
combining Lemmas 6.15 and 6.19.

We now show (1). As in the proof for my(A) = S~1my(1), we reduce to the case that X = Q°X¥M
is (2, G)-connective for a Mackey functor M. Write F' := Tot T§. Then

P(M) = (FQ®SFM, FQ®S* 1M ) e SHS (BG),
since F preserves loops by Theorem 5.7. The functor P also preserves fiber sequences of 2-connective
spectra. There is a canonical map w*¥*¥M — P(M), which is an equivalence whenever M is a finite

extension of A-modules, essentially by Proposition A.4. It follows that ¥ M — P(M) is an n-equivalence,
i.e., induces an equivalence on fibers of multiplication by n. Hence, using Lemma C.16, we see that

Q°2EM — QX P(M) ~ F(Q©°x* M)
is also an m-equivalence. Since the target is n-complete by construction, this concludes the proof. O

6.3.2. Z Resolutions: Localization. Let G be a finite group and I the augmentation ideal of the Burnside
ring Mackey functor A, i.e., the kernel of the surjective rank map A — Z. Throughout this subsection
we assume that m,(A) ~ S~ 1(xy(1)/I) ~ S7'Z for S € Z\ 0 and |G| € S. Consider the element
eS¢ = [G/e]/|G| € A(G)[1/|G|]. This is immediately checked to be an idempotent. For E € S~'SH(BG)

we put
G

Gy-1 : ed el
(e)"E=colimE — F —=» ...
We define (1—¢%)~!E similarly. Then the canonical map E — () 'E® (1 —e%)~!E is an equivalence,
as is immediately verified on homotopy Mackey functors.

Remark 6.21. Note that (1 —eS)~'E = 0 if and only if [G]r,E = 0, i.e., E(G/e) = 0.

To identify the localization L 4, it will be useful to consider the inclusion i: BG — Fing sending the
unique object of the source to G. This induces an adjunction

i*: Spc(BG) = Fun(BG, Spe) :i..
Here i* X is just X(G) viewed as a naive G-space, and i, turns a naive G-space into a genuine one by

declaring the genuine fixed points to be the homotopy fixed points. In particular, i, is fully faithful.
(The functor ¢* has a further left adjoint ¢, which does not concern us here.) We also have

i*: SH(BG) = Fun(BG, Sp) : i,
with similar properties, e.g. [NS18, Theorem I1.2.7].

Lemma 6.22. Let E € SH(BG) be bounded below and X € Spc(BG).. be nilpotent.
(1) We have L3} E ~ (e§)"1S~'E.
(2) Alternatively, we have L{E ~ i, S™1i*E.
(3) We have Ly X ~ i, Lgi*X.

Proof. (1) The morphism A — A/I admits a section given by 1~ [G/e], implying that S~'A[1/eS] =
STYA/I ~ 1y (A).

The previous sentence shows that e& maps to a unit in 7,(A4) and so L% E ~ Lsf(eS)"1S71E. Tt will
thus be enough to show that E’ := (¢§)"1 S~ E is A-local. This follows from a Postnikov tower argument,
using that E’ is bounded below (since E is) and each m,(E’) as a module over (e$)"1S71A ~ m,(A).

(2) Since i, is fully faithful, 4,5~ 1i* is a localization functor, namely at the underlying S-equivalences.
By Remark 6.21, so is (e&)71S~!. The claim thus follows from (1).

(3) By (2), a map f in Spc(BG) is an L-equivalence if and only if S™'X5%* f is an equivalence. In
particular, L4 = Lai,i*, the functor i, being fully faithful (i.e., part of a localization). The subcategory
of objects of the form i.(—) is equivalent to Fun(BG, Spc), and under this equivalence, L4 on this
subcategory just coincides with localization at the homological S-equivalences. For nilpotent objects,
this is given by Lg (Lemma 6.6). This concludes the proof. O

Theorem 6.23. (1) Let X € Spc(BG). be nilpotent and (1,G)-connective. The canonical map
T<OOiAX — Teoo TR X is an equivalence.
(2) For E € SH(BG)> the canonical map LaQ®E — QL E is an equivalence.
(8) Let F — E — B be a fiber sequence of pointed nilpotent (1,G)-connective G-spaces. Then
EAF ~ fib (f/AE — iAB).
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(4) Let Xo be a tower of pointed nilpotent (1, G)-connective G-spaces with X = lim; X;. Assume
that the tower is highly connected. Then LaX ~1lim; L4 X;.

Proof. (2), (3) and (4) are immediate from Lemma 6.22, the fact that i* and i, preserve all limits (since
they are right adjoints), and the corresponding facts about Lg, cf. [Mat24a, Lemma 3.18, Lemma 3.13
and Proposition 6.9].

For statement (1), arguing in the usual way (see e.g. Theorem 6.20(1)), we reduce the case X =
K(M,1) where ¢ > 2 and M is Mackey functor with M ~ i.i*ST1M. But then M is a module over
S~1Z, and so the claim follows from Proposition A.4. O

6.3.3. Z Resolutions: Completion. For this subsection let G be a finite p-group. We continue to write [
for the augmentation ideal of the Burnside ring Mackey functor A. Assume that my(A) ~ A/(I,p) ~F,,.

Lemma 6.24. Let E € SH(BG)>o. Then L{E ~ E}).
Moreover, L X ~ L,X for X € Spc(BG). nilpotent.

Proof. To show the stable identification use that L% E =~ E} by Proposition B.1. Since E}, is p-
complete it suffices to show that E;,\ is Ep—complete. Let (E<p)n be a Postnikov tower with E ~
lim,, F<,. It is enough to show that all (ES,L)Q are Ep—complete as completion commutes with limits,
e.g. [Mat24b, Lemma 2.5]. Using the fiber sequence (E=,); — (E<n), — (E<n), we reduce to the
case of ¥ M, where M is a Mackey functor. We have that Mz/>\ ~ lim,, M /p"™ and moreover a fiber
sequence M //p" LN M /p"*tt — M //p. Hence, it suffices to show that M //p is F,-local. There is a fiber
sequence X(M|p]) — M //p — M/p. Therefore, we may reduce to the case where M is p-torsion and thus
a (my(1)/p)-module. It is even a (my(1)/I"™)-module for some n > 0 by [Lai79, Proposition 1.12] (it is
here where we need G to be a finite p-group). For k& > 0 we obtain exact sequences I*M — I*=1M —
I*=YM/I*M. Since each I*~'M/I*M is an A/I-module in addition to being an A/p-module, it is in
fact an F -module. Since I"M = 0 it follows that M is [, -local. This shows the claim in the stable case.

The unstable claim follows by the same argument as in Lemma 6.19. O

Theorem 6.25. (1) Let X € Spc(BG). be nilpotent and (1,G)-connective. The canonical map
LaX — TotT*X is an equivalence.
(2) For E € SH(BG)s the canonical map LaQ®E — QL E is an equivalence.
(8) Let F — E — B be a fiber sequence of pointed nilpotent G-spaces. Then the canonical map
LAF — fib (iAE — IA/AB) s an equivalence.
(4) Let Xo be a tower of pointed, nilpotent G-spaces with X = lim; X;. Assume that the tower is
highly connected. Then the canonical map LaX — lim; LaX; is an equivalence.

Proof. (3) and (4) where already shown in Theorem 6.20. For (2) combine Lemmas 6.15 and 6.24.

For (1) we repeat the arguments from Theorem 6.20(1) in the case myA = my(1)/p. We must eventually
show that w*¥* M — G(M) is a p-equivalence for Mackey functors M, and we know this if M is a module
over F,. As in that proof, one reduces to the case where M is p-torsion. As in the proof of Lemma 6.24,
this implies that M is a finite extension of F,-modules, from which we conclude. (I

6.4. Motivic spaces. Let k be a perfect field. Recall the category of motivic spaces Spc(k) and motivic
spectra SH(k), e.g. from [BH21b, §2.2 and §4.1]. Write XP+99: SH(k) — SH(k) for the autoequivalence
given by tensoring with the motivic sphere ¥7G,,?. Pick A € CAlg(SH(k)*f) (see Remark 6.27 for
SH(k)'*®) and let D := Moda(SH(k)). We will have to pick a category of solid objects, and there are
some choices for this: for v > 0 put DL := X" Mod 4 (SH(k)"*®). For most purposes v = 1 is the
only relevant case. For all n > 0 we have X:;l‘i 2 Spc(k) s, >(v4n,), cf. Remark 6.26.

Since Spc(k) is famously not an co-topos, we cannot directly work with the adjunction Spc(k) = D,
but have to work with X' := Shvyis(Smy), the co-topos of Nisnevich sheaves on (quasi-compact) smooth k-
schemes. This co-topos admits a locally finite-dimensional cover U [Mat24a, Proposition A.3]. Note that
by construction there is an adjunction Lji: X & Spc(k) :ep1. Hence, we will work with the composed
adjunction L: X & Spc(k) = D : R. We get the associated completion functor Tot T4 : X, — X, (which
in fact takes values in Spc(k). C X).

Remark 6.26. Recall the notion of v-effective motivic spaces Spc(k)>(,,,) from [ABH24, §3], where the
notation O(S*") was used. It follows from the definition of O(S%T"") in the stable situation together
with [ABH24, Proposition 3.2.4] that if X € Spc(k). is v-effective and d-connective, then LX € D?&d.

Remark 6.27 (t-structures on SH(k)). The stable co-category SH (k) admits multiple useful t-structures.
The homotopy t-structure was defined by Morel [Mor03, Theorem 5.2.3], its connective and coconnective
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parts are given by vanishing conditions on the bigraded homotopy sheaves. We will write SH.(k)" for the
heart of the homotopy t-structure, which Morel identified as the abelian category of homotopy modules
[Mor03, Theorem 5.2.6]. As usual, we will write z,,(—). for the homotopy objects in this t-structure.
This t-structure is left-complete, cf. [Hoy15, Corollary 2.4].

One other choice of a t-structure is the effective t-structure, whose connective part is given by
SH(k)*f ie., by those motivic spectra that are both connective in the homotopy t-structure and
effective [Bacl7, §3]. This t-structure restricts to a t-structure on SH(k)*, the subcategory of effective
motivic spectra. We will write SH (k)™ for the heart, and 7¢f(—) for the homotopy objects in the
effective t-structure.

Remark 6.28 (Slice filtration). For every n € Z we write f,,: SH(k) = SH(k) for the n-th effective cover
functor, and s, == cof (f,+1 — fn) for the n-th slice functor, cf. [Voe02, §2].

We will first verify the axioms.
Lemma 6.29. The functors
SH(E)™ =5 SHS' (k) — Sp(Shvis(Smy))
preserve limits and colimits and are conservative.

Proof. Both functors are right adjoints by construction, and hence preserve limits. That w is conserva-
tive and preserves colimits was shown in [BY20, Lemma 6.1 (1)]. The second functor is fully faithful and
hence conservative. It is exact and thus preserves finite colimits. That it also preserves filtered colimits
follows immediately from the fact that the Nisnevich sheaves of spectra ¥5°U with U € Smy, are compact
(see, e.g., [BH21b, Proposition A.3(2)]). O

Lemma 6.30. The azioms (C), (M), (S1) and (S3) hold for the adjunction L 4 R. Ifv > 1 and w(A).
is idempotent in SH(k)Y, then also (S2) holds.

Proof. For axioms (C) and (S3) we consider the following commutative diagram:

Sp(Shvis(Smp))s0 —— SHS (k)s0 <2 SH(k)™T +—— Mod 4 (SH(k)*!)

Jo- l

Shvyis(Smy ) +— Spe(k).

The functor R is given by the composition from the top right to the bottom left. Hence, it suffices
to show that any functor in this composition preserves sifted colimits and is conservative. For the
forgetful functor Moda(SH(k)*T) — SH(k)'*f, this follows from e.g. [Lurl7, Proposition 4.8.5.8 (4)
and Corollary 4.2.3.7 (2)]. See Lemma 6.29 for w® and the inclusion. In the proof of Lemma 6.5 we
showed the statement for Q.

For axiom (M), it suffices to note that for any X € X, we have LX € D%} (see Remark 6.26), and
that / )

DEd @ DI ¢ plte)d.

The same reasoning also implies axiom (S1), using that Q2 preserves effectivity [ABH24, Proposition
3.2.12).

For (S2), let us first show that if £ € ¥21SH (k)" then ¥°OQ>*F — F induces an isomorphism on

71 (—)«. Equivalently, using [Bacl7, Proposition 5], the composite
S2LSH(E)EY 5 BSHS (k) (1) — X,
should be fully faithful. The first functor is fully faithful by [BY20, Theorem 6.9], and the second by the

classical Hurewicz theorem together with [ABH24, Proposition 3.2.12]. Now let F € Dgslld. The functor

DY 5 SH(k)! being t-exact (see e.g. [Bac2l, Lemma 29|), in order to show that LRE — E induces
an isomorphism on 7; (with respect to the ¢-structure specified by D**!4) it is by [Bac17, Proposition 4]
sufficient (and necessary) to show that 7, (LRE)_, ~ m;(E)_,. Since v > 1 we have (by what we first
showed) that w1 (LRE). ~ 7, (E). ® my(A).. This implies what we want since m,(A). is idempotent by
assumption. O

In the cases discussed below, my(A), will always be either a quotient or a localization of the unit (or
a combination of the two), whence idempotent, so that the axioms hold.

Corollary 6.31. Let X € Spc(k), be n-effective and d-connected. Then T%(X) consists of n-effective
d-connected spaces.
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Proof. This follows from Corollary 5.4 by taking v = n. O
Before stating the main theorems of this section, we need some preliminaries.

Definition 6.32. We call X € Spc(k). resolvable if there exists a tower X — X, as well as fiber
sequences X;11 — X; — Q> B;, such that:
(1) The connectivity of X — X; tends to infinity with 4.
(2) The connectivity of B; tends to infinity with i.
(3) B; € S3SH (k)veft.
Remark 6.33. It is proved in [ABH24, Construction 4.1.7, Remark 4.1.13| that X € Spc(k). is resolvable
as soon as X is nilpotent and either
e X is 2-effective, or
e X is l-effective and e-periodic, where e is the exponential characteristic of k.

Remark 6.34. Tt follows that X; € X% and Q®B; € AL, for some sequence d; tending to infinity
with 4. Indeed, the second claim is (essentially) Lemma 3.4 (2), combined with the assumption that the
connectivity of the B; tends to infinity with i. The first claim is proven inductively, using the second

claim, [ABH24, Theorem 4.2.3] and the definition of D!s!d.

Remark 6.35. If X is resolvable and n-effective, one may choose the X; and B; such that they are all
n-effective, again by [ABH24, Construction 4.1.7 and Remark 4.1.13].

The next result concerns the interaction between the co-topos-theoretic S-localization in X and the
stable S-localization in SH (k).

Lemma 6.36. Let S C Z, and let E € SH(k) be 1-connective. Denote by Lg: X — X the unstable
S-localization functor. Then LgQ®FE ~ Q®S~1E.

Proof. Consider the commutative diagram

Sp(Shvis(Smy)) +—— SHS (k) ¢ SH(k)F

I |

Shvis(Smy) +— Spe(k).

It suffices to show that the composition on the top and left commutes with S-localization. Since both
w™ and the inclusion S’HSl(kz) — Sp(Shvyis(Smy)) preserve colimits by Lemma 6.29, it follows from
e.g. [Mat24a, Corollary 2.7] that they commute with S-localization. Moreover, both of these functors
preserve 1-connective objects. Hence, the result follows from [Mat24a, Lemma 3.18]. O

We also need a version of the last lemma for the n-completion functors:

Lemma 6.37. Let n € Z, and let E € SH(k) be 1-connective. Denote by L,: X — X the unstable
n-completion functor from Definition C.2. Then L,QFE ~ 151QE/.

Proof. Since Q°°E is nilpotent (as E is 1-connective), we have that L,Q>*E ~ [],,, LeQ*° E, cf. Theo-
rem C.6. Similarly, from Lemma C.1 we have E/} ~ [] tn E}. Since 2 and 7> preserve finite products,
we may assume that n = ¢. Consider again the commutative diagram

Sp(Shvyis(Smy)) +—— SHS (k) <" SH(k)°!

Jo- |

Shvnis(Smy) «—— Spe(k).

It suffices to show that the composition on the top and left commutes with ¢-completion, up to a
connected cover. The functors on the top both preserve limits by Lemma 6.29, and hence commute with
¢-completion, see e.g. [Mat24b, Lemma 2.32]. Moreover, they preserve 1-connective objects. Hence, the
result follows from [Mat24b, Lemma 3.17]. O

We now discuss Bousfield-Kan completions. We now have four different situations: First, we can
look at those A such that my(A), = S7 my(1), or my(A)x = my(1)«/n; this is similar to the case of
sheaves discussed above. But these two cases do not cover two important situations: One wants to be
able to complete at A = HZ, the motivic cohomology spectrum, or A = MGL, the algebraic cobordism
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spectrum. Here, we do not have that my(A), = my(1)., but instead my(A). = my(1)./n. Thus, in the
second half of this section, we will look at completions at those A such that either m(A). = S~ my(1)./n,
or my(A)sx = my(1)./(n,n). This will complicate things slightly, as it will also include an additional 7-
completion. To circumvent this problem, we will restrict ourselves to fields of finite 2-étale cohomological
dimension, so that all very effective motivic spectra are already n-complete.

6.4.1. Milnor—Witt Resolutions: Localization. In this subsection, we assume that my(A). ~ S7 my(1).
with S C Z\ 0. Thus, m5(A)s @z (1), To(A)x =~ mo(A)s, and hence all axioms are satisfied. In this
situation, the Bousfield-Kan completion is related to unstable S-localization. We write Lg for the
unstable S-localization functor in X, cf. [Mat24a, §3].

Ezample 6.38. Possible examples for A are the rings S~'1 and foS—KMW.
Theorem 6.39. (1) Let X € Spc(k)« be nilpotent. Then LgX € Spc(k). (i-e., LsX is again
Al-invariant).
(2) Let X € Spc(k). be resolvable. The canonical maps T<ooLsX — T<Oof/AX — T T X are
equivalences. In particular, Lg X — LaX — TotT*X are equivalences.
(3) For E € SH(k)>1 the canonical map LsQ>®E — Q®L3'E is an equivalence.
(4) Let F — E — B be a fiber sequence of pointed nilpotent Nisnevich sheaves. Then LgF —
LsE — LgB is a fiber sequence.
(5) Let Xo be a tower of pointed nilpotent Nisnevich sheaves with X = lim; X;. Assume that the tower
1s locally highly connected subordinate to U, e.g. it is highly connected. Then LgX ~ lim; LgX;.

Proof. Statement (1) is proven in [AFH22, Proposition 4.3.8 and Theorem 4.3.9], statement (4) is
[Mat24a, Lemma 3.13], and statement (5) is [Mat24a, Proposition 6.9].
For (3), since Q*°F is nilpotent, we have
LsQ®E ~Q>®S™'E~ Q®LE,
where we used Lemma 6.36 for the first, and Proposition B.1 for the second equivalence.

We now prove (2). Note that L inverts S-equivalences, and so in order to show that LgX ~ LaX ,
it suffices to show that LgX is L-local. This is clearly true for Tot T* X, and so, it is enough to show
that Te oo Ls X ~ 7o T*X. Write F' :=T*. Let X be resolvable, and consider the generalized Postnikov
tower. The functor Lg preserves all fiber sequences and the limit appearing in the tower by (4) and
(5), and similarly F' preserves all those fiber sequences by Theorem 5.7. To see that F preserves the
limit, note that (X;); is a highly connected tower (under X), and we conclude by Lemma 6.7 that the
connectivity of X — X, tends to co. Thus, by Proposition 5.3 also the connectivity of F X — FX;
tends to oo, even uniformly in the levels of the pro-object. Hence, by definition of 7., it follows that
TeooF' X ~ T lim; FX;. Hence, we reduced to the case that X = Q°°FE for some motivic spectrum E €
Y31SH (k)vef. Consider now the Postnikov tower of E in the l-effective t-structure on SH(k)(1). With
exactly the same arguments as above, we can thus further reduce to the case that E € X +tL1SH (k)Y
for m > 2. Since both sides invert Lg-equivalences (for F' note that already L inverts them, since any
m € S is invertible on A, for this note that it is enough to check that m is invertible on m,(A)., but
7, (A), is a my(A).-algebra, and m is invertible on m,(A), = S~ 17y (1).), we can replace X by LgX, and
we have to see that 7o X — T<oo F X is an equivalence. By (3) we know X = LgQ®FE ~ QS 1FE.
Note that S~™'E has the structure of a S~!7§f(1)-module. We have

ST (1) = S7 forrg(1)s = foS ™ my (1)« ~ forrg(A)x = mT(A),

where we used that 1 and A are effective, that fy preserves colimits, and that fy is t-exact from the
homotopy t-structure to the effective t-structure, see [BY20, Lemma 6.2 (2)]. In particular, S™'E
acquires the structure of a 7§f(A)-module, and hence also has the structure of an A-module (via the
canonical ring map A — w¢(A)). Hence, X is in the essential image of R, and hence 700 X — Teoo FX

is an equivalence by Proposition A.4 (even before applying 7< o). O

6.4.2. Milnor-Witt Resolutions: Completion. We assume now that mo(A). ~ my(1)./n with n € N.
Thus, my(A)x @z, (1), To(A)x = my(A), and hence all axioms are satisfied. In this situation, the Bousfield—

Kan completion is related to unstable n-completion. We write L,, for the unstable n-completion functors
in X, cf. Definition C.2.

Ezample 6.40. A possible example for A is the ring fo(KM"W /n).

Theorem 6.41. (1) Let X € Spc(k). be nilpotent. Then L,X € Spc(k). (i.e., L,X is again
Al-invariant).
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(2) Let X € Spc(k). be resolvable. There is a canonical map L,X — 7>1 TotT*X, which is an
equivalence.

(3) For E € SH(k)>1 the canonical map L,QY°FE — 751Q® L E is an equivalence.

(4) Let F — E — B be a fiber sequence of pointed nilpotent Nisnevich sheaves. Then the canonical
map L, F — 1>1fib(L,E — L, B) is an equivalence.

(5) Let Xo be a highly connected tower of pointed nilpotent Nisnevich sheaves with X = lim; Xj.
Then the canonical map L, X — lim; L, X; is an equivalence.

Proof. For (1) note that L, X ~[],, L¢X by Theorem C.6. Thus, since Al-invariant sheaves are stable
under limits, the claim follows from [Mat24b, Proposition 5.22|. Moreover, (3) is Lemma 6.37 combined
with Proposition B.1, (4) is Lemma C.17 and (5) is Lemma C.18.

We now show (2). Since 7>1: X — X, >1 is a right adjoint, it preserves limits. Similarly, the functor
L,, restricts to X, >1 (this follows from [Mat24b, Lemma 3.12]), and the restricted functor preserves
appropriate fiber sequences (by Lemma C.17). As in the proof for my(A). = S™1my(1)., we reduce to the
case that X = Q®°XFM for M € SVISH (k)Y with k > 2. Write F = T>1 TotT) = T>1 mat 7«5 T3
Then

G(M) == (FQXSFM, FQPSFHM, ... ) € Sp(Spe(k)s »1) ~ SH (k),
since F' preserves loops by Theorem 5.7. The functor G also preserves fiber sequences of 2-connective
spectra. There is a canonical map w>®X¥M — G(M). Assume for now that this is an equivalence
whenever M is a finite extension of §f(1)/n-modules. It follows that ©*M — G(M) is an n-equivalence,
i.e., induces an equivalence on fibers of multiplication by n. Since w®X¥M is connected, this implies
that also w*¥*M — 751G(M) is an n-equivalence (this follows easily from e.g. [Mat24b, Lemma 2.9 and
Corollary 2.11]; note that in the proof there it is never used that p is a prime). Hence, using Lemma C.16,
we see that
QF°SFM — QF 751G (M) ~ F(Q™°XFM)

is also an m-equivalence. Since the target is n-complete by construction, we conclude.

We end the proof by showing that X*M — G(M) is an equivalence if M is a finite extension of
5 (1) /n-modules. By preservation of fiber sequences, we immediately reduce to the case where M itself
is such a module. For this, we will show that in fact M is even an A-module, whence the claim follows
from Proposition A.4. We have

75" (1) /n = folmo(1)s/n) = fome(A)s = x§(A),

where we used that 1 and A are effective, and that fo is t-exact from the homotopy t-structure to the
effective t-structure, see [BY20, Lemma 6.2 (2)]. Thus, M acquires the structure of a m&f(A)-module,
and hence also has the structure of an A-module (via the canonical ring map A — 7§ff(A4)). This finishes
the proof. O

6.4.3. Milnor Resolutions: Generalities. From now on, we will assume that cda(k) < co. We will now
study the situation that my(A). =~ S™1(my(1)./n), or that m(A). ~ my(1)./(n,n).

Remark 6.42. We quickly explain why we need the assumption that k has finite 2-étale cohomological
dimension. In topology, going from the sphere Si,p to its O-truncation o (Ssop) kills off only nilpotent
elements, hence the associated completion functors agree (at least on bounded below objects). In contrast,
going from the motivic sphere 1 to my(1)./n kills the motivic Hopf map n: G,,, — 1, which is known to
be non-nilpotent [Mor04, Corollary 6.4.5]. Hence, homological localization with respect to HZ introduces
a completion operation with respect to . Unstably, the associated Bousfield localization is currently
poorly understood. The situation gets much better if one requires the 2-étale cohomological dimension
to be finite, as then every very effective motivic spectrum is automatically n-complete, and hence the
associated unstable Bousfield localization is just the identity.

Lemma 6.43. Assume that cdy(k) < oo, and let E € SH(k)"H be a very effective motivic spectrum.
Then E is n-complete. If E is 2-power-torsion, then E is slice-complete.

Proof. Since cda(k) < oo we know that E[1/2] is n-complete. Indeed, there is a canonical splitting
E[1/2] ~ E[1/2]* @ E[1/2]~ with E[1/2]* an n-complete motivic spectrum by e.g. [BH21a, §2.7.3|, and
under our assumption on the cohomological dimension, we have F[1/2]” = 0: Indeed, the splitting of
E[1/2] is induced by a splitting of the whole oo-category SH(k)[1/2], since there is a splitting of the
endomorphisms of the unit GW (k)[1/2] ~ Z[1/2] x W (k)[1/2]. Hence, to show that E[1/2]” = 0, it
suffices to show that the Witt ring W (k) has 2 torsion for some N > 0. Write I C W (k) for the
fundamental ideal. Then, by [MH'73, the discussion after Theorem 5.1|, all the quotients I"/I"*! are
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Fo-vectorspaces, hence 2-torsion. It thus is enough to show that IV = 0 for N > 0, for this one can
argue as in the proof of [Bac18b, Theorem 16|, using that cda(k) < oo.

Using that n-complete spectra are stable under fiber sequences, replacing E by the cofiber of F —
E[1/2] we may assume that E is 2-power-torsion. To prove that F is n-complete it now suffices to show
that it is slice-complete (indeed, since E' is effective, the slice completion is a limit of finite extensions
of slices, and slices are n-complete as so(1) = HZ). This follows from Levine’s convergence theorem.
If k has characteristic # 2, see [Lev13, Theorem 7.3] (also recalled in [BE®24, Theorem 5.3]). If k has
characteristic 2, see our variant in Corollary D.2. O

We need the following ad-hoc definition:

Definition 6.44. Let X € Spc(k). be resolvable. We say that X is 2-power-torsion if one can choose
the X; and B, appearing in Definition 6.32 so that B; is 2-power-torsion (i.e. B;[1/2] = 0) for all i.

Lemma 6.45. Suppose that cda(k) < oo, and let X € Pro(Spc(k).) be nilpotent, 2-power-torsion and
oco-effective, i.e., X ~ lim; cX;, where X; is nilpotent, 2-power-torsion and n;-effective, with lim; n; = oo.
Then mat X = .

Proof. Tt suffices to show that if X € Spc(k). is nilpotent, 2-power-torsion and n-effective (without
loss of generality we may assume that n > 2, so that X is resolvable by Remark 6.33) and U € Smy
has dimension < d, then X|yy,. is N(d,n)-connective, where N(d,n) is a function (independent of X
and U) with lim,, N(d,n) = oo. (Indeed, the restrictions to the small sites Uyis preserve all limits and
are jointly conservative, and moreover lim;(X; |y, ) = * by e.g. [Mat25, Lemma 2.4] and the increasing
connectivity of the X;|yy,..) By an induction on the generalized Postnikov tower of Definition 6.32, we
may assume that X = Q®FE for some E € ""SH (k)" with E[1/2] = 0. The claim now follows from
Levine’s convergence theorem; see [Lev13, Theorem 7.3| (also recalled in [BE®24, Theorem 5.3]) if k has
characteristic # 2, and Corollary D.2 else. O

6.4.4. Milnor Resolutions: Localization. In this subsection, we assume that my(A). ~ S™(my(1)./n)
with S C Z\ 0. In this situation, the Bousfield-Kan completion is related to unstable S-localization. We
write Lg for the unstable S-localization functor in X, cf. [Mat24a, §3].

Example 6.46. Possible examples for A are the rings ST'HZ and S~'MGL. Of course, we may take
S ={1}.

Before stating the main theorem in this situation, let us identify the stable localization functor.
Lemma 6.47. Assume that cda(k) < co. Let E € SH(k)*Y. Then L5(E) ~ ST'E.

Proof. Let m € S. We first show that A ® (E 2% F) is invertible, for which it suffices to show
that m is invertible on A, which holds since m is invertible on my(A), = S7'my(1)./n. Thus, we
see that the canonical map E — L%(E) factors through E — S™'E, and that the resulting map
S~'E — E is inverted by L%!(—). Hence, it suffices to show that S~1E is L5{-local. We have morphisms
S71 —» A — my(A)s = S (my(1)./n), and hence, get a diagram

LEyE = LYE = L¥ 1 (1, ) E-
By Proposition B.1 we see that
L E~S'E
and
L (ny ).y B = LE1y )y B = (STIE)) = ST'E,

where the last equivalence is Lemma 6.43. Thus, the above sequence of morphisms is equivalent to a
retract diagram S™'F — L5{E — S™'E. Since L% E is L%-local, the same is true for the retract S™'F,
which is what we wanted to show. O

Theorem 6.48. Assume that cd2(k) < oo.

(1) Let X € Spc(k). be nilpotent. Then LsX € Spc(k), (i.e., LsX is again A'-invariant).

(2) Let X € Spc(k). be resolvable. The canonical maps LgX — LaX — Tot T3X are equivalences.

(8) For E € S”H(k);ﬁlc the canonical map LsQ>®E — QLS E is an equivalence.

(4) Let F — E — B be a fiber sequence of pointed nilpotent Nisnevich sheaves. Then LgF —
LsE — LgB is a fiber sequence.

(5) Let X be a tower of pointed nilpotent Nisnevich sheaves with X = lim; X;. Assume that the tower
is locally highly connected subordinate to U, e.g. it is highly connected. Then LgX ~ lim; LgX;.
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Proof. (1), (4) and (5) were already shown in Theorem 6.39.

For (3) we combine Lemma 6.36 and Lemma 6.47.

Hence, the only thing left is (2). As before, since L inverts S-equivalences, in order to prove that
LsX ~ LaX, it suffices to show that LgX ~ Tot T$X (the latter being L-local). Write F := Tot T%. It
is clear that F' inverts S-equivalences and hence the canonical map X — F'X factors through LgX. Let
X be resolvable, and consider its generalized Postnikov tower (Definition 6.32). The functor Lg preserves
all fiber sequences and the limit appearing in the tower by (4) and (5), and similarly F preserves all
those fiber sequences by Theorem 5.7 and Remark 6.34. To see that F' preserves the limit, note that
(Xi); is a highly connected tower (under X), and we conclude by Lemma 6.7 that the connectivity
of X — X, tends to co. Thus, by Proposition 5.3 also the connectivity of F X — FX; tends to oco.
Moreover, the same proposition shows that F'X; is a highly connected tower. In particular, it follows
again from Lemma 6.7 that F'X ~ lim; FX;. We have thus reduced to the case X = Q*F for some
motivic spectrum E € Y31SH(k)V!. In fact, since both sides invert S-equivalences, we may assume
that £ ~ S™1E, and we must show that X — FX is an equivalence. Consider the fiber sequence

E — E[1/2] — C.

Applying 2°°, we obtain a fiber sequence preserved by F' (by Theorem 5.7, as all involved motivic spaces
are l-effective and 2-connective) and Lg; it thus suffices to treat F[1/2] and C, i.e., 2-periodic spectra
and 2-power-torsion spectra.

Let E be 2-periodic. Then since cds(k) < oo, 1 acts by zero on E: Indeed, as in the proof of
Lemma 6.43, we see that E ~ ET (i.e. the minus-part vanishes), and we know from [Bac18a, Lemma
39| that n acts by zero on E*+. Consider now the Postnikov tower of E in the 1-effective t-structure on
SH(k)(1). By an analogous argument as in the beginning of the proof we are thus allowed to reduce
to the case where FE € Z’“‘l’lS?{(k)efw for some k& > 2, which is still S- and 2-periodic. Consider
Y, (E)., which again is S- and 2-periodic, and hence 7 acts by zero on E. In particular, ¥*7, (E).
isa (S7'my(1)./n = mo(A)«)-module. Applying f1, which is t-exact from the homotopy t-structure to
the l-effective t-structure by [BY20, Lemma 6.2 (2)], we get that £ = Skrlef(E) ~ Sk fim, (E). ~
YRl £, (E), is an (fomy(A). = 7§ (A))-module. In particular, it is also an A-module, and thus
the canonical map Q°F — FQF is an equivalence by Proposition A.4.

Now let E be 2-power-torsion. Consider the fiber sequences f, E — E — E/f, E, which are preserved
by FQ>. We have FQ>®(E/f,E) ~ Q>(E/f,E): Indeed, E/f,E is a finite extension of slices (since F
is effective). Thus, as above we can reduce to the case of s, (E). Slices are HZ-modules, hence s, (F) is
an S~!'HZ-module. We have

STVHZ ~ S~ fo(m(1)u/n) = fomg(A)w ~ mST(A),

using [BY20, Lemma 6.2 (2)] and [Bacl7, Lemma 12]. In particular, we see that s,(FE) is an m§(A)-
module and hence an A-module, and thus FQ* (s, E) ~ Q>(s, E) by Proposition A.4. Taking the limit
over n we obtain a fiber sequence

mat(lim ¢ Tot,, T4Q°(f,E)) — FQ®E = lim Q*E/f,E ~ Q*E,
where the equivalence is by Lemma 6.43. We finish the proof by showing that the second map is an

equivalence. Since the base is connected, for this it will be enough to show that the fiber is contractible.
This follows from Corollary 6.31 and Lemma 6.45. O

6.4.5. Milnor Resolutions: Completion. In this subsection, we assume that w(A). ~ my(1)./(n,n) with
n € N. In this situation, the Bousfield—-Kan completion is related to unstable n-completion. We write
L,, for the unstable n-completion functor in X, cf. Definition C.2.

Ezample 6.49. A possible example for A is the ring HZ/n.
Before stating the main theorem in this situation, let us identify the stable localization functor.
Lemma 6.50. Assume that cda(k) < oco. Let E € SH(k)*#. Then LS(E) ~ E).
Proof. By assumption, we get morphisms 1/n — A — n§T(A) = HZ/n, and thus a diagram
Lit/nE — LSE — ng/nE,
where the first map is inverted by L{(—). By definition Lit/nE = E/). Hence, it suffices to show that
Lit/nE is L%-local. By [Man24, §5.2] we get

L‘;}Z/HE ~ Lit/(mn)E = E:;,n ~ E",



MONADIC RESOLUTIONS FOR GENERALIZED SPACES 35

where the last equivalence is Lemma 6.43. Thus, the above sequence of morphisms is equivalent to a
retract diagram E)) — L3E — EJ. Since L5 F is L%-local, the same is true for the retract E/), which
is what we wanted to show. O

Theorem 6.51. For this theorem, assume that cda(k) < oo.

(1) Let X € Spc(k)s be nilpotent. Then L, X € Spc(k). (i-e., L, X is again A'-invariant).

(2) Let X € Spc(k)s. be resolvable. There is a canonical map L, X — 7>1 Tot T*X, which is an
equivalence.

(3) For E € SH(k)>1 the canonical map L,Q°FE — 751Q¥ L E is an equivalence.

(4) Let F — E — B be a fiber sequence of pointed nilpotent Nisnevich sheaves. Then LgF =~
T>1 ﬁb(LsE — LsB)

(5) Let X be a tower of pointed nilpotent Nisnevich sheaves with X = lim; X;. Assume that the tower
18 locally highly connected subordinate to U, e.g. it is highly connected. Then L, X ~lim; L, X;.

Proof. (1), (4) and (5) were already shown in Theorem 6.41.

For (3) we combine Lemma 6.37 and Lemma 6.50.

Hence, the only thing left is (2). Exactly as in the proof of Theorem 6.41 we reduce to the case that
X = Q®YFM for M € SULSH (k)Y such that n acts by zero on M.

Considering the fiber sequence M — M|[1/2] — C (and potentially further splitting up C' into two
objects in the heart), we may furthermore assume that either M is 2-periodic or 2-power-torsion. One now
argues exactly as in Theorem 6.48 to show that in both cases the canonical map Q®°XFM — FQXXF M
is an equivalence. O

APPENDIX A. COHERENCE DATA FROM ADJUNCTIONS

In this section, let L: C &= D :R be an adjunction between oo-categories. Alternatively, by work
of Riehl-Verity [RV15] and Haugseng [Hau21, Theorem 1.1], this adjunction is classified by a functor
M: ADJ — Caty of (00, 2)-categories, where Caty, is the (0o, 2)-category of co-categories, and ADJ
is the free living adjunction [SS86, Aud74], which is a (2, 2)-category. In particular, recall that ADJ has
two objects 0 and 1, and there are morphisms /: 0 — 1 and r: 1 — 0, such that M(0) =C, M(1) =D,
M(l) = L and M(r) = R. Moreover, there are 2-morphisms u: idg — rl and ¢: Ir — id; that map
under M to the unit and counit of the adjunction L 4 R.

In this section, we explain how one can use this point of view to extract simplicial data out of this
adjunction, such as, for example, the cobar resolution or the codegeneracy cube. As far as we are aware,
some of the results presented in this appendix have not appeared in the literature in the setting of
oo-categories, even though they are well-known to experts.

In the following, MAPg(—, —) denotes the mapping oo-category in an (oo, 2)-category E. This appen-
dix is the only part of the article where we make (light) use of the theory of (oo, 2)-categories.

Construction A.1 (Cobar resolution). We have MAP 4p7(0,0) ~ A, [Aud74, Corollary 2.8]. This
lets us define an augmented cosimplical object (CB)% : Ay — Fun(C,C) as the composition

A, =~ MAP 4p7(0,0) 25 MAPc._ (C,C) = Fun(C,C).

Remark A.2. By [Aud74, Corollary 2.8|, the object [n] € A, corresponds to the morphism (rl)" €
MAP 4p7(0,0). Therefore, (CB)} = M((rl)") = (RL)". Similarly, one sees that the transition mor-
phisms in the cosimplical diagram are given by (compositions of) the co/unit of the adjunction.

Recall the categories Ao and A_ from [Lur09, Lemma 6.1.3.16] and [Lurl7, Definition 4.7.2.1]. An
augmented cosimplicial object X®: A, — C is called split if it extends along the inclusion Ay C A4
[Lurl?, Definition 4.7.2.2], or equivalently along the inclusion AL C A_ [Lurl?7, Remark 4.7.2.3].

Remark A.3. Split objects have the useful property that they are automatically limit diagrams [Lur09,
dual of Lemma 6.1.3.16], and the limit is preserved by any functor (since any functor preserves the
extension and thus split objects).

Proposition A.4. Both L(CB)% and (CB)% R are split cosimplicial objects. In particular, they are limit
diagrams which are preserved by any functor.

Proof. We start with the statement about L(CB)%. Consider the following diagram:
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(B
Ay =—— Map_4p#(0,0) = Fun(C,C)
j Jret=) |z
A_oc == Map4p7(0,1) —M, Fun(C, D).

The squares commute essentially by [Aud74, Corollary 2.8] and since M is a 2-functor. The composition
on the top and then the right is L(CB)%.. Since the diagram commutes, we see that this has an extension
to A_ ., thus is split. For the other statement, consider instead the following diagram:

- \\j

——— Map 4p7(0,0) M, Fun(C,C)

j l(—)or l(—)oR

Ao == Map4p7(1,0) - Fun(D,C).

The squares commute essentially by (the dual of) [Aud74, Corollary 2.8] and since M is a 2-functor.
The composition on the top and then the right is (CB)$ R. Since the diagram commutes, we see that
this has an extension to A, ., thus is split. (]

Construction A.5. Write A* C A for the wide subcategory spanned by those maps that preserve
both the minimal and maximal element. Moreover, write A} C A} and A C A for the wide
subcategories of injective, rebpectively surjective maps. In particular, A" C A*. Observe that there

is a canonical equivalence ®: A* =5 — (A})°P [Str80, §3.11]. This equivalence restricts to an equivalence
: AS S (Af_”)‘)p. For n > 0, slicing over [n] induces an equivalence ®,,: ASZ” = (Af/n )P

Definition A.6. For n > 0 and £ an co-category, write Cube™ () := Fun (A?“]r}, &) for the co-category
of cubes in £.

Definition A.7. Let n > 0. We define two cubes as the following compositions:
(CB)qurJ n- ASUTJ Asurj C A-i- = MAPADJ(Ov 0) % FUH(C7C),

so that (CB)? € Cube™(Fun(C,C)), and

surj,n

(CB)Y iyt AT 2255 (AN )P — (AP € (A4)°P = MAP 4p7(1,1) %5 Fun(D, D),

+,inj,n *

so that (CB)% i, € Cube (Fun(D, D)). We call (CB)¢?,
the n-th face cube of the adjunction L - R.

Surjn the n-th codegeneracy cube and (CB)S ;i

Definition A.8. Let £ be an co-category and n > 0. We define a functor t4op: A?x]” AF:;::H/ via

fxid
(f: [n] = [K]) = ([n +1] = [n] % [0] —= [k] % [0] = [k +1]),
where * is the join operation. Precomposition with ¢t gives a functor
(=)tP: Cube" ™ (£) — Cube™(€),

the top face of a cube.

Similarly, we define tpop: AS — AS™ - via precomposition with the surjective function [n+1] — [n]

[n [n+1]/
that is the identity on 0 < k < n and sends n + 1 to n. Precomposition with i, gives a functor

(—)Pet: Cube™t(€) — Cube™(£),

the bottom face of a cube.
There is a natural transformation typ — thot given on f: [n] — [k] by the square

o+ 1) kg 1)
id J{i»—mk-&—l»—»k

[n+1} Lbot(f) []C],
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and hence an induced natural transformation
w: (7)top N (7)bot.
This lets us inductively define the total fiber of a cube:

Definition A.9. Let £ be an co-category with finite limits, and n > 0. We inductively define a functor
ToFib: Cube™(£) — & as follows: If n = 0, we use the equivalence ToFib: Cube"(€) ~ & given by
evaluating at [0]. If n > 1, then we define

ToFib(—) := fib(ToFib((—)'P) N TOFib((_)bot)).
We write C" := ToFib((CB)Z,,,): C — C and S™ = ToFib((CB)* ): D — D for the total fibers

surj,n +,inj,n
of the codegeneracy and face cubes.

Proposition A.10. There is a canonical equivalence of cubes (CB)3,,;,, ~ R(CB)S i, L, and hence
also of their total fibers C™ ~ RS™L.

Proof. We have the following diagram:

(CB)S

surj,n

-1
(CB):r,inj,noq%

Here, the left two squares commute by the definitions of ®,, and ®. That the rectangle commutes can be
seen by comparing the definition of ® with the explicit description of the morphism 7o (—)ol, cf. [Aud74,
Corollary 2.8]. The right square commutes since M is a 2-functor. Thus, the composition on the top
agrees with the composition on the left, bottom and right. This is exactly what we want to prove. [

Proposition A.11. There is a fiber sequence
Sl 5 S"LR — S™,
where the second map is induced by the counit of the adjunction L 4 R.

Proof. By definition there is a fiber sequence $"1 — ToFib(CB)$*® — ToFib(CB)$"% . Therefore,

+,inj,n +,inj,n°
it suffices to identify (CB)}% | ~ (CB)% i, 1 LR and (CB):_E’ﬁJtn =~ (CB)% injn_1- We start with the

first claim, for which we have to show that the following diagram commutes:

surj D inj,0 o M
A, = AR —— AT MAP 4p7(1,1) =24 Fun(D, D)

J/Ltop llrof J,LRO_

surj o, inj,o o M
A[n]} A+?/[Efl] ? A+p MAP 4p7(1,1) — Fun(D, D).

The left rectangle commutes by the explicit description of the morphism Iro—, cf. [Aud74, Corollary 2.8].
The right square commutes since M is a 2-functor. The second claim follows from the commutativity of
the diagram

surj Pp_1 inj,op
By = By g

s ~

surj D inj,op inj,op
Ay — By T AT

which is immediate from the definition. O
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APPENDIX B. BOUSFIELD LOCALIZATIONS IN STABLE CATEGORIES AT MOORE OBJECTS
In this section, we prove the following proposition:

Proposition B.1. Let D be a stable presentably symmetric monoidal co-category with unit 1, and
D>y C D the connective part of a t-structure that is left-complete (cf. the discussion before [Lurl?,
Remark 1.2.1.18]) and compatible with the symmetric monoidal structure and filtered colimits. Suppose
that A € CAlg(D>o). Write L for the Bousfield localization at those morphisms f such that f @ A is an
equivalence. Suppose moreover that there are maps x;: Ly — 1 such that L; € D>q is dualizable, with
dual DL; € Dsq. Let S C Z\ 0 be a set of nonzero integers. If mo(A) ~ S~ imo(1)(x1,...,xn)), then
LE ~ (ST'E)), . forall E € Dx.

Proof. As the t-structure on D is compatible with filtered colimits, it restricts to a t-structure on D[S~}]
such that the localization functor S~1(—) is t-exact. It is moreover symmetric monoidal, so that S=1L; €
D[S~ 150 is dualizable, with dual S™'DL; € D[S™!]>¢. Note that A € D[S~!] since S is invertible on
mo(A) by assumption. Let E € Dxq. Since mo(A4) = S7 mo(1) (21, ..., 2n)) = mo((STL) [ (1, ..., 2,)),
we conclude from [BO22, Theorems 2.1 and 2.2 that (ST'E)} . ~1lim(A®S™'E = AQARS'E--)
is given by the A-nilpotent completion. Consider the canonical map £ — S™'E — (S7'E)}, . Since
the nilpotent completion is L-local (as a limit of A-modules), the right-hand side is L-local. Thus, as

the map is an (— ® A)-equivalence, we get an equivalence LE ~ (ST'E)p . O

APPENDIX C. UNSTABLE n-COMPLETION
In this appendix we discuss unstable completion at a (possibly infinite) set of primes.

Lemma C.1. Let D be a stable presentable co-category, and n € Z\ 0. Then E) ~ @em E}, where the
product is over all primes ¢ dividing n. In particular, E) is n-complete.

Proof. First, f is an n-equivalence if and only if f is an f-equivalence for all £|n. Indeed, consider the
devissage fiber sequence f /¢ — f/n — f/%, and conclude by induction. In particular, (—); inverts all
(-equivalences, therefore there is a canonical functor (=) — @éln(f)/g.

We show that this map is an n-equivalence. Indeed, since the map F — E/ is an n-equivalence, it
suffices to show that £ — € tn E} is an n-equivalence, or equivalently an p-equivalence for all p|n. This
now follows since (E)) ~ E;, and (E7); = 0 for all £ # p since p is invertible on E}.

We finish the proof by showing that any object of the form tn E} is n-complete. Indeed, it suffices
to show that E}' is n-complete for all £|n, which is clear since it is local for all f-equivalences, and every
n-equivalence is in particular an f-equivalence.

For the last claim, note that n-complete objects are stable under retracts. Il

Let P be a (not necessarily finite) set of primes and X be an oo-topos. Suppose that X admits a
locally finite-dimensional cover, as in [Mat24a, Definition 5.1].

Definition C.2. Write Lp: X — X for the Bousfield-localization at P-equivalences, i.e., at morphisms
f: X — Y such that ¥ f /¢ is an equivalence for all £ € P. We call this functor the unstable P-
completion functor.

If n € Z\ 0 is a nonzero integer, we write P, for the set of prime divisors of n, and L,, := Lp, for the
unstable n-completion functor.

In particular, we have the following:

Example C.3. If n = (¥ is a prime power (for k& > 0), then L,, = L, is just unstable f-completion. If
n =1, then L,, = %, as then any morphism is an n-equivalence. Similarly, Ly = *, since P; = 0.

The following is straightforward:

Lemma C.4. Let n € Z\0 and f: X — Y € X. Then f is an n-equivalence (i.e. X f/n is an
equivalence) if and only if f is an (-equivalence for all €in (i.e. Lp, f is an equivalence).

Proof. This follows since it is true stably, cf. Lemma C.1. O

Our main goal is to show that if X is nilpotent, then Lp X splits into the product of L, X. First, we
get a natural transformation between the two functors in question:

Lemma C.5. There is a canonical natural transformation @: Lp — [[,cp Le-
If X € X, is connected, then so is LpX. In particular, we obtain by adjunction a natural morphism
GX cLpX — T>1 HEEP LyX.
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Proof. For the first statement, it suffices to give natural transformations Lp — L if £ € P. Since by
definition any P-equivalence is also an f-equivalence, we see that L, inverts all P-equivalences, and hence
the canonical map id — L, factors over Lp.

Now to prove the second statement, let X € &, be connected. We must show the same is true for
LpX. If P = () then LpX = %, which is certainly connected. Otherwise, there exists £ € P. By
definition, X — LpX is an f-equivalence, and thus an equivalence on 7y by [Mat24b, Lemma 3.12].
Hence, again LpX is connected. O

We can now state the main result:

Theorem C.6. Let X € X, be nilpotent. Then ©x is an equivalence.
If P is finite, then [[,cp LeX is connected and in particular px is an equivalence.
As a special case, if n € Z\ 0, then L, X ~ H@ln LyX.

For the proof we need some preparations. The following definition will be useful.

Definition C.7. Let X € X, be nilpotent. A Postnikov refinement (X, E,)n is a tower of nilpotent
sheaves (X,,), under X, that fit into fiber sequences X1 — X,, — Q°E,, for some E,, € ki Sp(X)Q?
with k; > 2, such that moreover Xg = %, X ~ lim,, X,,, and k; — oo as i — oo.

Remark C.8. If X € X, is nilpotent, then there always exists a Postnikov refinement, cf. [Mat24b,
Lemma A.15]. Moreover, if (X,,, E,), is a Postnikov refinement of X, then (X,,), is a highly connected
tower.

Lemma C.9. Let X € X, be nilpotent, and let (X, E,)n be a Postnikov refinement of X. Then the
following holds:

(1) 21 [pep LeQ¥ Ep = 7210 [[ep(En)) -
(2) T>1 [ Loep LeXny1 = 1 ib(7o1 [[pep LeXn = 51 [[jep LeQE,) for every n.

Proof. For (1) we have

T>1 H LgQOOEn =T>1 H TleOO(En)? >~ 7'21(200 H(En)/é\7
LepP LeP LeP
using [Mat24b, Lemma 3.17] and [Mat24a, Lemma 4.2].
For (2) we get

o1 [ LeXnsr = o1 [ 21 ib(LeX0 = L™ Ep) ~ 751 fib(ron [[ LeXn — 721 [[ Le¥°En),
Lep LepP LeP LepP
using [Mat24b, Proposition 3.20] and [Mat24a, Lemma 4.2]. O

Lemma C.10. Let X € X, be nilpotent, and let (X,,, E,)n be a Postnikov refinement of X. Then for
every n > 0 the sheaf 7>1 [[,cp Le Xy is nilpotent.

Proof. We show the claim by induction on n, the case n = 0 holds trivially. For any n > 0 we get
To1 [ [pep LeXnt1 = 71 fib(m>1 [[iep LeXn — T>1 [1pep L2 Ey) from Lemma C.9 (2). The first term
on the right is nilpotent by induction, whereas the second is by combining Lemma C.9 (1) with [Mat24b,
Lemma A.11]. Hence, we conclude using [Mat24b, Lemma A.12]. O

Lemma C.11. Let U be an co-topos generated under colimits by a set W C U. Let X € U, be an object
and n € N such that X (w) is an n-connective space for every w € W. Then X is n-connective in Us.

Proof. Consider the adjunction L: P(W) & U :i, where L is the left Kan extension of W — U, and
is the restricted Yoneda. Since W generates & under colimits, it follows that L is essentially surjective,
and 4 is fully faithful, so that Li(X) ~ X. Moreover, note that since 7 preserves the terminal object (as
a right adjoint), we also get L(x) = Li(*) = *. By assumption on X, ¢(X) is an n-connective object of
P(W), (note that in a presheaf topos n-connective objects are exactly those presheaves such that they
are n-connective on sections).

It now suffices to show that any functor F': V — U between oco-topoi that preserves colimits and the
final object also preserves n-connective objects. Indeed, for this note first that F' preserves suspensions,
ie. X"FV ~ FY™V, since suspensions are iterated pushouts of the form % < V — *. Thus, the claim
follows since any n-connective object in V, can be written as a colimit of objects of the form X"V, cf.
[Mat25, Proposition 2.38]. O

Lemma C.12. Let U be an oo-topos locally of homotopy dimension < N for some N € N. Let k > N
and Xy € U, be a k-connective object for every £ € P. Then [[,cp X¢ is (k — N)-connective.



40 TOM BACHMANN, ANTON ENGELMANN, AND KLAUS MATTIS

Proof. Tt suffices to show that (] [,.p X¢)(U) is (k—N)-connective for every U € U of homotopy dimension
< N (by Lemma C.11, since they generate the topos under colimits). By [Lur09, Lemma 7.2.1.7] (applied
to the slice topos U,7), we have that X,(U) is (k — N)-connective. This immediately implies the lemma
since evaluation of sheaves commutes with limits, and arbitrary products of (k — N)-connective spaces
are (k — N)-connective. O

Remark C.13. In the last lemma, if P is finite, then of course [],.» X¢ is even k-connective.

Lemma C.14. Let X € X, be nilpotent, and let (X,,, E,)n be a Postnikov refinement of X. The tower
(71 [Isep LeXn)n is locally highly connected (subordinate to any highly connected cover of X ), with limit

T>1 HZE’P L[X

Proof. Choose a highly connected cover U = {p}: X — U;}. For the first statement, it suffices to show
that ([[,cp LeXn)n is locally highly connected. Since the p; commute with both p-completion and
limits by [Mat24a, Lemma 6.10 and Lemma 5.2], we may assume that X itself is of homotopy dimension
< N for some N € N, and that (X,,), is a highly connected tower, and our goal is to show that also
(ILeep LeXn)n is highly connected. So let k& € N. Since (X,,), is highly connected, there exists L > 0
such that for all m > L the fiber fib(X,,, — X)) is (k+ 2N + 3)-connective. We have to find M > 0 such
that for all m > M the object [[,cp fib(Le X, — LeXar) is (k+1)-connective (since we can commute the
product with the fiber). Setting M = L, it follows from [Mat25, Lemma 2.11| that fib(LX,,, — L¢X )
is (k + 1 + N)-connective for every £ € P, and hence from Lemma C.12 that [],.p fib(L¢ X, — LeXar)
is (k 4 1)-connective, proving the claim.

It is left to compute the limit of the tower, where we can again go to the highly connected cover.
We have lim,, Ly X,, ~ L;X by [Mat25, Proposition 2.13|, since (X,,),, is highly connected. Hence, we
get 7>1limy, 751 [pep LeXpn = o1 limy, [[jep LeXn =~ 751 [[jep LeX, using [Mat24a, Lemma 4.2]. To
conclude, we show that lim,, 7>1 [[,cp Le Xy is already connected. This holds since (751 [[,cp LeXn)n is
highly connected by the first part of the proof, and thus 7 (lim,, 7>1 [[,cp LX) = * by [Mat25, Lemma
2.4]. O

Lemma C.15. Let X € X, be nilpotent. Then ¢ox: LpX — 751 [[,cp LeX is a P-equivalence.

Proof. We have to see that ¢x is an p-equivalence for every p € P. By definition, we know that
X — LpX is a p-equivalence, hence, by 2-out-of-3 it suffices to show that X — 751 ][,cp LeX is a
p-equivalence. Note that 7>1 [[,ep LeX = Ly X X 751 ][, 4pcp LeX. Since L, preserves finite products
[Mat24b, Lemma 3.15] and since L,L, =~ Ly, it suffices to show that Lp7>1[[,,ocp LeX = *.

Choose a Postnikov refinement (X,,, E,,),, of X. First, for every n we have

’7'21 H LzQOOEnZQOOT21 H (En)z\,
pALEP p#ALEP

using Lemma C.9 (1). In order to see that the p-completion of this vanishes, using [Mat24b, Lemma
3.16] it is enough to show that (7>1 ][, cp(En)?)/p = 0. This holds since p is invertible on (E,); for
all £ # p.

We now show inductively that L,7>1 ][, .sep LeXy = *, the case n = 0 holds trivially. This follows
immediately from Lemma C.9 (2), the inductive hypothesis and the case for E,, discussed above.

We finish the proof by showing that L,7>1 Hp#eP L;X = x. The tower (7>1 Hp#eP Lo X,)n is
locally highly connected, with limit 7> Hp;éee?? Ly X, cf. Lemma C.14. Moreover, for every n > 0 the
sheaf 7> Hp#eP Ly X, is nilpotent by Lemma C.10. Hence, using [Mat25, Proposition 2.13] and the
case for X, discussed above, we get

Lyr>1 [[ LeX ~limLyrsy [ LeXn = O
pH#LEP " pH#LEP

We are now ready to prove the main theorem of this section.

Proof of Theorem C.6. In Lemma C.15 we have seen that ox : LpX — 751 [[,cp LeX is a P-equivalence.
Since the left-hand side is clearly P-complete, it suffices to show that the right-hand side is P-complete.
Since P-equivalences are f-equivalences, limits of ¢-complete objects (for varying ¢) are P-complete.
Writing 7>1 = fib(id — 7g), this reduces to showing that L,X is ¢-complete (which is obvious) and that
discrete sheaves are ¢-complete (which holds by [Mat24b, Lemma 3.13]).

For the second statement, i.e. the case where P is finite, we just note that [ [, L¢X is connected, since
each of the finitely many factors is (see [Mat24b, Lemma 3.12] for a proof that L,X is connected). O



MONADIC RESOLUTIONS FOR GENERALIZED SPACES 41

Using the main theorem, we can now extend the results about unstable p-completion from [Mat24b,
Mat24a, Mat25] to the unstable P-completion functor. For n € Z \ 0, specializing to P = P,, we also
obtain analogous results about the unstable n-completion functor.

Lemma C.16 (Infinite loop spaces). Let E € Sp(X)>1. Then LpQ®E ~ 751Q% [[,cp E). As a special
case, we have L,Q®E ~ 1751Q>*E)).

Proof. We calculate

LPQOOE =T>1 H LKQOOE =T>1 H TzlﬁooEé\ ~ 7'21900 H Eé\,
teP P teP
where we used Theorem C.6 in the first equivalence, [Mat24b, Lemma 3.17] in the second equivalence,

and that products commute with 2°° in the third equivalence.
The last claim holds since [[,cp E} = @yep E; ~ E;, by Lemma C.1. O

Lemma C.17 (Fiber sequences). Let F' — X — Y be a fiber sequence of nilpotent sheaves in X,.. Then
LpF ~ 7151 fib(LpX — LpY). As a special case, we have L, F ~ 1>1 fib(L, X — L,Y).

Proof. We calculate

LpF ~T>1 H LyF ~ T>1 H T>1 ﬁb(L@X — LgY)
teP teP
~ 751 fib(roy [ LeX = 721 [ LeY) = 71 fib(Lp X — LpY),
teP P

where we used Theorem C.6 in the first and last equivalence, [Mat25, Proposition 2.8] in the second
equivalence, and that products commute with fibers in the third equivalence. O

Lemma C.18 (Highly connected towers). Let (X;); be a highly connected tower, where every X; € X,
is nilpotent. Then Lplim; X; ~ lim; Lp X;. As a special case, we have Ly lim; X; ~ lim; L, X;.

Proof. First note that lim; X; is still nilpotent. This follows basically from Lemma 6.7, as then 7, (X) ~
7, (Xn) for some N > 0, and hence is nilpotent by assumption, and similarly, the action of m;(X)
on 7, (X) is equivalent to the action of m;(Xs) on 7, (Xas) for some M > 0, which is nilpotent by
assumption. We calculate

LplimX; ~ 7o [ Lelim X; ~ 7o [[im Lo Xy ~ 7oq lim sy [ LeXi ~ 721 lim Lp X5,
K3 K3 3 3 1
P P P
where we used Theorem C.6 in the first and last equivalence, [Mat25, Proposition 2.13] in the second
equivalence, and that products commute with limits in the third equivalence. The lemma follows since

lim; 751 HleP Ly X; ~ lim; LpX; is already connected, the proof of which is similar to the end of the
proof of Lemma C.14. (]

APPENDIX D. SLICE CONVERGENCE

In this section we explain a minor extension of Levine’s convergence theorem, allowing us to treat
imperfect extensions of perfect base fields. The argument mainly consists of observing that [BY20,
Proposition 6.7] can be used as a slot-in replacement for a certain part of Levine’s proof, and with this
replacement, the original argument goes through in the more general setting.

Proposition D.1. Let k be a perfect field, E € Y""SH(k)"¥, and K/k a finitely generated field
extension. Then m,(E).(K) for «+ > —n is generated by transfers of elements in K™V (L) - my(E)_n (L),
where L/ K runs through finite field extensions.

Proof. If + = 0 and n = 1 this is proved in [BY20, Proposition 6.7]. By shifting, this also proves n = 1—x
for any value of *. The general case follows from this and the projection formula. (Indeed we may as well
assume that n = 0, then apply the previous case to "1 E to learn that my (X" 11 E) g ~ 7y (E) 41
is generated under transfers and KM"W by 7, (2"t E) ) ~ 7,(E),; now iterate.) O

Corollary D.2. There exists a function N: N> — N with the following property: For k a perfect
field of characteristic p, m,n > 0, E € SNmn)Nmn) S3y(gyvell p_torsion (i.e. E[1/p] = 0), K/k of
transcendence degree at most m, i <n and j > 0, we have

m;(E);(K) =0.
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Proof. The proof is essentially the same as in [Lev13, Theorem 7.3] (also recalled in [BE®24, Theorem
5.3]), with two key differences. Firstly, [Levl3, Theorem 5.3] is replaced by Proposition D.1. Secondly,
in Levine’s proof the Bloch-Kato conjecture is used to show that if L/k has transcendence degree < m,
then Kf-WW(L)/p = 0 for ¢ > m. To conclude the proof, we supply a different argument to show that
this still holds in our situation. Let us first show that K (L)/p = 0 for all i > m. This can be seen
as follows: There is an inclusion K/ (L)/p < Q% by the Bloch-Kato-Gabber theorem [BK86, Theorem
2.1]. But for i > m we have Qf = AI_, QL = 0, since 2} has dimension m [Mat80, Theorem 59|.
We now note that modulo p the powers of the fundamental ideal of L vanish, i.e. I*(L)/p = 0, for
i > m. Indeed, if p # 2, then this holds since W (L) has 2-power torsion (indeed, W (L) is a module over
W (F,), which is of 2-power torsion, by the explicit calculation done in e.g. [Dég23, Example 2.1.10]),
and hence p is invertible on W (L) and therefore also on I*(L). On the other hand, if p = 2, we have
I'+Y(L)/T(L) ~ KM(L)/2 = 0 for i > m by the Milnor Conjecture (see e.g. [Dég23, Theorem 2.2.3|)
and the above vanishing result for Milnor K-theory. In particular, I+ (L) = I™*2(L) = ..., which
implies that all of these powers of the fundamental ideal vanish (since their intersection is 0 by the
Arason—Pfister Hauptsatz [Lam05, Chapter 10, Corollary 3.2]). In view of the short exact sequence
0— I(L)*" - KMY(L) - KM(L) — 0 from e.g. [Dég23, Corollary 2.3.10 (1)], the snake lemma, and
the above calculations, we thus get KM"YW (L)/p ~ KM (L)/p = 0 for all i > m. O
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