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Abstract. We extend the work of Bousfield and Kan [BK72] on monadic resolutions of spaces to
∞-topoi, with applications to genuine G-equivariant spaces (G a finite group) and motivic spaces over
a perfect field. In particular, we give a proof of the principal fibration lemma in this context. We apply
the principal fibration lemma to prove convergence of several kinds of monadic resolutions in unstable
equivariant and motivic homotopy theory. For example, we show that, over an algebraically closed
field, the unstable Adams–Novikov spectral sequence (i.e., the monadic resolution corresponding to the
algebraic cobordism spectrum MGL) converges for all nilpotent, connected, 2-effective motivic spaces.
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1. Introduction

Unstable homotopy theory is concerned with the study of spaces and their maps. Because spaces are
nonlinear and wildly complicated, a standard strategy is to pass to linear invariants that are easier to
compute and compare, such as homology. An evident question arises, which is how much information
is lost in this process?, or how much of a space can we recover from its homology? When taking into
account enough structure on the homology, there is a natural “best possible approximation” we can
extract from the homology, known as the Bousfield–Kan completion (of a space at a homology theory).
In their remarkable work [BK72], Bousfield and Kan identified essentially two situations in which the
Bousfield–Kan completion can be described somewhat explicitly:

Theorem (Bousfield–Kan). Let X ∈ Spc∗ be a pointed nilpotent space.
• If p is a prime and the homology theory is HFp, then the corresponding Bousfield–Kan completion

coincides with the unstable p-completion.
• If S ⊂ Z is a multiplicative subset and the homology theory is HZ[S−1], then the Bousfield–Kan

completion coincides with the unstable S-localization.
For example, the Bousfield–Kan completion of any nilpotent space at HZ recovers the space itself.

The aim of this article is to provide a treatment of the ideas of Bousfield–Kan in modern language, and
apply them to other kinds of spaces. In particular, we will prove a Bousfield–Kan completion theorem
for categories of sheaves as well as genuine equivariant and motivic spaces.

1.1. Digression: categorical formulation. Let

L : C ⇄ D :R

be an adjunction between presentable ∞-categories. Suppose we attempt to study the ∞-category C
through the lens of the functor L. A first observation is that if X ∈ C, then the object LX ∈ D carries
additional structure, e.g., the (adjunction) map L(RL)X ≃ (LR)LX → LX. In a more structured way,
we can observe that C := LR : D → D is a comonad, and LX is a coalgebra for the comonad C (see
[Lur17, the dual of Proposition 4.7.3.3] and the discussion thereafter). A natural question would be to
ask if X can be recovered from LX with this additional structure. It is clear that this is not possible
in general, as we now explain. An L-equivalence in C is a map inverted by L. These form a strongly
saturated class of small generation, and so, there is an associated Bousfield localization functor L̂ : C → C
[Lur09, §5.5.4]. We can thus factor our starting adjunction as

C ⇄ L̂C ⇄ CoalgC(D) ⇄ D,
where the first adjunction is a Bousfield localization and the third is a forgetful/cofree adjunction.
Clearly the best we can hope for is that the middle adjunction is fully faithful, perhaps on some suitable
subcategory of L̂C.

Remark 1.1. Note that the composite

C L̂−→ CoalgC(D)→ C
(where the second functor is right adjoint to the first) is equivalent to the cobar construction (also called
the Bousfield–Kan completion)

X 7→ CB(X) := lim
[n]∈∆

(RL)n+1X.

By construction, this object is L-local and receives a map from X. So we can rephrase our initial question
as follows: for which X ∈ C is the canonical map

L̂X → CB(X)

an equivalence?

1.2. Results. Our results fit into the categorical framework of the previous section. Typically, in addi-
tion to C ⇄ D we pick a ring A ∈ CAlg(D) and consider the composite adjunction

C ⇄ModA(D).

We denote the resulting Bousfield localization by L̂A. Our goal is to exhibit (ideally many) examples
of X ∈ C such that L̂A coincides with the Bousfield–Kan completion of X (for the above adjunction).
Moreover, we seek to identify L̂A in more familiar terms. In order to do this, we prove results about
Bousfield–Kan completions in a relatively general context. For a summary, see Section 1.4. We then apply
these general results in settings of interest, and combine them with additional assumptions and techniques
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specific to the settings, to obtain useful criteria in these specific situations. Here we concentrate on
explaining the latter.

1.2.1. Sheaves. Our first application is the case where C = X is an appropriate∞-topos and D = Sp(X )
is its stabilization. Recall that in this case there are notions of unstable n-completion and unstable S-
localization, see Section C, [Mat24b, Section 3] and [Mat24a, Section 3]. Generalizing the situation for
classical spaces, these are given by Bousfield localization endofunctors

LS , Ln : X → X .

We can only understand these functors to a reasonable degree on nilpotent sheaves, i.e., sheaves built
out of infinite loop sheaves in a controlled manner [Mat24b, Appendix A.2].

Theorem A (Sheaves, Theorem 6.8). Let X be an ∞-topos admitting a locally finite-dimensional cover
[Mat24a, Definition 5.1] (see Example 6.4 for examples), let A ∈ CAlg(Sp(X )≥0), and let X ∈ X∗ be
nilpotent. Then, depending on π0(A) we can identify L̂AX as:

π0(A) Localization functor L̂A
S−1Z ⊂ Q LSX

Z/n LnX

In these cases, we can moreover compute the localization of X with respect to A by the totalization
formula

L̂AX ≃ τ≥1 lim
∆

(Ω∞A⊗ Σ∞)•+1(X).

1.2.2. Equivariant spaces. Our second application is to genuine equivariant homotopy theory. For a finite
group G, we denote by Spc(BG) ≃ PΣ(FinG) the ∞-category of genuine G-spaces, and by SH(BG) its
stabilization at representation spheres. See Section 6.3 for more details.

Theorem B (Equivariant homotopy theory, Theorems 6.20, 6.23 and 6.25). Let G be a finite group,
A ∈ CAlg(SH(BG)≥0), and X ∈ Spc(BG)∗ a nilpotent and (1, G)-connective (see Definition 6.9) G-
space. Then, depending on π0(A) we can identify L̂AX as:

π0(A) Additional assumptions Localization functor L̂A
S−1π0(1) LSX

π0(1)/n LnX

S−1Z |G| ∈ S i∗LSi
∗X

Z/p G a finite p-group LpX

In these cases, we can moreover compute the localization of X with respect to A by the totalization
formula

L̂AX ≃ lim
∆

(Ω∞A⊗ Σ∞)•+1(X).

1.2.3. Motivic spaces. Our final application is to motivic homotopy theory. We fix a perfect field k and
denote by Spc(k) the ∞-category of motivic spaces over k [Mor99, MV99]. Denote its stabilization at
P1 by SH(k). See Section 6.4 for more details.

Theorem C (Motivic homotopy theory, Theorems 6.39, 6.41, 6.48 and 6.51). Let k be a field, A ∈
CAlg(SH(k)veff), and X ∈ Spc(k)∗ a resolvable motivic space (see Definition 6.32, e.g. any nilpotent
2-effective motivic space, cf. Remark 6.33). Let L be given as follows (depending on π0(A)∗):

π0(A) Additional assumptions Localization functor L
S−1π0(1)∗ LS

π0(1)∗/n Ln

S−1(π0(1)∗/η) cd2(k) <∞ LS

π0(1)∗/(n, η) cd2(k) <∞ Ln

Then in these cases we can identify the Bousfield–Kan completion of X as

LX ≃ τ≥1 lim
∆

(Ω∞A⊗ Σ∞)•+1(X).

Moreover, in the two cases where L = LS, also LX ≃ L̂AX (for X resolvable).
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Remark 1.2. Contrary to the situations in Theorems A and B or when L = LS , in the completion
situation, i.e., L = Ln, we are unable to identify the homological localization L̂A. The issue is that, in
contrast with Ln, it is not clear that if X is L̂A-local, then also τ≥1X is. In other words, in contrast with
the usual completion, it is not clear that discrete objects are L̂A-local. See also [Mat24b, Conjecture
5.24] for further discussion.

1.3. Application: unstable Adams spectral sequences. The cosimplical object CB• obtained by
the monadic resolution functor yields an unstable spectral sequence, which is a generalization of the
classical unstable Adams spectral sequence, internal to the ∞-topos X .

Proposition (Déglise–Pawar). Let L : X∗ ⇄ D :R be an adjunction and X ∈ X∗. Then for Fn =
fib(TotnCB•X → Totn−1 CB•X), there is an unstable spectral sequence

Er,s1 = πs−r(Fr)⇒ πs−r(TotCB
•X).

Proof. This follows from [DP24, Examples 2.32 and 2.37] for the tower (TotnCB•)n. □

Since we were able to identify the object TotCB•X in many cases, this spectral sequence takes a
more digestible form, as recorded in the following theorem.

Theorem D. The following unstable spectral sequences exist:
(1) Let X be an ∞-topos admitting a locally finite-dimensional cover, A ∈ CAlg(Sp(X )≥0) and

X ∈ X∗ be nilpotent.
π0(A) Spectral Sequence
S−1Z ⊂ Q Er,s1 = πs−r(Fr)⇒ πs−r(LSX)

Z/n Er,s1 = πs−r(Fr)⇒ πs−r(LnX)

(2) Let G be a finite group, A ∈ CAlg(SH(BG)≥0), X ∈ Spc(BG)∗ be nilpotent and (1, G)-
connective.

π0(A) Additional assumptions Spectral Sequence
S−1π0(1) Er,s1 = πs−r(Fr)⇒ πs−r(LSX)

π0(1)/n Er,s1 = πs−r(Fr)⇒ πs−r(LnX)

S−1Z |G| ∈ S Er,s1 = πs−r(Fr)⇒ πs−r(i∗LSi
∗X)

Z/p G a finite p-group Er,s1 = πs−r(Fr)⇒ πs−r(LpX)

(3) Let k be a field, A ∈ CAlg(SH(k)veff) and X ∈ Spc(k)∗ be resolvable.

π0(A) Additional assumptions Spectral Sequence
S−1π0(1)∗ Er,s1 = πs−r(Fr)⇒ πs−r(LSX)

π0(1)∗/n Er,s1 = πs−r(Fr)⇒ πs−r(LnX)

S−1(π0(1)∗/η) cd2(k) <∞ Er,s1 = πs−r(Fr)⇒ πs−r(LSX)

π0(1)∗/(n, η) cd2(k) <∞ Er,s1 = πs−r(Fr)⇒ πs−r(LnX)

1.4. Ingredients of the proof. We consider a fairly general adjunction

L : X∗ ⇄ D :R.

To make progress, we shall assume that X is an∞-topos. The case of sheaves is immediately applicable,
as is the equivariant case because genuine G-spaces form a presheaf ∞-topos. With slightly more effort,
using that motivic spaces are constructed as a localization of an ∞-topos, these will also fall into this
setup.

In order to understand the Bousfield–Kan completion lim∆(RL)
•+1X, we need to look at a more

refined object. Namely, we want to consider the tower of partial totalizations as a pro-object

T •
A(X) = lim

∆≤•
c(RL)•+1(X) ∈ Pro(X ).

As pioneered in work of Bousfield, Farjoun and others (see e.g. [Dro73, Sul74, Gro75, EH76, AM86,
Bou87]), pro-spaces behave like spaces in many ways, and similarly the ∞-category Pro(X ) behaves in
many ways like an ∞-topos. It turns out that the category behaves even more like an ∞-topos when
considering a localization, namely Pro(X<∞). Here X<∞ ⊂ X is the subcategory of truncated objects.

Example 1.3. One way in which Pro(X<∞) behaves more like an ∞-topos than Pro(X ) is that in the
former∞-category, geometric realizations are universal (i.e. stable under pullback), whereas in the latter
they are (in general) not.
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Remark 1.4. One advantage of working with pro-objects over totalizations is that the implicit infinite
limit in a totalization does not interact well with connectivity in the case of∞-topoi of positive homotopy
dimension. In fact, in the main example we have in mind (i.e. motivic spaces), the underlying ∞-topos
has infinite homotopy dimension, and so even sequential inverse limits can drop connectivity arbitrarily.

Another advantage is that one can prove that the pro-object T •
A is compatible with geometric realiza-

tions (and thus principal fibrations) under relatively weak assumptions.

These properties will be made precise in Section 2. As we will see below, a major point will be
the study of group actions in Pro(X<∞). The key takeaway is the comparison of Pro(Grp(X<∞)) and
Grp(Pro(X<∞)) which are not equivalent, see Example 2.14. Nonetheless, the canonical comparison
functor Pro(Grp(X<∞))→ Grp(Pro(X<∞)) is fully faithful, and ifG ∈ Grp(Pro(X<∞)) is pro-connected,
then, surprisingly, it lies in the essential image of this functor, see Theorem 2.15. For those groups in
the essential image (which we will call levelwise groups), one can lift the ∞-bundle theory of [NSS14] to
the ∞-category of pro-truncated objects. Namely, we obtain the following theorem:

Theorem E (Propositions 2.11 and 2.17 and Example 2.18). Let G ∈ Grp(Pro(X<∞)) be a levelwise
group. Then ΩBG ≃ G. Moreover, there is a canonical equivalence between maps f : X → BG and
objects F with a G-action, given by sending f to fib(f) with the induced action by G = ΩBG. If F is an
object with a G-action, we get a fiber sequence

F → F//G→ BG.

Once this machinery is set up, we proceed to investigate the functor τ<∞T
•
A (i.e. the reflection of T •

A

into Pro(X<∞)). Our main result about it is a version of Bousfield and Kan’s principal fibration lemma,
whose proof will concern the first half of this article:

Theorem F (Theorem 5.7). The functor τ<∞T
•
A : X∗ → Pro(X∗,<∞) preserves those fiber sequences

F → E → B where B is simply connected and F is connected, and LF,LΩB satisfy certain connectivity
assumptions (see Section 3 for more details).

This theorem will allow us to induct on the principalized Postnikov tower of any good enough nilpotent
sheaves in X∗, thus essentially reducing the convergence question to the case of an infinite loop sheaf.

1.5. Organization. In Section 2, we establish properties of pro-truncated objects in∞-topoi alluded to
above, in particular the principal fibration theory. Then in Section 3 we introduce notation and common
assumptions for the rest of the article, most importantly, the adjunction X ⇄ D and the axioms (C),
(M) and (S). Section 4 investigates compatibility of the localization functor L̂ with fiber sequences. In
a sense our main results are contained in Section 5: here we prove that, under a certain fairly general
list of assumptions, the Bousfield–Kan completion functor τ<∞ Tot• CB preserves principal fibrations.
We then come to Section 6, where we establish our applications to sheaves, equivariant spaces and
motivic spaces. We conclude with some appendices: in Section A we recall how to extract (co)simplicial
data out of adjunctions, in Section B we prove a well-known fact about the stable analog of Bousfield–
Kan completion, in Section C we extend the unstable p-completion theory of [Mat24b] to unstable
n-completion (n not necessarily prime), and in Section D we establish a minor extension of Levine’s
convergence theorem in motivic homotopy theory.

1.6. Notation and conventions. We freely use the language of ∞-categories as set out in [Lur09,
Lur17]. A space will be an object of the∞-category Spc of spaces/homotopy types/∞-groupoids/anima,
and a sheaf will be an object of an ∞-topos. Here is a table of some of the notation that we use.

notation meaning reference/definition
Pro(C) ∞-category of pro-objects Section 2.1
c constant pro-object functor Section 2.1
matX materialization of a pro-object Section 2.1
X<∞ truncated objects Section 2.2
τ<∞ pro-truncation Section 2.2
Grpd(C) ∞-category of groupoid objects Section 2.4
Grp(C) ∞-category of group objects Section 2.4
L,R,Dsld standard setup Section 3
L̂ homological localization functor Section 4
CB• cobar resolution Section 5.1
T • monadic resolution tower Section 5.1
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Cn total fiber of the codegeneracy cube Section 5.3
Sn total fiber of the face cube Section 5.3
Ln unstable n-completion functor [Mat24b, §3], Section C
LS unstable S-localization functor [Mat24a, §3]
Spc(BG) genuine G-spaces PΣ(FinG)

SHS
1

(BG) G-equivariant S1-spectra Sp(Spc(BG))
SH(BG) genuine G-spectra Section 6.3
πiE Mackey functor valued homotopy objects Section 6.3
A Burnside ring Mackey functor e.g. [LMSM86, §V.9]
Smk smooth quasi-compact k-schemes
Spc(k) motivic spaces Section 6.4
SHS

1

(k) motivic S1-spectra Sp(Spc(k))
SH(k) motivic spectra Section 6.4
Spc(k)≥(ν,ν) ν-effective motivic spaces [ABH24, §3], Remark 6.26
πi(X)∗ stable motivic homotopy sheaves Remark 6.27
SH(k)♡ heart of the homotopy t-structure Remark 6.27
SH(k)veff very effective motivic spectra Remark 6.27
πeff
i (X) stable effective motivic homotopy sheaves Remark 6.27
SH(k)eff♡ heart of the effective t-structure Remark 6.27
fn, sn effective cover and slice functors Remark 6.28
KMW Milnor–Witt K-theory homotopy module
KM Milnor K-theory homotopy module
η motivic Hopf map

1.7. Acknowledgments. We are greatly indebted to Mike Hopkins for providing invaluable support at
several stages of this project. During its completion, we benefited from conversations with many people,
among them Aravind Asok, Robert Burklund, Emmanuel Farjoun, Marc Hoyois, Lorenzo Mantovani and
Georg Tamme.

The authors acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) through the Collaborative Research Center TRR 326 Geometry and Arithmetic of Uni-
formized Structures, project number 444845124.

2. Homotopy theory in pro-topoi

Throughout we let X be an ∞-topos [Lur09, Definition 6.1.0.4]. In this section we will show that the
∞-category Pro(X<∞) of pro-truncated objects in X behaves in some ways like an∞-topos. In particular,
we will study the relationship between groupoids and (some kind of) epimorphisms in Pro(X<∞) (see
Proposition 2.11), and between group actions and maps to classifying spaces (see Proposition 2.17). This
culminates in our replacement for principal fibration theory in Pro(X<∞): for a pro-connected group
G ∈ Grp(Pro(X<∞)) there is an equivalence between G-torsors and maps to BG, given as usual by taking
G-orbits respectively taking fibers (see Example 2.18 and Theorem 2.15).

2.1. Pro-objects. Given a possibly large ∞-category C, we denote by Pro(C) the ∞-category of pro-
objects in C [BGH18, §0.11.6]. One possible definition is Pro(C) = Ind(Cop)op. This comes with the
constant object functor

c : C → Pro(C),
characterizing Pro(C) via a universal property: Pro(C) has cofiltered limits and any functor out of C
into an ∞-category with cofiltered limits extends uniquely along c to a functor out of Pro(C) preserving
cofiltered limits. We note the following further facts:

• c preserves finite limits (see the dual of [Lur09, Proposition 5.3.5.14]).
• The association C 7→ Pro(C) canonically assembles into a functor

Pro(−) : Cat∞ → Cat∞.
• Any object in Pro(C) can be presented as a cofiltered limit of constant objects.
• c is fully faithful.
• If C has cofiltered limits, then c has a right adjoint mat: Pro(C) → C, given by mat limi cXi ≃
limiXi.
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From this we can deduce that there is an equivalence Fun(I,Pro(C)) ≃ Pro(Fun(I, C)) for any finite poset
I [Lur09, Proposition 5.3.5.15]. It follows, for example, that Pro(C)∗ ≃ Pro(C∗). However, this fails for
infinite diagrams: in general, the canonical functor

Pro(Fun(I, C))→ Fun(I,Pro(C))
is neither fully faithful nor essentially surjective. We will revisit this theme several times in what follows.

2.2. Pro-truncated objects. We write X<∞ ⊂ X for the subcategory of truncated objects, and
Pro(X<∞) ⊂ Pro(X ) for the subcategory of pro-truncated objects. The latter inclusion has a left
adjoint

τ<∞ = lim
n

Pro(τ≤n) : Pro(X )→ Pro(X<∞)

called protruncation; see [BGH18, §4.1.2]. It is pro-induced by the functor X → Pro(X<∞) given by
X 7→ limn cτ≤nX. It preserves all limits [HHW22, Proposition 3.9] (the reference only proves it for the
∞-topos of spaces, but the proof works for an arbitrary ∞-topos).

Recall the notion of almost finite colimits from [Hai24, Definition 1.9] (and in particular the notion of
n-colimit-cofinal functors, cf. [Hai24, Definition 1.7]). Let us give an example of almost finite colimits:

Lemma 2.1. Geometric realizations of both simplicial and semisimplicial objects are almost finite.

Proof. We have to show that both ∆op and ∆inj,op have n-colimit-cofinal approximations by a finite
category. Since the inclusion ∆inj,op ↪→ ∆op is colimit-cofinal (see [Lur09, Lemma 6.5.3.7]), it suffices to
prove this for ∆inj,op. For any n consider the functor ∆inj,op

≤n → ∆inj,op. It is clear that ∆inj,op
≤n is a finite

category, and the functor is n-colimit-cofinal by [Du23, Example 6.14]. □

The first part of the next proposition was proven by Haine for the ∞-category of spaces, cf. [Hai24,
Proposition 1.17], and is the main motivation for considering the notion of almost finite colimits.

Proposition 2.2 (Haine). Almost finite colimits in Pro(X<∞) are universal and commute with cofiltered
limits. In particular geometric realizations (of either simplicial or semisimplicial objects) in Pro(X<∞)
are universal and commute with cofiltered limits.

In order to prove this, we will use two further properties of Pro(τ≤n).

Lemma 2.3. Let f : X → Y be a morphism in Pro(X ). Then τ<∞f is an equivalence if and only if
Pro(τ≤n)(f) is an equivalence for all n.

Proof. This is immediate from the facts that τ<∞ ≃ limn Pro(τ≤n) and Pro(τ≤n) ≃ Pro(τ≤n) ◦ τ<∞.
(The latter holds because Pro(X≤n) ⊂ Pro(X<∞) ⊂ Pro(X ) and the truncations are left adjoints to the
appropriate inclusions.) □

The following lemma is an extension of [DH21, Proposition 4.13] to pro-objects in ∞-topoi.

Lemma 2.4. Let X be an ∞-topos. The pullback functor

Fun(Λ2
2,Pro(X ))→ Pro(X )

sends Pro(τ≤n+1)-equivalences to Pro(τ≤n)-equivalences.

Proof. By 2-out-of-3, it suffices to show that the n-truncated pullback functor inverts the map of spans
(U → V ← W ) → (Pro(τ≤n+1)(U) → Pro(τ≤n+1)(V ) ← Pro(τ≤n+1)(W )). Since all functors in sight
preserve cofiltered limits, this reduces to the case where U, V,W are constant, which is a special case of
[DH21, Proposition 4.13]. □

Also note the following general fact about categories of pro-objects:

Proposition 2.5. Let C be any ∞-category with finite colimits. Then finite colimits commute with
cofiltered limits in Pro(C).

Proof. Mapping to objects cX with X ∈ C is jointly conservative, and turns cofiltered limits to filtered
colimits (and finite colimits to finite limits). Hence, the claim follows from the corresponding dual result
about spaces, cf. [Lur09, Proposition 5.3.3.3]. □

Proof of Proposition 2.2. We first show that almost finite colimits commute with cofiltered limits in
Pro(X<∞), which is slightly easier. Using Lemma 2.3 and the fact that Pro(τ≤n) preserves colimits
(being a left adjoint) and cofiltered limits, it suffices to prove the same statement about Pro(X≤n).
But almost finite colimits in Pro(X≤n) are just finite colimits, and finite colimits always commute with
cofiltered limits in categories of pro-objects by Proposition 2.5.
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Now we show that almost finite colimits are universal in Pro(X<∞). Using Lemmas 2.3 and 2.4 we
reduce to proving the same statement for Pro(X≤n+1). But almost finite colimits in this category are
finite colimits, so the result holds by [Hai24, Lemma 1.1]. □

2.3. Epimorphisms and connected pro-objects. Write Fun(∆,X )epi ⊂ Fun(∆,X ) for the full sub-
category spanned by those morphisms that are effective epimorphisms [Lur09, the discussion after Corol-
lary 6.2.3.5].

Definition 2.6. We say that f ∈ Fun(∆1,Pro(X )) is a levelwise effective epimorphism if under the
canonical equivalence Pro(Fun(∆1,X )) ≃ Fun(∆1,Pro(X )) the morphism f corresponds to an object in
the full subcategory Pro(Fun(∆1,X )epi).

We write Fun(∆1,Pro(X ))epi ⊂ Fun(∆1,Pro(X )) for the full subcategory of levelwise effective epi-
morphisms, so that there is a canonical equivalence Fun(∆1,Pro(X ))epi ≃ Pro(Fun(∆1,X )epi).

We say that f ∈ Fun(∆1,Pro(X<∞)) is a levelwise effective epimorphism if it is one considered as
an object of Fun(∆1,Pro(X )), i.e., if it can be presented as a cofiltered limit of effective epimorphisms
between truncated objects (use that τ≤n preserves effective epimorphisms and hence τ<∞ preserves
levelwise effective epimorphisms).

Remark 2.7. If f : X → Y is a morphism in X , then f is an effective epimorphism if and only if π0(f)
is surjective (as a map of sheaves, i.e., an epimorphism in the 1-category X≤0), essentially by [Lur09,
Corollary 6.2.3.5]. In particular, we see that g : U → V in Pro(X ) is a levelwise effective epimorphism if
and only if Pro(π0)(g) is a levelwise surjection.

Definition 2.8. We say that an object X ∈ Pro(X )∗ is pro-connected if the map ∗ → X is a levelwise
effective epimorphism. We write Pro(X )∗,≥1 ⊂ Pro(X )∗ for the full subcategory of pro-connected objects.

Lemma 2.9. Let X ∈ Pro(X )∗ be an object. X is pro-connected if and only if X lives in the full
subcategory Pro(X∗,≥1) ⊆ Pro(X∗) ≃ Pro(X )∗.

Proof. Suppose first that X ∈ Pro(X∗,≥1). Then there exists a cofiltered limit presentation X = limi cXi,
with Xi connected. In particular, ∗ → Xi is an effective epimorphism for all i, which shows that ∗ → X
is a levelwise effective epimorphism.

Suppose on the other hand that ∗ → X is a levelwise effective epimorphism. Thus, this map can be
written as a cofiltered limit of effective epimorphisms Ai → Xi in X∗. Set X ′

i = Xi ⨿Ai
∗. Then since

c preserves colimits and finite colimits commute with cofiltered limits in pro-objects by Proposition 2.5,
we find

lim
i
cX ′

i ≃ lim
i
cXi ⨿limi cAi

∗ ≃ lim
i
cXi ≃ X.

(Indeed limi cAi = ∗ by assumption.) By construction X ′
i is connected (as effective epimorphisms are

stable under cobasechange, cf. [Lur09, Corollary 6.5.1.17 with n = 0]), concluding the proof. □

2.4. Groupoids. Let C be either X , Pro(X ), or Pro(X<∞), so that we can speak about the∞-category
Fun(∆1, C)epi, cf. Section 2.3. By a groupoid in C we mean an object of Fun(∆op, C) satisfying the Segal
condition [Lur09, Proposition 6.1.2.6 (4”)]. Left Kan extending to ∆op

+ and restricting to ∆op
+,≤0 ≃ ∆1

yields a functor |−|, participating in an adjunction

|−| : Fun(∆op, C) ⇄ Fun(∆1, C) :N.
By construction, the right adjoint is given by right Kan extending to ∆op

+ and then restricting to ∆op. It
is clear that the image of N is contained in Grpd(C). If C = X , then the image of |−| consists of effective
epimorphisms, cf. [Lur09, Lemma 6.2.3.13] (using that each of the morphisms Xn → |X•| factors over
X0).

Lemma 2.10. If C = Pro(X ) or C = Pro(X<∞), then the image of |−| consists of levelwise effective
epimorphisms.

Proof. By Remark 2.7, we have to see that for any X• ∈ Grpd(C) the map Pro(π0)(X0)→ Pro(π0)(|X•|)
is a levelwise surjection. Now, Pro(π0)(|X•|) ≃ Pro(π0)(colim∆inj,op

≤1
X•) by [Lur17, Lemma 1.2.4.17]

and [HP23, Proposition A.1] (since Pro(π0) commutes with the colimit, and Pro(X≤0) is a 1-category),
and hence the question depends only on the finite diagram X•|∆inj,op

≤1
. The result now follows using the

equivalence Pro(Fun(∆inj,op
≤1 ,X )) ≃ Fun(∆inj,op

≤1 ,Pro(X )), and by using [Lur09, Lemma 6.2.3.13] on each
level. □

We write Grp(C) ⊂ Grpd(C) for the full subcategory of group objects, i.e. those U• such that U0 = ∗.
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Proposition 2.11. (1) We have an equivalence Fun(∆1,Pro(X<∞))epi ≃ Pro(Grpd(X<∞)), and
thus Pro(X<∞)∗,≥1 ≃ Pro(Grp(X<∞)).

(2) The composite

Pro(Grpd(X<∞)) ≃ Fun(∆1,Pro(X<∞))epi
N−→ Grpd(Pro(X<∞))

is the canonical functor.
(3) The functor N : Fun(∆1,Pro(X<∞))epi → Grpd(Pro(X<∞)) is fully faithful.

(In fact the first two statements hold for all of Pro(X ).)

Proof. (1) The fact that Fun(∆1,Pro(X ))epi ≃ Pro(Grpd(X )) follows immediately since by definition
Fun(∆1,Pro(X ))epi ≃ Pro(Fun(∆1,X )epi) and Fun(∆1,X )epi ≃ Grpd(X ); for the latter see [Lur09,
Theorem 6.1.0.6].

To get the result for pro-truncated objects, it will suffice to show that the equivalence Fun(∆1,X )epi ≃
Grpd(X ) restricts to an equivalence Fun(∆1,X<∞)epi ≃ Grpd(X<∞). Let us first assume that f : X → Y
is an effective epimorphism, such that both X and Y are in X<∞, say in X≤M for some M ≫ 0. Now,
N(f) is (the restriction of) the right Kan extension of f to ∆+. As right Kan extensions are computed
using limits, and X≤M ⊂ X is stable under limits, we see that N(f) ∈ Grpd(X≤M ) ⊆ Grpd(X<∞). For
the other direction, assume that X• ∈ Grpd(X<∞). Pulling back X0 → |X•| along itself yields X1 → X0

(since N(|X•|) ≃ X•). This map being truncated [Lur09, Lemma 5.5.6.14], we deduce that X0 → |X•|
is also truncated [Lur09, Proposition 6.2.3.17]. Thus, |X•| is truncated by Lemma 2.12 below.

That this equivalence restricts further to an equivalence Pro(X<∞)∗,≥1 ≃ Pro(Grp(X<∞)) is clear.
(2) Holds by construction.
(3) We want to show that |N(−)| ≃ id. Since geometric realizations commute with cofiltered lim-

its (Proposition 2.2), so does the functor |−| (and so does N , being a right adjoint). Any object in
Fun(∆1,Pro(X<∞))epi being a cofiltered limit of effective epimorphisms in X<∞, we reduce to such (con-
stant) objects. This case follows from the same result for X , for which see [Lur09, Theorem 6.1.0.6]
(where N is even an equivalence). □

We used the following fact, for which we could not locate a reference.

Lemma 2.12. Let X be an ∞-topos and f : X → Y ∈ X an n-truncated effective epimorphism. Then
X is (n+ 1)-truncated if and only if Y is (n+ 1)-truncated.

Proof. If Y is (n+1)-truncated then so is X by [Lur09, Lemma 5.5.6.14]. We establish the converse. Let
L : P(C) ⇄ X :R be a presentation of X as a left exact localization of a presheaf∞-topos [Lur09, Defini-
tion 6.1.0.4]. Recall that both R and L preserve i-truncated morphisms and objects [Lur09, Proposition
5.5.6.16]. Write RX f0−→ Y0 → RY for the epi-mono factorization [Lur17, Example 5.2.8.16 for n = −1]
of Rf . Since Rf is n-truncated and Y0 → RY is (−1)-truncated (whence n-truncated), RX → Y0 is
also n-truncated (apply [Lur09, Proposition 5.5.6.16] in P(C)/RY ). As X → Y is an effective epimor-
phism and L preserves epi-mono factorizations, we see that Lf0 ≃ f . Using once more that L preserves
i-truncated maps, we see that we may replace X by P(C) and thus reduce to X = Spc. In this case the
claim follows by examination of the long exact sequence of homotopy groups. □

Thanks to the above result, the following makes good sense.

Definition 2.13. We call objects in the essential image of the fully faithful functor Pro(Grpd(X<∞))→
Grpd(Pro(X<∞)) levelwise groupoids. Levelwise groups are defined similarly.

Example 2.14. For any group G ∈ Grp(Pro(X<∞)), Proposition 2.11 supplies us with a map G →
ΩBG(:= N |G|), which is in fact the initial map to a levelwise group. However, not all groups are levelwise
groups, as the following example shows. Consider the pro-set G := limk cGk, where Gk := [− 1

2k
, 1
2k
] ⊂ R

is a closed interval (considered as a set), and the transition morphisms are given by inclusion. We define
a group structure on G as the inverse limit of the maps Gk+1×Gk+1 → Gk sending (x, y) to x+y (where
the addition is the addition from R). We claim that G is not a levelwise group. For this, consider the
initial map to a levelwise group G→ ΩBG; it suffices to show that this map is not an equivalence. This
can be checked after materializing. The left-hand side yields mat(G) = limkGk = ∩kGk = {0}. It thus
suffices to show that mat(ΩBG) = Ωmat(BG) ̸= ∗. In fact, π1(mat(BG)) ̸= 0, as we shall show now.
Denote by Bk,• the following inverse system of semi -simplicial diagrams:

Bk,• = (∗ Gk Gk+1 ×Gk+1 Gk+2 ×Gk+2 ×Gk+2 . . . ).
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Then | limk cBk,•| ≃ BG. Using that in pro-truncated spaces cofiltered limits commute with geometric
realizations (even of semisimplicial objects), and c is a fully faithful left adjoint (with right adjoint
the materialization) we deduce that mat(BG) ≃ limk BGk, where BGk := |Bk,•|. Thus, π1 of the
materialization is nonzero if we can find a compatible family of nonzero elements in the π1(BGk). Indeed,
such a family then defines a nonzero element of limk π1(BGk), and there is a surjection π1(limk BGk)→
limk π1(BGk). For every x ∈ Gk we get an element [x] ∈ π1(BGk). There is a canonical map BGk → BR
(where we view R as a discrete group) which maps the loop [x] to the corresponding loop [x] ∈ π1(BR),
and thus those elements are all distinct (and in particular nonzero if x is nonzero). Now set xn =
[ 1
2n ] · · · · · [

1
2n ] ∈ π1(BGn), the 2n-fold product (in π1) of the loop represented by 1

2n . Since in BGn−1 we
impose the relation [ 1

2n ] · [
1
2n ] = [ 1

2n−1 ], it follows that xn maps to xn−1. By the argument above, this
compatible family is nonzero (as it gets mapped to [1] ∈ BR), thus proving the claim.

We have the following useful criterion for detecting levelwise groups.

Theorem 2.15. Let G ∈ Grp(Pro(X<∞)) be pro-connected, i.e., the unit ∗ → G is a levelwise effective
epimorphism. Then G is a levelwise group.

For the proof, we need the following identification of the E1-structures on the two different bar con-
structions one can perform on an E2-group, for which we were unable to locate a proof in the literature.
For any ∞-category C with finite products and geometric realizations, and any G ∈ Grp(C), write
B•G ∈ Fun(∆op, C) for the corresponding simplicial object, and BCG := BG := |B•G| ∈ C for the
geometric realization.

Proposition 2.16. Let C be an ∞-category with finite products and all colimits, such that geometric
realizations commute with finite products (e.g. X or Pro(X<∞)). There is an equivalence of functors
Grp(BC) ≃ BGrp(C) : Grp(Grp(C))→ Grp(C).

Proof. Let C0 ⊂ C be a small full subcategory closed under finite products. Consider the commutative
diagram

Grp(Grp(C0)) Grp(Grp(P(C0))) Grp(Grp(C))

Grp(P(C0)) Grp(C),

y colim

colim

where y : C0 → P(C0) and colim: P(C0) → C preserve finite products (whence groups) and the vertical
arrows are Grp(B) respectively BGrp. An equivalence between the left hand vertical arrows thus yields
an equivalence between the two composites Grp(Grp(C0))→ Grp(C). Writing C as the filtered colimit of
small full subcategories C0 closed under finite products, we can reduce from arbitrary C to C = P(C0).
In fact, since Grp(C) ≃ Grp(C∗), we may reduce further to C = P(C0)∗. I.e., from now on we can (and
will) assume that C = X∗ for an ∞-topos X .

Note that Grp(Grp(C)) ⊂ Fun(∆op×∆op, C) and under this inclusion, the different directions in which
we can take geometric realizations on a bisimplicial object correspond to the two functors Grp(BC) and
BGrp(C). In particular, since colimits commute, we see that

B ◦Grp(B) ≃ B ◦ BGrp : Grp(Grp(C))→ C.
The result follows since in an ∞-topos X , the functor B: Grp(X∗) ≃ Grp(X ) → X∗ is fully faithful
[Lur09, Lemma 7.2.2.11]. □

Proof of Theorem 2.15. Consider the commutative diagram

Grp(Pro(X<∞))

Grp(Pro(Grp(X<∞))) Grp(Grp(Pro(X<∞)))

Pro(Grp(X<∞)) Grp(Pro(X<∞)),

Grp(Pro(Ω))
Grp(Ω)

B B

where the horizontal functors forget that a group is levelwise. The square commutes by naturality of
the classifying sheaf functor B. The triangle commutes already before applying Grp(−): Indeed, all
the involved functors preserve cofiltered limits, hence we may check this on constant objects, where it
is clear. Let G ∈ Grp(Pro(X<∞)) be pro-connected. Our goal is to show that G is in the essential
image of the bottom horizontal functor. Chasing the commutative diagram, it suffices to show that the
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right-hand composite sends G to itself. By Proposition 2.16, we see that B(Grp(Ω)(G)) ≃ Grp(BΩ)(G).
The result follows since BΩX ≃ X for any pro-connected X ∈ Pro(X<∞)∗; indeed this was shown in
Proposition 2.11(1). □

2.5. Group actions. Let C be an ∞-category with pullbacks and I-indexed colimits. Given B ∈
Fun(I, C), the functor colimI : Fun(I, C)/B → C/ colimI B admits a right adjoint F : T 7→ B ×d(colimI B)

d(T ). Here d : C → Fun(I, C) is the diagonal functor. By construction, F lands in the subcategory
Fun(I, C)cart/B ⊂ Fun(I, C)/B of cartesian diagrams, the full subcategory spanned by those natural trans-
formations η : B′ → B that are cartesian in the sense of [Lur09, Definition 6.1.3.1].

Now we specialize to C = Pro(X<∞) and I = ∆op. Let G ∈ Grp(Pro(X<∞)). Recall that then
Fun(∆op,Pro(X<∞))cart/B•G

can be seen as encoding objects with a G-action [NSS14, Definition 3.1]. We
obtain an adjunction

|−| : Fun(∆op,Pro(X<∞))cart/B•G
⇄ Pro(X<∞)/BG :F.

Proposition 2.17. If G is a levelwise group, then the above adjunction is an adjoint equivalence.

Proof. Let α = (X → BG) ∈ Pro(X<∞)/BG. Then α = limi cαi in Fun(∆1,Pro(X<∞)), where αi : Xi →
Bi ∈ X<∞ withBi connected (where limiBi ≃ BG). Since geometric realizations commute with cofiltered
limits in Pro(X<∞) (Proposition 2.2) we find |Fα| ≃ τ<∞ limi c|Fiαi|, where

|−| : Fun(∆op,X )cart/B•ΩBi
⇄ X/Bi

:Fi

is the canonical adjoint equivalence [Lur09, Theorem 6.1.3.9 (3)]. It follows that the counit |Fα| → α is
an equivalence.

We now prove the same for the unit. We first treat a special case. By Lemma 2.19 below, the forgetful
functor U : Fun(∆op,Pro(X<∞))cart/B•G

→ Pro(X<∞) has a left adjoint, sending X ∈ Pro(X<∞) to G×X.
Write s : ∗ → BG for the canonical map. Comparing universal properties we see that |G×X| ≃ s♯X, and
so the object underlying F |G×X| is ∗×BGX ≃ FBG×X, which by Proposition 2.11 is just G×X. It
follows that the unit G×X → F |G×X| ≃ G×X is homotopic to the identity map, and so in particular
an equivalence. To treat the general case, first observe that U is conservative and preserves geometric
realizations (since geometric realizations commute with finite products in Pro(X<∞)), hence is monadic,
so any object in Fun(∆op,Pro(X<∞))cart/B•G

can be written as a geometric realization of objects of the
form G × X, cf. the proof of [Lur17, Proposition 4.7.3.14]. Since both |−| and F preserve geometric
realizations (the former being a left adjoint, and the latter by Proposition 2.2), we conclude. □

If G is acting on an object F ∈ Pro(X<∞), by abuse of notation we also write F for the associated
cartesian diagram F• → B•G, and write F//G := |F •| for the homotopy quotient of the group action.
By construction, this comes equipped with maps F → F//G→ BG.

Example 2.18. If G is a levelwise group acting on F ∈ Pro(X<∞), then F → F//G → BG is a fiber
sequence. (This is a reformulation of the fact that the counit of the above adjunction is an equivalence.)

We used the following fact, for which we could not find a reference.

Lemma 2.19. Let C be an ∞-category with finite products and G ∈ Grp(C). The forgetful functor
U : Fun(∆op, C)cart/B•G

→ C has a left adjoint F such that for X ∈ C the counit X → UFX is given by the
canonical map X ≃ X × ∗ → X ×G.

Proof. Increasing the size of the universe if necessary, we may assume that C is small. The claim implies
that (FX)n ≃ Gn × X, so it suffices to prove it in the larger ∞-category P(C). We may thus assume
that C is an ∞-topos. Now Fun(∆op, C)cart/B•G

≃ C/BG [Lur09, Theorem 6.1.3.9 (3)]. Writing s : ∗ → BG

for the canonical map, the functor U identifies with s∗ and so the left adjoint F is given by s♯. It follows
that UFX ≃ X ×BG ∗. The result follows by considering the following diagram of pullback squares

UFX −−−−→ G −−−−→ ∗y y y
X −−−−→ ∗ −−−−→ BG.

□
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3. Setup for the rest of the article

Throughout this article, we will work with the data of an adjunction of ∞-categories

L+ : X ⇄ D :R.

Here X is an∞-topos, D is stable and presentably symmetric monoidal, and L+ is symmetric monoidal.
We write L : X∗ → D for the induced functor. We assume given Dsld

≥0 ⊂ D, which is the non-negative
part of a t-structure (thus Dsld

≥0 is closed under colimits and extensions in D). We denote by Dsld ⊂ D
the localizing subcategory generated by Dsld

≥0 and call it the subcategory of solid objects. Objects in Dsld
≥0

are called solid connective. We are concerned with the following axioms:
(C) The restricted functor R : Dsld

≥0 → X preserves sifted colimits.
(M) For X ∈ X∗ and E ∈ Dsld

≥0 we have LX ⊗ E ∈ Dsld
≥0.

(S) (1) We have LR(Dsld
≥0) ⊂ Dsld

≥0.
(2) For E ∈ Dsld

≥1 the canonical map π1LRE → π1E is an isomorphism. (Here π1 refers to the
t-structure specified by Dsld

≥0.)
(3) R : Dsld

≥0 → X is conservative.

For convenience, we denote by X sld
∗,≥n ⊂ X∗ the subcategory of objects which are n-connective and

such that LX ∈ Dsld
≥n.

3.1. First consequences. The following result is standard:

Lemma 3.1 (Stable splitting). Let X,Y ∈ X∗. Then there is a split cofiber sequence

LX ⊕ LY → L(X × Y )→ L(X ∧ Y ),

natural in X and Y .

Proof. Apply L to the cofiber sequence X ∨ Y → X × Y → X ∧ Y , and use that L(X ∨ Y ) ≃ LX ⊕ LY
to construct a splitting of the inclusion. □

Lemma 3.2. The functor R : D → X factors canonically over Grp(X ). Moreover, if axiom (C) is
satisfied, then for every E ∈ Dsld

≥0, there is an equivalence BRE ≃ RΣE.

Proof. Since D is stable, we have Grp(D) ≃ D, and since R preserves products, we get an induced functor
D ≃ Grp(D)→ Grp(X ) that refines R. For the second statement, note that ΣE can be computed as the
geometric realization of the simplicial object

0 E E ⊕ E · · · ,

see e.g. [BH21b, Lemma 2.7]. But under the canonical equivalence Grp(D) ≃ D, this is just the bar
construction of the group structure on E. Now, since R commutes with sifted colimits of objects in Dsld

≥0

by assumption, and E (and thus also E⊕n) is in Dsld
≥0, the result follows. □

Remark 3.3. We will frequently use the following statement: Suppose that X• is a simplicial object in a
stable ∞-category E with a t-structure. If there exists an n such that X0 ∈ E≥n+1 and Xi ∈ E≥n for all
i > 0, then |X•| ∈ E≥n+1. Indeed, this follows immediately from [Lur17, Proposition 1.2.4.5].

Lemma 3.4. (1) Axiom (C) implies that RDsld
≥n ⊂ X∗,≥n.

(2) Axioms (C) and (S1) together imply that RDsld
≥n ⊂ X sld

∗,≥n.
(3) Axiom (M) implies that for X ∈ X∗,≥n and E ∈ Dsld

≥m we have LX ⊗ E ∈ Dsld
≥n+m.

(4) Axioms (C), (S1) and (S3) together imply that every object in Dsld
≥n can be written as a sifted

colimit of objects of the form LX, for X ∈ X sld
∗,≥n.

(5) Axioms (C), (S) and (M) together imply that for E ∈ Dsld
≥n with n ≥ 1 we have fib(LRE → E) ∈

Dsld
≥n+1.

Proof. (1) We prove the claim by induction on n, the case n = 0 being vacuous. Now let E ∈ Dsld
≥n with

RE ∈ X∗,≥n; it suffices to show that RΣE ∈ X∗,≥n+1. But RΣE ≃ BRE by Lemma 3.2. The result
follows from the fact that the bar construction takes n-connective objects to (n+ 1)-connective objects;
see [Lur17, Remarks 5.2.2.19 and 5.2.6.17].

(2) Arguing inductively again, suppose E ∈ Dsld
≥n with LRE ∈ Dsld

≥n. Then LRΣE is the geometric
realization of a simplicial object LRS• with LRSi = LR(E⊕i) ∈ Dsld

≥n. Since LRS0 = 0 ∈ Dsld
≥n+1, it

follows that |LRS•| ∈ Dsld
≥n+1 as needed (Remark 3.3).
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(3) This is clear if X ≃ ΣnX ′. It follows in general since X∗,≥n is generated under (sifted) colimits by
objects of this form, see for example [Mat25, Proposition 2.39].

(4) Note that by definition and (2) the adjunction L ⊣ R restricts to an adjunction L : X sld
∗,≥n ⇄

Dsld
≥n :R. Hence, the result follows from the proof of [Lur17, Proposition 4.7.3.14] if we can show that

this induced adjunction is monadic. For this, it suffices to show that R : Dsld
≥n → X sld

∗,≥n is conservative
and preserves sifted colimits. Conservativity follows immediately from (S3). Since both Dsld

≥n ⊂ Dsld
≥0 and

X sld
∗,≥n ⊂ X∗ are closed under (sifted) colimits (for the first, note that this is true for any t-structure,

and for the second use that both n-connective objects, and objects that under L map to Dsld
≥n are closed

under colimits), this is an immediate consequence of (C).
(5) We first treat the case n = 1. The functor Dsld

≥1 → Dsld
≥1, E 7→ fib(LRE → E) (which is well-

defined by (S2) and (2)) preserves sifted colimits by (C). Thus, to prove that it takes values in Dsld
≥2, by

(4) we need to check this only for objects of the form E = LX, where X ∈ X sld
∗,≥1. In this case the map

LRE → E is split and so induces an epimorphism on π2, as needed. Now we prove the case of general n
by induction. Thus assume given E ∈ Dsld

≥n with fib(LRE → E) ∈ Dsld
≥n+1. Consider again the simplicial

object S• from (2). We note that

LR(E ⊕ E) ≃ L(RE ×RE) ≃ LRE ⊕ (LRE ⊗ LRE)⊕ LRE,
(using Lemma 3.1) with LRE ⊗ LRE ∈ Dsld

≥n+1 (use (1), (3) and recall n ≥ 1), and similarly for the
higher terms. It follows that the fiber of the canonical map |LRS•| ≃ LRΣE → ΣE ≃ |S•| is the
geometric realization of a simplicial object with entries fib(LRS• → S•), i.e., a sum of “cross terms”
(like LRE ⊗ LRE) and copies of fib(LRE → E). Both of these lie in Dsld

≥n+1, and the degree zero term
vanishes, whence by Remark 3.3 the geometric realization itself lies in Dsld

≥n+2. This proves the claim. □

Proposition 3.5. Axiom (M) implies the following. Let F → E → B be a fiber sequence, B connected
and F ∈ X sld

∗,≥n. Then fib(LE → LB) ∈ Dsld
≥n. In particular, if F,B ∈ X sld

∗,≥n then also E ∈ X sld
∗,≥n.

Proof. Writing E ≃ F//ΩB and B ≃ ∗//ΩB, we see that E → B is a colimit of maps of the form
prX : F × X → X. It will be enough to show that fib(L(F × X) → LX) ∈ Dsld

≥n. But by Lemma 3.1,
L(F ×X) ≃ LF ⊕ LX ⊕ (LF ⊗ LX), so the fiber is LF ⊕ (LF ⊗ LX), which lies in Dsld

≥n by (M). □

Example 3.6. As a particular case of the last part of Proposition 3.5, we see that if F,B ∈ X sld
∗,≥n then

also F ×B ∈ X sld
∗,≥n.

4. Homological localization

The left adjoint functor L+ : X → D induces a Bousfield localization L̂ : X → X such that for a
morphism α in X , L+α is an equivalence if and only if L̂α is. This exists by the general theory of
Bousfield localizations in presentable ∞-categories, as outlined in [Lur09, §5.5.4]. We say that X ∈ X is
L-complete if it is a local object for L̂, and that a morphism f : X → Y in X is an L-equivalence if Lf
(or equivalently L̂f) is an equivalence.

Remark 4.1. Note that L̂ preserves the terminal object and hence defines an endofunctor of X∗. Moreover,
L̂|X∗ is the Bousfield localization functor corresponding to L : X∗ → D. (Indeed given a morphism α in
X∗, we have L(α)⊕ L(idS0) ≃ L+(α), so that L(α) is an equivalence if and only if L+(α) is.)

Remark 4.2. The functor L̂ preserves finite products, since L+ is symmetric monoidal.

Theorem 4.3 (Bousfield–Kan fiber lemma). Let L+ : X → D be a left adjoint, symmetric monoidal
functor from an ∞-topos to a presentably symmetric monoidal, stable ∞-category. Assume that D has
a left-separated t-structure (i.e., has no nonzero ∞-connective objects) compatible with the symmetric
monoidal structure such that L+(X ) ⊂ D≥0.

Let F → E → B ∈ X∗ be a fiber sequence. Assume that B and L̂B are simply connected. Then
L̂F → L̂E → L̂B is a fiber sequence.

Proof. We shall first prove the result under the additional assumption that L̂ΩB ≃ ΩL̂B. Set F̂ :=
fib(L̂E → L̂B). This is L-complete; it thus suffices to show that the canonical map F → F̂ is an L-
equivalence, or equivalently an L+-equivalence (Remark 4.1), i.e., that L+F → L+F̂ is an equivalence.
Recall that F has an action by ΩB such that E ≃ F//ΩB [NSS14, Proposition 3.8], and similarly
L̂E ≃ F̂ //ΩL̂B. Moreover, since F → F̂ arises from a map of fiber sequences, this map intertwines
the actions along ΩB → ΩL̂B. Since the latter map is in fact an L-equivalence (by our additional
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assumption) and L+ is a symmetric monoidal functor, we obtain an augmented E1-algebra G = L+ΩB

acting on L+F → L+F̂ , with quotients given by L+E and L+L̂E ≃ L+E. In particular, G acts on
cof(L+F → L+F̂ ) with contractible quotient. Writing the quotient of the group action as geometric
realization, we find that

0 =

∣∣∣∣ cof(L+F → L+F̂ ) cof(L+F → L+F̂ )⊗G cof(L+F → L+F̂ )⊗G⊗G · · ·
∣∣∣∣.

We will inductively show that cof(L+F → L+F̂ ) is n-connective for every n; the case n = 0 holds
trivially. So assume we know that cof(L+F → L+F̂ ) is n-connective (and hence so are the other objects
of the geometric realization). It now follows from [Lur17, Proposition 1.2.4.5] that

0 = πn(0) ≃ Coeq
(
πn cof(L+F → L+F̂ )⊗ π0(G) ⇒ πn cof(L+F → L+F̂ )

)
.

Since by assumption ΩB is connected, π0(G) = π0(L+ΩB) ≃ π0(1), which implies that the two maps in
the coequalizer are equal (in fact, they are isomorphic to the maps obtained by an analogous diagram
where we act with 1 using the unit map 1→ G, i.e., the trivial action). Thus, 0 = πn cof(L+F → L+F̂ ),
concluding the induction. We showed that cof(L+F → L+F̂ ) is∞-connective, hence zero by assumption,
as desired.

It remains to prove that L̂ΩB ≃ ΩL̂B, or equivalently, since ΩL̂B is L-complete, that the canonical
map ΩB → ΩL̂B is an L-equivalence. Since B and L̂B are connected, BΩB ≃ B and BΩL̂B ≃ L̂B.
Since B → L̂B is an L-equivalence by construction, we see that ΩB → ΩL̂B becomes an L-equivalence
after applying the bar construction. Write X := ΩB, and Y := ΩL̂B. Thus, since L commutes with
colimits, we see that

0 = |L cof(B•X → B•Y )| =
∣∣∣∣0 L cof(X → Y ) L cof(X ×X → Y × Y ) · · ·

∣∣∣∣.
By assumption both X and Y are connected, whence L cof(X → Y ) ∈ D≥1. We will inductively
show that L cof(X → Y ) ∈ D≥n, which implies the claim since D is left-separated. So assume that
L cof(X → Y ) ∈ D≥n for some n ≥ 1. For k ≥ 2, the k-th term of the above geometric realization is also
in D≥n: Indeed, the k-th term is given by L cof(X×k → Y ×k), which by stable splitting, Lemma 3.1, is
the direct sum of the following objects:

• L cof(X → Y ),
• L cof(X×k−1 → Y ×k−1), and
• L cof(X ∧X×k−1 → Y ∧ Y ×k−1).

The first object is in D≥n by assumption, and the second object by induction on k (or the assumption, if
k = 2). The third object is even in D≥n+1: applying the octahedral axiom to X∧X×k−1 → Y ∧X×k−1 →
Y ∧ Y ×k−1 we obtain a cofiber sequence

L cof(X → Y )⊗ LX×k−1 → L cof(X ∧X×k−1 → Y ∧ Y ×k−1)→ LY ⊗ L cof(X×k−1 → Y ×k−1)

where the outer terms are both in D≥n+1 (by what we already concluded above and using that LX×k−1

and LY are in D≥1), and thus the same is true for the middle term.
Our next goal is to identify the three maps L cof(X × X → Y × Y ) → L cof(X → Y ). Since L

commutes with the cofiber, and the stable splitting is functorial, it will suffice to analyze the three maps
L(X ×X)→ LX (and for Y , which is analogous). By definition of the bar construction, these maps are
given by L(pr1), L(pr2) and L(m), where m : X ×X → X is the multiplication map on the loop space.
We claim that under the stable splitting equivalence, the following diagrams commute:

L(X ×X) L(X ×X)

LX LX ⊕ LX ⊕ L(X ∧X) LX LX ⊕ LX ⊕ L(X ∧X) LX.

L(pr1) L(pr2)≃ ≃ L(m)

(id,0,0) (0,id,0) (id,id,m̃)

Here, m̃ is defined as the third component of the induced map. For the left diagram, this is true by
construction. For the right diagram, it is only necessary to identify L(m) on the first two components.
Since the first inclusion LX → L(X ×X) is induced by the map X = X ∨ ∗ → X ×X, and since m is
the multiplication of a group object where the unit is given by ∗ → X, it follows that the composition
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X → X ×X m−→ X is homotopic to the identity, even before applying L. The same argument works for
the second component.

In particular, under the stable splitting equivalence, we see that L(pr1)−L(m) +L(pr2) ≃ −m̃ ◦ pr3.
Consider now the associated spectral sequence of the above simplicial object C•, as explained in

[Lur17, §1.2.4]. It has signature

Ep,q1 = Hp(DKun(πq(C•))) =⇒ πp+q|C•| = 0,

where DKun denotes the associated unnormalized chain complex of a simplicial object in an abelian
category. By the identification of the maps in the simplicial object done above, we see that for every q
the associated unnormalized chain complex looks as follows:

0
0←− πq(L cof(X → Y ))

−πq(cof(m̃X→m̃Y ))pr3←−−−−−−−−−−−−−−− πq(L cof(X → Y ))⊕2 ⊕ πq(L cof(X ∧X → Y ∧ Y ))← · · · .

Note that we use here that the map X → Y is a map of loop spaces, so that we get a map m̃X → m̃Y .
In particular,

H1(DKun(πq(C•))) ≃ coker (πq(cof(m̃X → m̃Y )) : πq(L cof(X ∧X → Y ∧ Y )→ πq(L cof(X → Y )))) .

By the connectivity estimates done above, we see that πnL cof(X ∧X → Y ∧ Y ) = 0, whence E1,n+1
1 =

H1(DKun(πn+1(C•))) ≃ πn(L cof(X → Y )). By inspection, no differential goes in or out of this group,
therefore it survives to the E∞-page. Since we know that the spectral sequence converges to 0, we get
that πn(L cof(X → Y )) = 0. This concludes our induction. □

Remark 4.4. The above proof can be simplified somewhat by using Bar-Cobar duality. Specifically:
(1) The functor (−)//G = (−) ⊗G 1 upgrades to an equivalence between G-modules and BG-

comodules, thus is conservative.
(2) The functor (−) 7→ B(−) ≃ 1⊗(−) 1 upgrades to an equivalence between augmented connected
E1-algebras and coaugmented simply connected E1-coalgebras, so is conservative as well.

We included direct arguments in our special case to keep the proof more self-contained.

Remark 4.5. The assumption that L̂B is simply connected often does not apply for ∞-topoi of positive
homotopy dimension. This restricts the usefulness of the above fiber lemma. However, it can be utilized to
prove more general fiber lemmas by reducing to the case of a presheaf∞-topos; see [Mat24b, Proposition
3.19] and [Mat25, Proposition 2.8]. Moreover, for rationalization it is always true (at least for ∞-topoi
with enough points) that L̂B is still simply connected, cf. [Mat24a, Proposition 3.12].

5. Bousfield–Kan completion

The main goal of the section is to prove a generalized version of Bousfield and Kan’s Principal Fibration
Lemma in our more general context (see Section 3). This is achieved in Theorem 5.7 which states that,
assuming the axioms (C), (M), and (S), the generalized Bousfield–Kan completion functor preserves
certain fiber sequences.

We begin the section by recalling how to define the functor of pro-objects T • : X∗ → Pro(X∗) associated
to the adjunction L ⊣ R. Our next order of business is to show that T • preserves finite products
(Proposition 5.1). So far we have not used any axioms. Making heavy use of the axioms, we next show
that τ<∞T

• preserves geometric realizations of connected solid object (Corollary 5.6) and that each
of the functors Tn preserves connected solid objects (Corollary 5.4). The main theorem follows fairly
straightforwardly from this.

5.1. Setup. Out of the adjunction L : X∗ ⇄ D :R we construct an augmented cosimplicial endofunctor
CB•

+ : X∗ → Fun(∆+,X∗), see Construction A.1. Informally, CB•
+ looks like

id RL (RL)2 (RL)3 · · · .
Taking partial totalizations, we obtain

Tn = Totn CB• = lim
∆≤n

CB• : X∗ → X∗

assembling into a tower
· · · → T 2 → T 1 → T 0.

We also denote by T • the associated pro-object, i.e., T • = limn cT
n = lim∆ cCB

• : X∗ → Pro(X∗), which
comes equipped with an augmentation c→ T •.
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5.2. Products.

Proposition 5.1. The functor T • : X∗ → Pro(X∗) preserves finite products.

Proof. As T • preserves the terminal object, it suffices to show that T • preserves binary products. Let
X,Y ∈ X∗. Consider the augmented cosimplicial object

W •
+ : ∆+

((CB)•+)2

−−−−−−→ Fun(X∗,X∗)
2 (evX ,evY )−−−−−−→ X 2

∗
−×−−−−→ X∗.

Out of this, we can construct a double augmented cosimplicial object as follows:

V •,•
+ : ∆+ ×∆+

CB•
+ ×W•

+−−−−−−−→ Fun(X∗,X∗)×X∗
eval−−→ X∗.

Informally, V •,•
+ looks like the following picture (where we do not draw the codegeneracy maps):

...
...

...

(RL)2(X × Y ) (RL)2(RLX ×RLY ) (RL)2((RL)2X × (RL)2Y ) · · ·

RL(X × Y ) RL(RLX ×RLY ) RL((RL)2X × (RL)2Y ) · · ·

X × Y RLX ×RLY (RL)2X × (RL)2Y · · ·

By definition we have
lim
∆
cV •,−1 = lim

∆
cCB•(X × Y ) = T •(X × Y ).

Similarly, we have the following equivalence:

lim
∆
cV −1,• = lim

∆
eval(c,W •)

= lim
∆
c(CB•(X)× CB•(Y ))

≃ lim
∆
cCB•(X)× lim

∆
cCB•(Y )

= T •(X)× T •(Y ),

where we used that c commutes with finite limits and that ∆ is a cosifted category. Hence, we get a span

T •(X × Y ) ≃ lim
∆
cV •,−1 → lim

∆×∆
cV •,• ← lim

∆
cV −1,• ≃ T •(X)× T •(Y ).

The proposition follows if we can show that the arrows are equivalences. For this, it suffices to show
that for every n ≥ 0 both V n,• and V •,n are split cosimplicial objects, cf. Remark A.3. Unwinding the
definitions, we see that

V n,•+ ≃ (RL)n+1((CB)•+(X)× (CB)•+(Y )).

This in turn is equivalent to

(RL)nR
(
L(CB)•+(X)⊕ L(CB)•+(Y )⊕

(
L(CB)•+(X)⊗ L(CB)•+(Y )

))
,

using Lemma 3.1. But now both L(CB)•+(X) and L(CB)•+(Y ) are split by Proposition A.4, and so are
their sums and tensor products. Similarly, we see that

V •,n
+ ≃ (CB)•+

(
(RL)n+1(X)× (RL)n+1(Y )

)
≃ (CB)•+ (R(L(RL)n(X)× L(RL)n(Y ))) ,

since R commutes with products as it is a right adjoint. This is also split by Proposition A.4. □

5.3. Connectivity. From now on to the end of the section, we will assume the axioms (C), (M), and (S).
We shall be utilizing the codegeneracy cubes and the face cubes, whose total fibers we denote respectively
by

Cn : X∗ → X∗ and Sn : D → D.
Informally speaking, the codegeneracy cubes are made out of the codegeneracy maps in the cosimplicial
object CB•, whereas the face cubes are made out of the face maps of the simplicial object extracted from
the adjunction L ⊣ R. For a careful definition of both cubes see Definition A.7. We use two main facts
about these cubes:
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• We have

(Cube1) Cn ≃ RSnL,

i.e., the codegeneracy maps in the cobar construction for X are just obtained by applying R
to the face maps of the bar construction for LX. See Proposition A.10 for a reference.

• We have the fiber sequence

(Cube2) ΩnCn → Tn → Tn−1,

i.e., Cn relates to an inductive construction of T •. (This follows from [Lur17, Corollary 1.2.4.18]
together with the pointwise formula for right Kan extensions. Note that the stability assumption
in the statement of loc. cit. is not actually used in the proof, just pointedness.)

Lemma 5.2. The functor Sn : Dsld
≥1 → Dsld sends i-connected maps to (n+ i)-connected maps.

Proof. Let (An) be the desired statement about Sn, let (Bn) be the (a priori weaker) statement that Sn
sends Dsld

≥i to Dsld
≥i+n (for i ≥ 1). We shall prove that (Bn) implies (An) and (An) implies (Bn+1). Since

S0 = id, both (A0) and (B0) are trivial; hence by induction we will prove what we want.
(An)⇒ (Bn+1): Let E ∈ Dsld

≥i . The map LRE → E has fiber in Dsld
≥i+1, by Lemma 3.4(5). Hence, by

(An), the fiber of Sn(LRE) → Sn(E) lies in Dsld
≥i+1+n. But this fiber is Sn+1(E) by Proposition A.11,

proving the claim.
(Bn) ⇒ (An): Let F → X → Y be a fiber sequence in D with X,Y ∈ Dsld

≥1 and F ∈ Dsld
≥i . We write

Y ≃ cof(F → X) as the geometric realization of the simplicial object Y• with entries Yt = X⊕F⊕t. Since
Sn preserves sifted colimits, we find that fib(Sn(X)→ Sn(Y )) is the geometric realization of the simplicial
object F•, with Ft = fib(Sn(X)→ Sn(X ⊕ F⊕t)). Note that Sn(A⊕B) ≃ Sn(A)⊕ Sn(B)⊕ Sn(A,B),
defining a new functor Sn(−,−). In terms of this we have Ft ≃ ΩSn(F⊕t)⊕ΩSn(X,F⊕t). In particular
F0 = 0. By (Bn) we know that Sn(F⊕t) ∈ Dsld

≥n+i. Using Remark 3.3, it will thus suffice to show that
Sn(X,F⊕t) ∈ Dsld

≥n+i. We shall prove more generally that for Z ∈ Dsld
≥i we have Sn(X,Z) ∈ Dsld

≥n+i.
When i = 1 this follows from (Bn) (Sn(X,Z) being a summand of Sn(X ⊕ Z)). Inductively, assume
the claim proved for i and let ΣZ ∈ Dsld

≥i+1. Then Sn(X,ΣZ) ≃ |Sn(X,Z⊕•)| (as Sn(X,−) preserves
sifted colimits, being a summand of Sn(X ⊕ −)). Since each term in the simplicial object lies in Dsld

≥i
(by induction) and the zeroth term is zero, the claim follows (again by Remark 3.3). □

Proposition 5.3. Let F → X → Y ∈ X∗ be a fiber sequence with X,Y ∈ X sld
∗,≥1 and F ∈ X sld

∗,≥i (with
i ≥ 1). Then

fib(Tn(X)→ Tn(Y )) ∈ X sld
∗,≥i.

Proof. Recall the fiber sequence (Cube2). By induction using Proposition 3.5, we thus reduce to showing
that the functor ΩnCn has the desired property. Now ΩnCn ≃ RΩnSnL by (Cube1), so by Lemma 5.2
it is enough to show that fib(LX → LY ) ∈ Dsld

≥i . This is Proposition 3.5 again. □

Corollary 5.4. The functor Tn preserves X sld
∗,≥i (for i ≥ 1).

Proof. It is clear that Tn(∗) = ∗, so this is the special case of Proposition 5.3 applied to a map to the
terminal object. □

5.4. Geometric realizations.

Proposition 5.5. The functor Tn preserves sifted colimits of connected solid objects.

Proof. We prove the claim by induction on n, the case n = 0 being clear since T 0 = RL preserves sifted
colimits of connective solid objects by axiom (C). Let X• ∈ X sld

∗,≥1 be a sifted diagram. By induction, we
know that |Tn(X•)| ≃ Tn(|X•|). We have

|Ωn+1Cn+1(X•)|
(1)
≃ |RΩn+1Sn+1(LX•)|

(2)
≃ R|Ωn+1Sn+1(LX•)|

(3)
≃ RΩn+1Sn+1(L|X•|)

(1)
≃ Ωn+1Cn+1(|X•|),

where (1) holds by (Cube1), (2) holds because Ωn+1Sn+1 preserves solid connected objects (Lemma 5.2)
and R preserves sifted colimits of solid connected objects (C), and (3) holds because Ωn+1Sn+1 is a
total fiber computed in a stable ∞-category and hence preserves all colimits that are preserved by
(LR)k, in particular sifted colimits of solid connected objects. Recall the fiber sequence (Cube2). Using
that pullbacks preserve sifted colimits in X with connected base [Lur17, Lemma 5.5.6.17], we see that
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|Ωn+1Cn+1(X•)| → |Tn+1(X•)| → |Tn(X•)| is a fiber sequence. We now have a morphism of fiber
sequence

|Ωn+1Cn+1(X•)| −−−−→ |Tn+1(X•)| −−−−→ |Tn(X•)|y y y
Ωn+1Cn+1(|X•|) −−−−→ Tn+1(|X•|) −−−−→ Tn(|X•|).

The left- and right-hand maps are equivalence by what we have already said, and the base is connected,
so we can conclude by using e.g. [NSS14, Proposition 3.8]. □

Corollary 5.6. The functor τ<∞T
• preserves geometric realizations of connected solid objects.

Proof. Immediate from Propositions 2.2 and 5.5. □

5.5. Fiber sequences. We now have everything to prove our version of the celebrated Principal Fibra-
tion Lemma of Bousfield and Kan [BK72].

Theorem 5.7 (Principal Fibration Lemma). Assume axioms (C), (M) and (S).
Let F → E → B ∈ X∗ be a fiber sequence with B simply connected and F,ΩB ∈ X sld

∗,≥1. Then
τ<∞T

•F → τ<∞T
•E → τ<∞T

•B is a fiber sequence.

Proof. We know that ΩB is a group acting on F with quotient F//ΩB ≃ E [NSS14, Proposition 3.8]. By
Proposition 5.1, τ<∞T

•ΩB is a group acting on τ<∞T
•F . Note that ΩBn × F ϵ ∈ X sld

∗,≥1 for all n, ϵ ≥ 0

(Example 3.6). Thus, Corollary 5.6 implies that the quotient is

τ<∞T
•F//τ<∞T

•ΩB ≃ τ<∞T
•(F//ΩB) ≃ τ<∞T

•E.

Since T •ΩB is pro-connected by Corollary 5.4, it is a levelwise group by Theorem 2.15, and so by
Example 2.18 we have a fiber sequence

τ<∞T
•F → τ<∞T

•E ≃ τ<∞T
•F//τ<∞T

•ΩB → Bτ<∞T
•ΩB.

Using once more that τ<∞T
• preserves geometric realizations and finite products (of connected solid

objects) we learn that Bτ<∞T
•ΩB ≃ τ<∞T

•BΩB, which is the same as τ<∞T
•B, as needed. □

6. Applications

In this final section we reap the fruits of the previous sections to prove generalized versions of Bousfield
and Kan’s [BK72] convergence of their completion functor. We will start with an adjunction

Σ∞
+ : C ⇄ E :Ω∞,

where C is some∞-category of generalized spaces, and E is an associated∞-category of spectra. We will
pick A ∈ CAlg(E) and write C as a localization of an ∞-topos X . Putting D =ModA(E), we obtain a
composed adjunction

X ⇄ C ⇄ E ⇄ D
to which we shall apply the results of the previous sections.

There are four classes of examples for this broad framework that we have in mind. In Section 6.1 we
consider the case X = C = Spc the usual ∞-category of spaces, and E = Sp the usual ∞-category of
spectra. We thus provide an account of the original results of Bousfield and Kan. We will assume that
A is connective. The behavior of the completion is then strongly influenced by π0(A), which we shall
assume to be either a subring of Q of the form S−1Z, or a quotient of Z, whence Z/n. Depending on
this, the Bousfield–Kan completion coincides in favorable cases (i.e., for nilpotent spaces) with either the
unstable S-localization or the unstable n-completion.

Next in Section 6.2 we generalize somewhat, by allowing C = X to be an ∞-topos satisfying some
mild assumptions. We still set E = Sp(X ) and assume that π0(A) is a constant sheaf S−1Z or Z/n.
Again we prove that the Bousfield–Kan completion (or more precisely, its connected cover) agrees (for
nilpotent sheaves) with an unstable S-localization or n-completion functor.

Our next example, treated in Section 6.3, is C = Spc(BG), i.e. the ∞-category of genuine G-
equivariant spaces. We only consider finite groups G. We can set X = C, since Spc(BG) is a presheaf
topos. However, we no longer set E = Sp(Spc(BG)). Indeed, as the practice of genuine equivariant stable
homotopy theory shows, a much more useful ∞-category of spectra is SH(BG), obtained by inverting
on Spc(BG)∗ all the representation spheres. We again pick A ∈ SH(BG)≥0. But now π0(1SH(BG)) = A
(the Burnside ring Mackey functor) is no longer the constant presheaf Z, and so more options arise for
π0A. We treat four cases, (1) π0A = S−1A, (2) π0A = A/n, (3) π0A = S−1Z and (4) π0A = Z/p. Cases
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(1) and (2) behave very similarly to the previous situations, and we call them Burnside resolutions.
Cases (3) and (4) are more delicate. We call them Z-resolutions.

Our final example is the ∞-category of motivic spaces C = Spc(k), where k is a perfect field; see
Section 6.4. As in the equivariant case, the correct ∞-category of spectra is not the naive stabilization,
but rather the ∞-category of motivic spectra E = SH(k). Moreover, in contrast to the previous three
examples, C is not a topos, and so we must specify X = ShvNis(Smk). As in the sheaves case, X has
positive (even infinite) homotopy dimension, so care has to be taken with completions and connectivity
assumptions. As in the equivariant case, π0(1k)∗ is more complicated than just Z, and so more options
arise for π0(A)∗. Here we treat the cases π0(A)∗ = S−1π0(1k)∗, π0(A)∗ = π0(1k)∗/n (which we call
Milnor–Witt resolutions) and π0(A)∗ = S−1π0(1k)∗/η, π0(A)∗ = π0(1k)∗/(n, η) (which we call Milnor
resolutions).

6.1. Spaces. We set X = Spc. In this subsection we explain how our results specialize to those of
Bousfield–Kan [BK72]. Our presentation is designed as a drop-in replacement for loc. cit.

Let A ∈ CAlg(Sp)≥0 such that π0(A) is either a subring of Q or a quotient of Z, so that π0(A) ⊗Z
π0(A) ≃ π0(A). Set D =ModA(Sp), Dsld

≥0 = D≥0 and L+ = A⊗Σ∞
+ . Hence, we have Spcsld∗,≥n ⊇ Spc∗,≥n

for all n ≥ 0. The axioms are readily verified. (In fact, this is a special case of the situation of Section 6.2,
where we verify the axioms more fully in Lemma 6.5.) In particular, for X ∈ D≥1 we have

π1(LRX) ≃ π1(X)⊗Z π0(A) ≃ π1(X)⊗π0(A) π0(A)⊗Z π0(A) ≃ π1(X),

whence (S2) is satisfied. To emphasize the dependence on A, we denote the localization functor (in the
sense of Section 4) by L̂A and the completion functor (in the sense of Section 5) by T •

A.
Let us recall the stable analog. On Sp≥0 we can define a Bousfield localization LstA , where LstA (α) is

an equivalence if and only if α⊗A is one. (In fact, for E ∈ Sp≥0, LstAE coincides with the totalization of
corresponding monadic resolution, see e.g. [Man24, Theorem 1.0.4], but we do not need this.) Its effect
can be described explicitly, see Proposition B.1:

(1) If π0A = Z/n then LstAE ≃ E∧
n = limiE/n

i.
(2) If π0A = S−1Z ⊂ Q then LstAE ≃ S−1E (so that π∗(LstAE) ≃ π∗(E)⊗ π0(A)).

We can now state the main result of this section.

Theorem 6.1 (Bousfield–Kan [BK72]). (1) Let X ∈ Spc∗ be connected and nilpotent (i.e. π1(X) is
nilpotent, with nilpotent action on πn(X) for all n ≥ 2). The canonical map L̂AX → TotT •

AX

is an equivalence. In fact, if π0(A) ⊂ Q then already the canonical map τ<∞L̂AX → τ<∞T
•
AX

is an equivalence.
(2) For E ∈ Sp≥1 the canonical map L̂AΩ∞E → Ω∞LstAE is an equivalence.
(3) Let F → E → B be a fiber sequence of pointed, connected, nilpotent spaces, with B simply

connected. Then L̂AF → L̂AE → L̂AB is a fiber sequence.
(4) Let X• be a tower of pointed, connected, nilpotent spaces with X = limiXi. Assume that the

connectivity of X → Xi tends to infinity with i. Then L̂AX ≃ limi L̂AXi.

Note that this result supplies us with a recipe to compute L̂AX (or equivalently TotT •
A) for X pointed,

connected and nilpotent. Indeed, X being nilpotent, we can find fiber sequences Xi+1 → Xi → Bi where
Bi is a simply connected Eilenberg–Mac Lane space, the connectivity of the Bi tends to infinity with i,
and X ≃ limiXi. By (2) we know L̂ABi (in particular we know its homotopy groups), whence by (3) we
can inductively understand L̂AXi. Finally, by (4) we have L̂AX ≃ limi L̂AXi. The following formulae
can be inductively deduced from the stable situation:

Example 6.2. Let π0A ⊂ Q and X be simply connected. Then π∗L̂AX ≃ π∗X ⊗ π0A. In particular if
π0A = Z then L̂AX ≃ X.

Example 6.3. Let π0A = Z/p, X simply connected and πnX finitely generated for all n. Then π∗L̂AX ≃
π∗X ⊗ Z∧

p .

The proof runs slightly differently depending on if π0A ⊂ Q or not, with the former case being
somewhat easier. We treat this first.

Proof of Theorem 6.1 when π0A ⊂ Q. We first prove (2). It is clear from the definitions that Ω∞LstAE
is L-local. It thus suffices to show that Ω∞E → Ω∞LstAE is an L-equivalence. We can write LstAE as the
filtered colimit of a diagram of copies of E, with maps given by multiplication by elements in Z∩π0(A)×.
It thus suffices to show: if E ∈ Sp≥1 and n ∈ Z ∩ π0(A)×, then LΩ∞(E

n−→ E) is an equivalence.
Observe that LΩ∞E ≃ limi LΩ

∞(E≤i): Indeed, the map Ω∞E → Ω∞(E≤i) is (i+ 1)-connective, and L
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preserves connectivity of maps (Proposition 3.5). In particular, the map LΩ∞E ≃ limi LΩ
∞(E≤i) has

∞-connective fiber, and thus is an equivalence. Therefore, we are reduced to the case that E is bounded.
Appeal to Theorem 4.3 shows that given a fiber sequence E1 → E2 → E3 with E3 ∈ Sp≥2, the result for
E1 and E3 implies the result for E2. This way, working through the principalized Postnikov tower, we
reduce to the case where E is concentrated in a single degree, whence, a connected HZ-module. This
∞-category is generated under sifted colimits by E = ΣHZ itself, and so we reduce to this single case.
Now Ω∞E ≃ S1 and Ω∞(n : E → E) is indeed the degree n map from S1 to itself. Upon stabilization,
this corresponds to the multiplication by n map from the semiadditive structure (as this might be checked
on π1(Σ∞S1) ≃ π1(S1) by the Hurewicz theorem), and so becomes inverted upon ⊗A, as needed.

Theorem 4.3 now implies the special case of (3) when B is a simply-connected Eilenberg–Mac Lane
space. From this we deduce by induction that if X is pointed, connected, nilpotent and truncated, then
π∗L̂AX ≃ π∗X ⊗ π0A.

Now we show a special case of (4), namely, the one where there are fiber sequences Xi+1 → Xi → Bi
with Bi simply connected Eilenberg–Mac Lane spaces, with connectivity tending to infinity. Setting
X ′ = limi L̂AXi, the key point is to show that the connectivity of X ′ → L̂AXi tends to infinity with i.
For this it suffices to show that the connectivity of L̂AXi+1 → L̂AXi tends to infinity with i. But we
have the fiber sequences L̂AXi+1 → L̂AXi → L̂ABi (Theorem 4.3), so the claim follows.

Now we prove (1) for arbitrary (pointed, connected, nilpotent) X. Present X ≃ limiXi with fiber
sequences Xi+1 → Xi → Bi where Bi is a simply-connected Eilenberg–Mac Lane space and the con-
nectivity of the Bi tends to infinity. Since the connectivity of X → Xi tends to infinity with i, so
does the connectivity of T •X → T •Xi by Proposition 5.3. Consequently, τ<∞T

•X ≃ limi τ<∞T
•Xi.

Similarly, τ<∞L̂AX ≃ limi L̂AXi (via the special case of (4) above), and so it will be enough to show
that L̂AXi → τ<∞T

•Xi is an equivalence (in Pro(Spc<∞)). Since the fiber sequences Xi+1 → Xi → Bi
are preserved by τ<∞T

• (Theorem 5.7) and by L̂A (via the special case of (3) above), we are reduced to
proving the claim for the Bi. But, T •Bi ≃ T •L̂ABi. Now note that L̂ABi ≃ Ω∞ΣkS−1πk(Bi) for some
k. But S−1πk(Bi) is a (S−1Z = π0(A))-module, and hence also admits the structure of an A-module.
Therefore, L̂ABi is in the image of R, and thus the cosimplicial object is split by Proposition A.4.

The general case of (3) is now an immediate consequence of Theorem 5.7 (τ<∞T
• preserves fiber

sequences), and the general case of (4) follows from Proposition 5.3 (T • preserves connectivity). □

Proof of Theorem 6.1 when π0A = Z/n. We again first prove (2). To begin with, let E ∈ Sp≥2, and
consider the fiber sequence F → E → LstAE. Then F is connected and 0 = LstAF = F∧

n , so that
multiplication by n is an equivalence on F . As before Ω∞LstAE is L-local, and so it suffices to prove that
Ω∞E → Ω∞LstAE is an L-equivalence. Writing LstAE as the cofiber of F → E, rewriting the cofiber as a
geometric realization, using semiadditivity of Sp and the fact that Ω∞ preserves sifted colimits, we find
that Ω∞LstAE ≃ Ω∞(E)//Ω∞(F ). Hence,

L+Ω
∞LstAE ≃ L+Ω

∞(E)//L+Ω
∞(F ).

We have seen in the previous proof that multiplication by n is invertible on Σ∞Ω∞F , and thus LΩ∞F =
0. It follows that L+Ω

∞F ≃ A and so L+Ω
∞LstAE ≃ L+Ω

∞(E), as needed. Now suppose that E ∈ Sp≥1.
Applying Theorem 4.3 to the fiber sequence Ω∞E → ∗ → Ω∞ΣE (note that we already know that
L̂Ω∞ΣE ∼= Ω∞LstAE is simply connected) we deduce that

L̂AΩ
∞E ≃ ΩL̂AΩ

∞ΣE ≃ ΩΩ∞LstAΣE ≃ Ω∞LstAE,

as required.
As in the previous proof, this implies the special case of (3) when B is an Eilenberg–Mac Lane space.

From this we deduce by induction that if X is pointed, d-connected, nilpotent and truncated, then L̂AX
satisfies the same assumptions.

Using the exact same argument as in the previous proof yields the special case of (4).
Next we prove (1) in the special case whereX is a simply connected Eilenberg–Mac Lane space. Denote

the functor TotT • by F . Let B be an abelian group. For i ≥ 0 we have ΩFK(B, i+3) ≃ FK(B, i+2),
since F preserves fiber sequences (Theorem 5.7). We thus obtain an Ω-spectrum G := (FK(B, i+2))i≥0

as well as a map of Ω-spectra f : Σ2HB → G (inducing in each level the mapK(B, i+2)→ FK(B, i+2)).
We claim that the fiber of multiplication by n on f is an equivalence. Indeed, by Theorem 5.7 again,
the functor F preserves the fiber sequences Fi → K(B, i+2)

n−→ K(B, i+2) and Fi → K(B/n, i+1)→
K(B[n], i + 3). But both B[n] and B/n are A-modules, whence FK(B/n, i + 1) ≃ K(B/n, i + 1) and
FK(B[n], i + 3) ≃ K(B[n], i + 3) by Proposition A.4, from which we deduce FFi ≃ Fi, proving the
claim. Consequently, the map Σ2HB → G is an n-equivalence, so an LstA -equivalence, whence by (2) we
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deduce that L̂AK(B, i + 2) ≃ L̂AFK(B, i + 2). Since FK(B, i + 2) is clearly L-local, we have proved
FK(B, i+ 2) ≃ L̂AK(B, i+ 2), for any i ≥ 0.

Finally, we prove the general case of (1). Writing X = limiXi with Xi+1 → Xi → Bi and Bi simply
connected Eilenberg–Mac Lane spaces of connectivity tending to ∞, as in the previous proof we find
that FX ≃ limi FXi, and there are fiber sequences FXi+1 → FXi → FBi. Since the same holds for L̂A
in place of F by the special cases of (3) and (4) we established, showing that FX ≃ L̂AX reduces to
showing that FBi ≃ L̂ABi. This we treat just before.

The general cases of (3) and (4) follow as in the previous proof. □

6.2. Sheaves. In this subsection we show the analog of Theorem 6.1 for (nice enough) ∞-topoi. Let X
be an ∞-topos which admits a locally finite-dimensional cover [Mat24a, Definition 5.1]. In particular, X
is Postnikov-complete [Mat24a, Lemma 5.3] and has enough points (this is part of the definition).

Example 6.4. There are two main examples of such X : Any ∞-topos locally of homotopy dimension
≤ N (e.g., a presheaf∞-topos) admits a locally finite-dimensional cover [Mat24a, Example A.1], and the
Zariski, Nisnevich and étale ∞-topoi on smooth X-schemes, where X is some nice enough base scheme,
cf. [Mat24a, Proposition A.3] and [Mat25, Proposition 2.25]. The existence of a locally finite-dimensional
cover is a technical assumption that guarantees that certain homological localization functors (such as
unstable p-completion) commute with the limit along (weak) Postnikov towers.

Let A ∈ CAlg(Sp(X ))≥0 be a connective sheaf of commutative ring spectra, such that π0(A) is a
constant sheaf of commutative rings with values either a subring of Q or a quotient of Z. As in the case
of spaces we get π0(A) ⊗Z π0(A) ≃ π0(A). Set D = ModA(Sp(X )), Dsld

≥0 = D≥0 and L+ = A ⊗ Σ∞
+ .

Therefore, we also get X sld
∗,≥n ⊇ X∗,≥n for all n ≥ 0. Since X is Postnikov complete, it follows that the

t-structure defined by D≥0 is left complete.

Lemma 6.5. The axioms (C), (M) and (S) hold for the adjunction L ⊣ R.

Proof. The functor R : Dsld
≥0 → X is given by the composition ModA(Sp(X )≥0) → Sp(X )≥0 → X ; for

the axioms (C) and (S3) it therefore suffices to show that both functors preserve sifted colimits and
are conservative. For the first this is [Lur17, Proposition 4.8.5.8 (4) and Corollary 4.2.3.7 (2)]. For the
second, since we have enough points, both statements can be checked on stalks, where the statements
reduce to [Lur17, Corollary 5.2.6.27].

Axiom (M) follows since already LX ∈ Dsld
≥0 for all X ∈ X , and Dsld

≥0 is stable under tensor products.
The same argument shows axiom (S1).

For axiom (S2), let E ∈ Dsld
≥1. By the Hurewicz theorem we have π1(Σ

∞RE) ≃ π1(E) and thus

π1(LRE) ≃ π1(E)⊗Z π0(A) ≃ π1(E)⊗π0(A) π0(A)⊗Z π0(A) ≃ π1(E). □

We can again identify the localization functors:

Lemma 6.6. Let E ∈ Sp(X )≥0 and X ∈ X∗ be nilpotent. If π0(A) = S−1Z ⊂ Q, then
(1) LstAE ≃ S−1E, and
(2) L̂AX ≃ LSX, where LS is the unstable S-localization functor, cf. [Mat24a, §3].

Analogously, if π0(A) = Z/n, then
(1) LstAE ≃ E∧

n = limk E/n
k =

∏
p|nE

∧
p , and

(2) L̂AX ≃ LnX ≃
∏
p|n LpX, the product over the unstable p-completion functors, cf. [Mat24b, §3].

Proof. For the stable identifications see Proposition B.1. We thus identify the unstable localization
functors.

Suppose that π0(A) = S−1Z. We first construct a natural transformation LS → L̂A, and then
show that it is an equivalence on nilpotent sheaves. By definition, LS is the Bousfield localization at
morphisms fU,n,k : U × (Sn∧S1)

id× id∧k−−−−−−→ U × (Sn∧S1) where n ≥ 0, U ∈ X∗, k ∈ S and k : S1 → S1 is
multiplication by k. Hence, by the universal property, it suffices to show that L̂A inverts those morphisms,
i.e., that L inverts those morphisms. Using the stable splitting, Lemma 3.1, we reduce to showing that
A⊗ Σ∞(Sn ∧ S1 id∧k−−−→ Sn ∧ S1) is an equivalence. This map is equivalent to (A

k−→ A)⊗ Σn+1
1, which

is an equivalence since k ∈ S. Thus, we get a natural transformation ϕ : LS → L̂A, such that ϕX is
a L-equivalence for all X ∈ X∗. Let X ∈ X∗ be nilpotent. In order to see that ϕX is an equivalence,
it thus suffices to show that LSX is L-local. Since X is nilpotent, working through the layers of a
principalized Postnikov tower using [Mat24b, Lemma A.15] as well as [Mat24a, Lemma 3.13, Lemma
3.18 and Proposition 6.9], we see that LSX lies in the closure under limits of Ω∞S−1 Sp(X )≥2. We
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conclude since the class of L-local objects is closed under limits, Ω∞ converts LstA -local objects into
L-local objects, and Ω∞S−1 Sp(X )≥2 = Ω∞LstA Sp(X )≥2 (by (1)).

Suppose now that π0(A) = Z/n. Let f : X → Y ∈ X . By the stable identification, we know that f
is an L-equivalence if and only if f is an n-equivalence in the sense of Definition C.2. Thus, we see that
L̂A ≃ Ln, and the claim thus follows from Theorem C.6. □

We need the following fact about highly connected towers:

Lemma 6.7. Let X ∈ X∗ be a sheaf, and let (Xi)i be a highly connected tower in X∗ (in the sense of
[Mat24a, Definition 6.1], i.e., the connectivity of Xi+1 → Xi tends to ∞) under X. Then X → limiXi

is an equivalence if and only if the connectivity of X → Xi tends to ∞.

Proof. Assume first that X ≃ limiXi. We want to argue as in [Mat25, Lemma 2.4] that the connectivity
of X → Xi tends to∞. Unfortunately, the reference requires X to be locally of homotopy dimension ≤ N
for some N . The same proof works in our case, but using [Mat24a, Corollary 6.6] instead of [Mat24a,
Corollary 6.5].

Suppose on the other hand that the connectivity of X → Xi tends to ∞. Write Y := limiXi, so
that there is a canonical map X → Y . By the above, the connectivity of Y → Xi tends to ∞, hence,
by two-out-of-three, the connectivity of X → Y tends to ∞. Since this is independent of i, we see that
X → Y is ∞-connective, hence we conclude by hypercompleteness. □

Theorem 6.8. Let X be an ∞-topos which admits a locally finite-dimensional cover, and let A ∈
CAlg(Sp(X )≥0) with π0A either a constant subsheaf of Q or a constant quotient sheaf of Z.

(1) Let X ∈ X∗ be nilpotent. The canonical map L̂AX → τ≥1 TotT
•
AX is an equivalence. In fact, if

π0(A) ⊆ Q, then already the canonical map τ<∞L̂AX → τ<∞T
•X is an equivalence.

(2) For E ∈ Sp(X )≥1 the canonical map L̂AΩ
∞E → τ≥1Ω

∞LstAE is an equivalence. In fact, if
π0(A) ⊆ Q, then already the canonical map L̂AΩ∞E → Ω∞LstAE is an equivalence.

(3) Let F → E → B be a fiber sequence of pointed nilpotent sheaves. Then the canonical map
L̂AF → τ≥1 fib (L̂AE → L̂AB) is an equivalence. In fact, if π0(A) ⊆ Q, then already L̂AF →
fib (L̂AE → L̂AB) is an equivalence.

(4) Let X• be a tower of pointed, nilpotent sheaves with X = limiXi. Assume that the tower is
locally highly connected subordinate to some cover U (in the sense of [Mat24a, Definition 6.1]).
Then the canonical map L̂AX → limi L̂AXi is an equivalence.

Proof of Theorem 6.8 if π0(A) = S−1Z. Under the identifications of LstA and L̂A from Lemma 6.6, (2),
(3) and (4) follow from [Mat24a, Lemma 3.18, Lemma 3.13 and Proposition 6.9], respectively.

Now we prove (1), so let X ∈ X∗ be nilpotent. Write F := T •
A. We can present X ≃ limiXi with

fiber sequences Xi+1 → Xi → Bi where Bi is an Eilenberg–Mac Lane space and the connectivity of
the Bi tends to infinity, cf. [Mat24b, Lemma A.15]. By (3) and (4), the functor L̂A preserves these
fiber sequences and the limit appearing in the tower, and similarly F preserves these fiber sequences by
Theorem 5.7. Noting that (Xi)i is a highly connected tower (under X) we deduce from Lemma 6.7 and
Proposition 5.3 that the connectivity of FX → FXi tends to infinity with i, even uniformly in the levels
of the pro-object. By definition of τ<∞, it follows that τ<∞FX ≃ τ<∞ limi FXi. We have thus reduced
to the case where X = Ω∞ΣkM for some sheaf of abelian groups M and k ≥ 2. Since both sides invert
L-equivalences, we can replace X by L̂AX, and we have to see that X → τ<∞FX is an equivalence. By
(2) we know X = L̂AΩ

∞ΣkM ≃ Ω∞ΣkS−1M . The result follows from Proposition A.4, since S−1M is
an (S−1Z = π0A)-module, whence an A-module. □

Proof of Theorem 6.8 if π0(A) = Z/n. We will use without mention the identifications of LstA and L̂A
from Lemma 6.6. Then (2) is Lemma C.16, (3) is Lemma C.17, and (4) is Lemma C.18.

We now establish (1). Since τ≥1 : X∗ → X∗,≥1 is a right adjoint it preserves limits. Similarly, the
functor L̂A restricts to X∗,≥1 (this follows from [Mat24b, Lemma 3.12]), and the restricted functor
preserves appropriate fiber sequences (by Lemma C.17). Thus, as in the proof for π0(A) = S−1π0(1),
we reduce to the case X = Ω∞ΣkM an Eilenberg–Mac Lane sheaf, with k ≥ 2. Write F := τ≥1 TotT

•
A =

τ≥1 mat τ<∞T
•
A. Then

G(M) := (FΩ∞ΣkM,FΩ∞Σk+1M, . . . ) ∈ Sp(X∗,≥1) ≃ Sp(X ),
since F preserves loops as above. The functor G also preserves fiber sequences of 2-connective spectra.
There is a canonical map ΣkM → G(M), which is an equivalence whenever M is a finite extension
of A-modules, essentially by Proposition A.4. It follows that ΣkM → G(M) is an n-equivalence, i.e.,



MONADIC RESOLUTIONS FOR GENERALIZED SPACES 23

induces an equivalence on fibers of multiplication by n. Since ΣkM is connected, this implies that also
ΣkM → τ≥1G(M) is an n-equivalence (this follows easily from e.g. [Mat24b, Lemma 2.9 and Corollary
2.11]; note that in the proof there it is never used that p is a prime). Hence, using Lemma C.16, we see
that

Ω∞ΣkM → Ω∞τ≥1G(M) ≃ F (Ω∞ΣkM)

is also an n-equivalence. Since the target is n-complete by construction, this concludes the proof. □

6.3. Equivariant spaces. Let G be a finite group. We will now apply our machinery to the study
of G-equivariant spaces, whose ∞-category we denote by Spc(BG). By Elmendorf’s theorem [Elm83,
Theorem 1] this is equivalent to an ∞-category of presheaves

Spc(BG) ≃ PΣ(FinG).

Here FinG denotes the 1-category of finite G-sets. In particular, Spc(BG) is a topos locally of homotopy
dimension 0, so various results of the previous sections apply.

An additional complication which arises is that the appropriate notion of stabilization in this situation
is not the naive one, i.e., SHS

1

(BG) := Sp(Spc(BG)) only plays a minor role in the theory. Instead, the
category of genuine G-spectra is obtained by inverting the regular representation sphere SG ∈ Spc(BG)∗,
(see [LMSM86, §I.2] or [Cno24, Definition 4.1] for an ∞-categorical definition),

SH(BG) = Spc(BG)∗[(SG)−1];

this fits into the usual adjunction

Σ∞ : Spc(BG)∗ ⇄ SH(BG) :Ω∞.

A helpful alternative picture is the description as spectral Mackey functors [GM24, Nar16], i.e.,

SH(BG) ≃ Fun×(Span(FinG)
op, Sp),

where Span(FinG) denotes the (2, 1)-category of spans in finite G-sets [BH21b, Appendix C]. The sta-
bilization functor Spc(BG) → SH(BG) factors over SHS

1

(BG), cf. [Rob13, Corollary 4.24]. This in
turn yields an adjunction σ∞ : SHS

1

(BG) ⇄ SH(BG) :ω∞. Alternatively the adjunction is obtained
from the canonical functor FinG → Span(FinG) by passing to spectral presheaves via left Kan extension
and restriction. In particular, the left adjoint σ∞ preserves compactly generating families by [Lur09,
Proposition 5.5.8.10(6)] and construction, and hence ω∞ is conservative and preserves all limits and
colimits.

The above spectral Mackey functor description makes it clear, for example, that SH(BG) has a t-
structure with heart the abelian category of Mackey functors Fun×(Span(FinG)

op,Ab). Given X ∈
Spc(BG)∗ we write πi(X) ∈ Fun×(FinopG , Set) for the zero-truncation of ΩiX, i.e.,

πi(X)(T ) ≃ [T+ ∧ Si, X].

Similarly, given E ∈ SH(BG) we denote by πi(X) ∈ Fun×(Span(FinG)
op,Ab) the homotopy objects in

the t-structure; one then has
πiE|FinG

≃ π0Ω
∞Σ−iE.

In order to apply our machinery in this situation, we need to construct a t-structure on SH(BG)
such that if E is 1-connective in the t-structure, then Σ∞Ω∞E → E induces an isomorphism on the
first homotopy object. Note that the above t-structure (with homotopy objects πiE) will not do (unless
G = 1): by the tom Dieck splitting theorem [tD75, Satz 2] we see that for E ∈ SH(BG) with πiE = 0
for i ≤ 0 we have

π1(Σ
∞Ω∞E)(∗) ≃

⊕
(H)⊂G

π1(E)(G/H)WH .

Here, WH := NGH/H denotes the Weyl group. This cannot agree with π1(E)(∗) unless π1(E)(G/H) = 0
for all proper subgroups H. Inspired by this, we make the following definition.

Definition 6.9. For H ≤ G we define l(H) = max{r|H < H1 < · · · < Hr = G}, by convention l(G) = 0.
Let n ≥ 0. We define X ∈ Spc(BG)∗ to be (n,G)-connective if for every H ≤ G and i < n + l(H) we
have πi(X)(G/H) = ∗. Similarly, for n ∈ Z we call E ∈ SH(BG) (n,G)-connective if Ω∞ΣiE is
(n+ i, G)-connective for all i ≥ −n.

Remark 6.10. In other words, we require that Map∗(G/H+, X) is (n+ l(H))-connective, where l(H) is
the maximal length of a proper chain of subgroups of G starting at H. Note that l(H) is bounded by
the number of prime factors (with multiplicity) of [G : H], and so in particular by [G : H] itself.
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Example 6.11. Since Map(S0, SG) is 1-connective (SG decomposes as S1 smash the reduced regular
representation sphere) and SG|Spc(BH) ≃ (SH)∧[G:H] we see that SG is (1, G)-connective. More generally
for X ∈ Spc(BG)∗, and n ≥ 1 (SG)∧n ∧X is (n,G)-connective.

Lemma 6.12. Let X ∈ Spc(BG)∗ and E ∈ SH(BG) be (n,G)-connective (n ≥ 0 for X).
(1) Σ∞X is (n,G)-connective.
(2) Ω∞E is (n,G)-connective (provided n ≥ 0).
(3) τ≥iX, τ≤iX are (n,G)-connective for i ≥ 0.
(4) τ≥iE, τ≤iE are (n,G)-connective for i ∈ Z.
(5) Assuming n ≥ 1, the fiber of Σ∞Ω∞E → E is (n+ 1, G)-connective.

Proof. (2) follows immediately from the definition, and (3) and (4) are clear since τ≥i, τ≤i commute with
fixed points (i.e. evaluating at G/H).

Let us prove (1). Let X ∈ Spc(BG) be (n,G)-connective and H ≤ G. For every i < n+ l(H) there is
an equivalence πi(Σ∞X)(G/H) ≃

⊕
(H′)≤H πi(Σ

∞(X(G/H ′)WH′)) by the tom Dieck splitting. Since by
assumption X(G/H ′) is (n+ l(H ′))-connective and Σ∞ : Spc→ Sp preserves connectivity, (1) follows.

Now we prove (5). Write F := fib(Σ∞Ω∞E → E). As Σ∞Ω∞E is (n,G)-connective by (1) and (2), it
follows that F is (n−1, G)-connective. It is left to show, that the morphisms πi+l(H)(Σ

∞Ω∞E)(G/H)→
πi+l(H)(E)(G/H) are isomorphisms for all H ≤ G and i = n, and epimorphisms for i = n + 1. Since
n ≥ 0, we may as well check this after applying Ω∞. But then Σ∞Ω∞E → E splits, so the surjectivity
(at i = n+ 1) is clear. Finally, by the tom Dieck splitting, we have that

πn+l(H)(Σ
∞Ω∞E)(G/H) ≃ πn+l(H)(E)(G/H)⊕

⊕
(H′)<H

πn+l(H)(E)(G/H ′)WH′ .

Now for H ′ < H we have l(H ′) > l(H), and so πn+l(H)(E)(G/H ′)WH′ = 0. This concludes the proof. □

Now let A ∈ CAlg(SH(BG)≥0) such that π0(A) is idempotent. Furthermore, set X = Spc(BG),
D =ModA(SH(BG)), L+ = A⊗ Σ∞

+ and

Dsld
≥0 = {E ∈ModA(SH(BG)) | E is (0, G)-connective}.

Using Lemma 6.12(1), we have for all n ≥ that

Spc(BG)sld∗,≥n ⊇ {X ∈ Spc(BG)∗ | X is (n,G)-connective}.
Let us observe the following about the interaction of the two t-structures.

Lemma 6.13. Let E ∈ SH(BG)≥0 and F ∈ SH(BG)sld≥0. Then E ⊗ F ∈ SH(BG)sld≥0. Moreover, for
H ⊂ G we have

πl(H)(E ⊗ F )(G/H) ≃ π0(ΦHE)⊗ πl(H)(F (G/H)).

Proof. The first statement being stable under colimits in E, we may assume E = Σ∞
+G/H. In this

case (Σ∞G/H+ ⊗ F )(G/H ′) ≃ F (G/H ×G/H ′), the orbit Σ∞
+G/H being self-dual. Now G/H ×G/H ′

decomposes into a finite sum of G/H ′′, for H ′′ subconjugate to H ′. Thus, l(H ′′) ≥ l(H ′) and so the
connectivity of F (G/H ×G/H ′) is at least as high as the connectivity of F (G/H ′), as was to be shown.

For the final statement, we may assume H = G. Let LΦ : SH(BG)→ SH(BG) denote the localization
annihilating Σ∞

+G/H for all proper subgroups H. This is a smashing localization, (−)G induces an
equivalence LΦSH(BG) ≃ Sp, and ΦG(−) = LΦ(−)G, essentially by definition, see [LMSM86, Corollary
II.9.6] and [MNN17, Theorem 6.11]. Thus, we find

π0((E ⊗ F )(∗)) ≃ π0(E ⊗ F )(∗) ≃ π0(E ⊗ τ≤0F )(∗) ≃ π0(LΦ(E)⊗ τ≤0F )(∗) ≃ π0(ΦGE)⊗ π0(F (∗)),
using that τ≤0F ≃ LΦτ≤0F (and LΦ is smashing). □

Lemma 6.14. The axioms (C), (M) and (S) hold for the adjunction L ⊣ R.

Proof. Since Dsld
≥0 is accessible and closed under colimits and extensions, it is indeed the nonnegative

part of a t-structure [Lur17, Proposition 1.4.4.11].
Consider the commutative diagram

SHS
1

(BG)≥0 SH(BG)≥0 Dsld
≥0

Spc(BG).

Ω∞

ω∞

Ω∞
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The functor R is given by the composition form the top right to the bottom left. For axioms (C) and
(S3) it therefore suffices to show that all functors in the composition preserve sifted colimits and are
conservative. The first one is monadic and preserves finite colimits, ω∞ is conservative and preserves
all colimits by the discussion above, and the claim for the vertical Ω∞ is contained in the proof of
Lemma 6.5.

Axiom (M) is immediate from Lemma 6.13.
Axiom (S1) is immediate from Lemma 6.12(1,2).
For (S2), let E ∈ Dsld

≥1. Using Lemma 6.12(5) and Lemma 6.13 we compute

π1+l(H)(LRE)(G/H) ≃ π1+l(H)(A⊗ E)(G/H) ≃ π0(ΦHA)⊗ π1+l(H)E(G/H).

Since E ∈ SH(BG)sld≥1 is an A-module, π1+l(H)E(G/H) is a (ΦHA)-module. But π0A is idempotent,
whence so is π0ΦHA, and so π0(ΦHA)⊗ π1+l(H)E(G/H) ≃ π1+l(H)E(G/H), as needed. □

We will study L̂A and TotT •
A for various choices of A in the next few subsections. They will be related

to the usual unstable S-periodization and n-completion functors. This is based on the following.

Lemma 6.15. Let S ⊂ Z, and let E ∈ SH(BG) be 1-connective. Denote by LS : Spc(BG)→ Spc(BG)
the unstable S-localization functor. Then LSΩ

∞E ≃ Ω∞S−1E.
Similarly denote by Ln : Spc(BG)→ Spc(BG) the unstable n-completion functor from Definition C.2.

Then LnΩ
∞E ≃ Ω∞E∧

n .

Proof. Since ω∞ : SH(BG) → SHS
1

(BG) preserves limits, colimits and 1-connective objects, we may
replace SH(BG) by SHS

1

(BG) throughout. This being the stabilization of a presheaf ∞-topos, we
conclude by [Mat24a, Lemma 3.18] and Lemma C.16. □

Many of our arguments will rely on decomposing genuine G-spaces into infinite loop spaces of genuine
G-spectra. The usual Postnikov tower is not sufficient for this. Indeed, if X ∈ Spc(BG)∗, then πi(X)
is (for i ≥ 2) a coefficient system, i.e., an object of Fun×(FinopG ,Ab). The corresponding Eilenberg–Mac
Lane space is the infinite loop space of a genuine G-spectrum if and only if the coefficient system extends
to a Mackey functor, which is not true in general. Luckily, we can actually build all coefficient systems
out of Mackey functors, in an appropriate sense.

Lemma 6.16. Let G be a finite group. Every coefficient system C ∈ Fun×(FinopG ,Ab) admits a resolution
by Mackey functors

0→ C → C0 → C1 → · · · → CN → 0,

i.e.:
• Each Ci is the coefficient system underlying a Mackey functor.
• The above sequence of coefficient systems is exact.

Moreover, the following hold:
• The resolution is functorial in C.
• The number N is independent of C (in fact N ≤ |G|).
• Let H ≤ G such that whenever K ≤ H we have C(G/K) = 0. Then also Ci(G/H) = 0.

Proof. The adjunction σ∞ ⊣ ω∞ can be restricted to an adjunction on the heart F : Fun×(FinopG ,Ab) ⇄
Fun×(Span(FinG)

op,Ab) :U , see [BBD82, Proposition 1.3.17(iii)]. In particular, this is the free-forgetful
adjunction between coefficient systems and Mackey functors. For C ∈ Fun×(FinopG ,Ab) define Ci :=
UF (coker(Ci−2 → Ci−1)) (set C−1 := C,C0 := 0). This construction is clearly functorial in C. Exactness
follows by construction from the fact that for any coefficient system D, the canonical map D → UFD is
injective. In fact, by the tom Dieck splitting, we have

UFD(G/H) ≃
⊕

(H′)≤H

D(G/H ′)WH′ .

This also immediately proves the last bullet point. The only thing that remains to be done is to show
that CN = 0 for N large enough. For this, note that the tom Dieck splitting formula from above implies
that if D(G/H ′) = 0 for all H ′ properly subconjugate to H, then UFD(G/H) ≃ D(G/H) and so
(UFD/D)(G/H) = 0. The construction of C∗ thus implies that Ci(G/H) = 0 as soon as i > l(H). □

Now let X ∈ Spc(BG)∗ be (1, G)-connective. Note that then X(G/H) is simply connected for every
proper subgroup H. From this it follows that X is nilpotent if and only if X(∗) is nilpotent. Applying a
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functorial principalized Postnikov tower construction sectionwise, we can build a principalized Postnikov
tower for X. Thus, we obtain fiber sequences

Xi+1 → Xi → K(Ai, ni + 1) ∈ Spc(BG)∗.

Here each Ai is a coefficient system, ni ≥ 1, and there are compatible maps X → Xi of connectivity
tending to infinity with i. Moreover, π∗(Xi) is a subquotient of π∗(X), and Ai is a subquotient of
πni

(X). This implies that each Xi is (1, G)-connective and each K(Ai, ni + 1) is (2, G)-connective.

Construction 6.17. We refer to the data above as a (1, G)-connective principalized Postnikov tower
for X.

Remark 6.18. Let A be a coefficient system and n ≥ 1 such that K(A,n) is (2, G)-connective. Rewriting
the resolution of Lemma 6.16 as a system of short exact sequences, we obtain fiber sequences K(Ai, n)→
K(Mi, n)→ K(Ai+1, n) with A1 = A, Mi a Mackey functor and Ai = 0 for i sufficiently large. Moreover,
each K(Ai, n) and K(Mi, n) are (2, G)-connective, by the last claim of that lemma.

Combining Construction 6.17 and Remark 6.18 yields our desired decomposition of nilpotent (1, G)-
connective spaces into (2, G)-connective infinite loop spaces.

6.3.1. Burnside Resolutions. In this subsection, we assume that π0(A) is either S−1π0(1) for S ⊂ Z \ 0
or π0(1)/n for n ∈ N.

We can identify the associated localization functors.

Lemma 6.19. Let E ∈ SH(BG)≥0 and X ∈ Spc(BG)∗ nilpotent. If π0(A) = S−1π0(1), then
(1) LstAE ≃ S−1E, and
(2) L̂AX ≃ LSX, where LS is the unstable S-localization functor, cf. [Mat24a, §3].

Analogously, if π0(A) = π0(1)/n, then
(1) LstAE ≃ E∧

n = limk E/n
k =

∏
p|nE

∧
p , and

(2) L̂AX ≃ LnX ≃
∏
p|n LpX, the product over the unstable p-completion functors, cf. [Mat24b, §3].

Proof. The identification of LstA is Proposition B.1. The tom Dieck splitting theorem implies that
σ∞ : SHS

1

(BG) → SH(BG) is conservative. Suppose first that π0(A) = S−1π0(1). Then a map
f : Y → Z of G-spaces is an A-equivalence if and only if Σ∞

+ f is an S-equivalence (by the stable identifi-
cation), if and only if Σ∞

S1(f+) is an S-equivalence (by conservativity). Thus, it follows from Lemma 6.6
that for X ∈ Spc(BG)∗ nilpotent we have L̂AX ≃ LSX. The case π0(A) = π0(1)/n is treated similarly,
additionally using Theorem C.6. □

Theorem 6.20. (1) Let X ∈ Spc(BG)∗ be nilpotent and (1, G)-connective. The canonical map
L̂AX → TotT •

AX is an equivalence. In fact, if π0(A) = S−1π0(1), then already the canonical
map τ<∞L̂AX → τ<∞T

•
AX is an equivalence.

(2) For E ∈ SH(BG)≥1 the canonical map L̂AΩ∞E → Ω∞LstAE is an equivalence.
(3) Let F → E → B be a fiber sequence of pointed nilpotent G-spaces. Then the canonical map

L̂AF → fib (L̂AE → L̂AB) is an equivalence.
(4) Let X• be a tower of pointed, nilpotent G-spaces with X = limiXi. Assume that the tower is

highly connected. Then the canonical map L̂AX → limi L̂AXi is an equivalence.

Proof of Theorem 6.20 if π0(A) = S−1π0(1) . Under the identifications of L̂A and LstA from Lemma 6.19,
(3) and (4) follow from [Mat24a, Lemma 3.13 and Proposition 6.9], respectively. Statement (2) then
follows by combining Lemmas 6.15 and 6.19.

We now prove (1). Let X be nilpotent and (1, G)-connective. Working through a principalized
Postnikov tower, as in the proof of Theorem 6.8, we can reduce to the case that X = K(C, k) for a
coefficient system C and k ≥ 2. Note that as pointed out in Construction 6.17, the space K(C, k)
is (2, G)-connective. (A key point is that by Construction 6.17, we never leave the world of (1, G)-
connective G-spaces, and so our axiomatics apply.) Using Lemma 6.16, Remark 6.18, and Theorem 5.7
(we can use the latter since in all the fiber sequences the base is (2, G)-connective), this reduces to
the (2, G)-connective G-space X = Ω∞ΣkM , where M is a Mackey functor. Since both sides invert
L-equivalences, we can replace X by L̂AX, and we have to see that X → τ<∞T

•
AX is an equivalence.

By (2) we know X = L̂AΩ
∞ΣkM ≃ Ω∞ΣkS−1M . The result follows from Proposition A.4, since S−1M

is an (S−1π0(1) = π0(A))-module, whence an A-module. □
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Proof of Theorem 6.20 if π0(A) = π0(1)/n . We will use without mention the identifications of LstA and
L̂A from Lemma 6.19. Then (3) is Lemma C.17, and (4) is Lemma C.18. Moreover, (2) follows by
combining Lemmas 6.15 and 6.19.

We now show (1). As in the proof for π0(A) = S−1π0(1), we reduce to the case that X = Ω∞ΣkM
is (2, G)-connective for a Mackey functor M . Write F := TotT •

A. Then

P (M) := (FΩ∞ΣkM,FΩ∞Σk+1M, . . . ) ∈ SHS
1

(BG),

since F preserves loops by Theorem 5.7. The functor P also preserves fiber sequences of 2-connective
spectra. There is a canonical map ω∞ΣkM → P (M), which is an equivalence whenever M is a finite
extension of A-modules, essentially by Proposition A.4. It follows that ΣkM → P (M) is an n-equivalence,
i.e., induces an equivalence on fibers of multiplication by n. Hence, using Lemma C.16, we see that

Ω∞ΣkM → Ω∞P (M) ≃ F (Ω∞ΣkM)

is also an n-equivalence. Since the target is n-complete by construction, this concludes the proof. □

6.3.2. Z Resolutions: Localization. Let G be a finite group and I the augmentation ideal of the Burnside
ring Mackey functor A, i.e., the kernel of the surjective rank map A → Z. Throughout this subsection
we assume that π0(A) ≃ S−1(π0(1)/I) ≃ S−1Z for S ⊂ Z \ 0 and |G| ∈ S. Consider the element
eGe = [G/e]/|G| ∈ A(G)[1/|G|]. This is immediately checked to be an idempotent. For E ∈ S−1SH(BG)
we put

(eGe )
−1E = colimE

eGe−−→ E
eGe−−→ · · · .

We define (1−eGe )−1E similarly. Then the canonical map E → (eGe )
−1E⊕(1−eGe )−1E is an equivalence,

as is immediately verified on homotopy Mackey functors.

Remark 6.21. Note that (1− eGe )−1E = 0 if and only if [G]π∗E = 0, i.e., E(G/e) = 0.

To identify the localization L̂A, it will be useful to consider the inclusion i : BG → FinG sending the
unique object of the source to G. This induces an adjunction

i∗ : Spc(BG) ⇄ Fun(BG,Spc) : i∗.
Here i∗X is just X(G) viewed as a naive G-space, and i∗ turns a naive G-space into a genuine one by
declaring the genuine fixed points to be the homotopy fixed points. In particular, i∗ is fully faithful.
(The functor i∗ has a further left adjoint i!, which does not concern us here.) We also have

i∗ : SH(BG) ⇄ Fun(BG, Sp) : i∗,

with similar properties, e.g. [NS18, Theorem II.2.7].

Lemma 6.22. Let E ∈ SH(BG) be bounded below and X ∈ Spc(BG)∗ be nilpotent.
(1) We have LstAE ≃ (eGe )

−1S−1E.
(2) Alternatively, we have LstAE ≃ i∗S−1i∗E.
(3) We have L̂AX ≃ i∗LSi∗X.

Proof. (1) The morphism A→ A/I admits a section given by 1 7→ [G/e], implying that S−1A[1/eGe ]
≃−→

S−1A/I ≃ π0(A).
The previous sentence shows that eGe maps to a unit in π0(A) and so LstAE ≃ LstA (eGe )−1S−1E. It will

thus be enough to show that E′ := (eGe )
−1S−1E is A-local. This follows from a Postnikov tower argument,

using that E′ is bounded below (since E is) and each πi(E′) as a module over (eGe )
−1S−1A ≃ π0(A).

(2) Since i∗ is fully faithful, i∗S−1i∗ is a localization functor, namely at the underlying S-equivalences.
By Remark 6.21, so is (eGe )

−1S−1. The claim thus follows from (1).
(3) By (2), a map f in Spc(BG) is an L-equivalence if and only if S−1Σ∞

+ i
∗f is an equivalence. In

particular, L̂A = L̂Ai∗i
∗, the functor i∗ being fully faithful (i.e., part of a localization). The subcategory

of objects of the form i∗(−) is equivalent to Fun(BG,Spc), and under this equivalence, L̂A on this
subcategory just coincides with localization at the homological S-equivalences. For nilpotent objects,
this is given by LS (Lemma 6.6). This concludes the proof. □

Theorem 6.23. (1) Let X ∈ Spc(BG)∗ be nilpotent and (1, G)-connective. The canonical map
τ<∞L̂AX → τ<∞T

•
AX is an equivalence.

(2) For E ∈ SH(BG)≥1 the canonical map L̂AΩ∞E → Ω∞LstAE is an equivalence.
(3) Let F → E → B be a fiber sequence of pointed nilpotent (1, G)-connective G-spaces. Then

L̂AF ≃ fib (L̂AE → L̂AB).
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(4) Let X• be a tower of pointed nilpotent (1, G)-connective G-spaces with X = limiXi. Assume
that the tower is highly connected. Then L̂AX ≃ limi L̂AXi.

Proof. (2), (3) and (4) are immediate from Lemma 6.22, the fact that i∗ and i∗ preserve all limits (since
they are right adjoints), and the corresponding facts about LS , cf. [Mat24a, Lemma 3.18, Lemma 3.13
and Proposition 6.9].

For statement (1), arguing in the usual way (see e.g. Theorem 6.20(1)), we reduce the case X =
K(M, i) where i ≥ 2 and M is Mackey functor with M ≃ i∗i

∗S−1M . But then M is a module over
S−1Z, and so the claim follows from Proposition A.4. □

6.3.3. Z Resolutions: Completion. For this subsection let G be a finite p-group. We continue to write I
for the augmentation ideal of the Burnside ring Mackey functor A. Assume that π0(A) ≃ A/(I, p) ≃ Fp.

Lemma 6.24. Let E ∈ SH(BG)≥0. Then LstAE ≃ E∧
p .

Moreover, L̂AX ≃ LpX for X ∈ Spc(BG)∗ nilpotent.

Proof. To show the stable identification use that LstAE ≃ E∧
I,p by Proposition B.1. Since E∧

I,p is p-
complete it suffices to show that E∧

p is Fp-complete. Let (E≤n)n be a Postnikov tower with E ≃
limnE≤n. It is enough to show that all (E≤n)

∧
p are Fp-complete as completion commutes with limits,

e.g. [Mat24b, Lemma 2.5]. Using the fiber sequence (E=n)
∧
p → (E≤n)

∧
p → (E<n)

∧
p we reduce to the

case of ΣkM , where M is a Mackey functor. We have that M∧
p ≃ limnM//pn and moreover a fiber

sequence M//pn
p−→ M//pn+1 → M//p. Hence, it suffices to show that M//p is Fp-local. There is a fiber

sequence Σ(M [p])→M//p→M/p. Therefore, we may reduce to the case where M is p-torsion and thus
a (π0(1)/p)-module. It is even a (π0(1)/I

n)-module for some n ≥ 0 by [Lai79, Proposition 1.12] (it is
here where we need G to be a finite p-group). For k ≥ 0 we obtain exact sequences IkM → Ik−1M →
Ik−1M/IkM . Since each Ik−1M/IkM is an A/I-module in addition to being an A/p-module, it is in
fact an Fp-module. Since InM = 0 it follows that M is Fp-local. This shows the claim in the stable case.

The unstable claim follows by the same argument as in Lemma 6.19. □

Theorem 6.25. (1) Let X ∈ Spc(BG)∗ be nilpotent and (1, G)-connective. The canonical map
L̂AX → TotT •X is an equivalence.

(2) For E ∈ SH(BG)≥1 the canonical map L̂AΩ∞E → Ω∞LstAE is an equivalence.
(3) Let F → E → B be a fiber sequence of pointed nilpotent G-spaces. Then the canonical map

L̂AF → fib (L̂AE → L̂AB) is an equivalence.
(4) Let X• be a tower of pointed, nilpotent G-spaces with X = limiXi. Assume that the tower is

highly connected. Then the canonical map L̂AX → limi L̂AXi is an equivalence.

Proof. (3) and (4) where already shown in Theorem 6.20. For (2) combine Lemmas 6.15 and 6.24.
For (1) we repeat the arguments from Theorem 6.20(1) in the case π0A = π0(1)/p. We must eventually

show that ω∞ΣkM → G(M) is a p-equivalence for Mackey functorsM , and we know this ifM is a module
over Fp. As in that proof, one reduces to the case where M is p-torsion. As in the proof of Lemma 6.24,
this implies that M is a finite extension of Fp-modules, from which we conclude. □

6.4. Motivic spaces. Let k be a perfect field. Recall the category of motivic spaces Spc(k) and motivic
spectra SH(k), e.g. from [BH21b, §2.2 and §4.1]. Write Σp+q,q : SH(k)→ SH(k) for the autoequivalence
given by tensoring with the motivic sphere ΣpGmq. Pick A ∈ CAlg(SH(k)veff) (see Remark 6.27 for
SH(k)veff) and let D :=ModA(SH(k)). We will have to pick a category of solid objects, and there are
some choices for this: for ν ≥ 0 put Dνsld≥0 := Σν,νModA(SH(k)veff). For most purposes ν = 1 is the
only relevant case. For all n ≥ 0 we have X νsld∗,≥n ⊇ Spc(k)∗,≥(ν+n,ν), cf. Remark 6.26.

Since Spc(k) is famously not an ∞-topos, we cannot directly work with the adjunction Spc(k) ⇄ D,
but have to work with X := ShvNis(Smk), the∞-topos of Nisnevich sheaves on (quasi-compact) smooth k-
schemes. This∞-topos admits a locally finite-dimensional cover U [Mat24a, Proposition A.3]. Note that
by construction there is an adjunction LA1 : X ⇄ Spc(k) : ιA1 . Hence, we will work with the composed
adjunction L : X ⇄ Spc(k) ⇄ D :R. We get the associated completion functor TotT •

A : X∗ → X∗ (which
in fact takes values in Spc(k)∗ ⊂ X ).

Remark 6.26. Recall the notion of ν-effective motivic spaces Spc(k)≥(ν,ν) from [ABH24, §3], where the
notation O(Sν,ν) was used. It follows from the definition of O(Sd+ν,ν) in the stable situation together
with [ABH24, Proposition 3.2.4] that if X ∈ Spc(k)∗ is ν-effective and d-connective, then LX ∈ Dνsld≥d .

Remark 6.27 (t-structures on SH(k)). The stable∞-category SH(k) admits multiple useful t-structures.
The homotopy t-structure was defined by Morel [Mor03, Theorem 5.2.3], its connective and coconnective
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parts are given by vanishing conditions on the bigraded homotopy sheaves. We will write SH(k)♡ for the
heart of the homotopy t-structure, which Morel identified as the abelian category of homotopy modules
[Mor03, Theorem 5.2.6]. As usual, we will write πn(−)∗ for the homotopy objects in this t-structure.
This t-structure is left-complete, cf. [Hoy15, Corollary 2.4].

One other choice of a t-structure is the effective t-structure, whose connective part is given by
SH(k)veff, i.e., by those motivic spectra that are both connective in the homotopy t-structure and
effective [Bac17, §3]. This t-structure restricts to a t-structure on SH(k)eff, the subcategory of effective
motivic spectra. We will write SH(k)eff♡ for the heart, and πeff

n (−) for the homotopy objects in the
effective t-structure.

Remark 6.28 (Slice filtration). For every n ∈ Z we write fn : SH(k)→ SH(k) for the n-th effective cover
functor, and sn := cof(fn+1 → fn) for the n-th slice functor, cf. [Voe02, §2].

We will first verify the axioms.

Lemma 6.29. The functors

SH(k)eff ω∞

−−→ SHS
1

(k) ↪→ Sp(ShvNis(Smk))

preserve limits and colimits and are conservative.

Proof. Both functors are right adjoints by construction, and hence preserve limits. That ω∞ is conserva-
tive and preserves colimits was shown in [BY20, Lemma 6.1 (1)]. The second functor is fully faithful and
hence conservative. It is exact and thus preserves finite colimits. That it also preserves filtered colimits
follows immediately from the fact that the Nisnevich sheaves of spectra Σ∞

+ U with U ∈ Smk are compact
(see, e.g., [BH21b, Proposition A.3(2)]). □

Lemma 6.30. The axioms (C), (M), (S1) and (S3) hold for the adjunction L ⊣ R. If ν ≥ 1 and π0(A)∗
is idempotent in SH(k)♡, then also (S2) holds.

Proof. For axioms (C) and (S3) we consider the following commutative diagram:

Sp(ShvNis(Smk))≥0 SHS
1

(k)≥0 SH(k)veff ModA(SH(k)veff)

ShvNis(Smk) Spc(k).

Ω∞

ω∞

The functor R is given by the composition from the top right to the bottom left. Hence, it suffices
to show that any functor in this composition preserves sifted colimits and is conservative. For the
forgetful functor ModA(SH(k)veff) → SH(k)veff, this follows from e.g. [Lur17, Proposition 4.8.5.8 (4)
and Corollary 4.2.3.7 (2)]. See Lemma 6.29 for ω∞ and the inclusion. In the proof of Lemma 6.5 we
showed the statement for Ω∞.

For axiom (M), it suffices to note that for any X ∈ X∗, we have LX ∈ D0sld
≥0 (see Remark 6.26), and

that
Dasld

≥b ⊗Da′sld
≥b′ ⊂ D

(a+a′)sld
≥b+b′ .

The same reasoning also implies axiom (S1), using that Ω∞ preserves effectivity [ABH24, Proposition
3.2.12].

For (S2), let us first show that if E ∈ Σ2,1SH(k)veff then Σ∞Ω∞E → E induces an isomorphism on
π1(−)∗. Equivalently, using [Bac17, Proposition 5], the composite

Σ2,1SH(k)eff♡ → ΣSHS
1

(k)(1)♡ → X∗

should be fully faithful. The first functor is fully faithful by [BY20, Theorem 6.9], and the second by the
classical Hurewicz theorem together with [ABH24, Proposition 3.2.12]. Now let E ∈ Dνsld≥1 . The functor
D0sld → SH(k)eff being t-exact (see e.g. [Bac21, Lemma 29]), in order to show that LRE → E induces
an isomorphism on π1 (with respect to the t-structure specified by Dνsld), it is by [Bac17, Proposition 4]
sufficient (and necessary) to show that π1(LRE)−ν ≃ π1(E)−ν . Since ν ≥ 1 we have (by what we first
showed) that π1(LRE)∗ ≃ π1(E)∗ ⊗ π0(A)∗. This implies what we want since π0(A)∗ is idempotent by
assumption. □

In the cases discussed below, π0(A)∗ will always be either a quotient or a localization of the unit (or
a combination of the two), whence idempotent, so that the axioms hold.

Corollary 6.31. Let X ∈ Spc(k)∗ be n-effective and d-connected. Then T •
A(X) consists of n-effective

d-connected spaces.
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Proof. This follows from Corollary 5.4 by taking ν = n. □

Before stating the main theorems of this section, we need some preliminaries.

Definition 6.32. We call X ∈ Spc(k)∗ resolvable if there exists a tower X → X• as well as fiber
sequences Xi+1 → Xi → Ω∞Bi, such that:

(1) The connectivity of X → Xi tends to infinity with i.
(2) The connectivity of Bi tends to infinity with i.
(3) Bi ∈ Σ3,1SH(k)veff.
(4) X0 = ∗.

Remark 6.33. It is proved in [ABH24, Construction 4.1.7, Remark 4.1.13] that X ∈ Spc(k)∗ is resolvable
as soon as X is nilpotent and either

• X is 2-effective, or
• X is 1-effective and e-periodic, where e is the exponential characteristic of k.

Remark 6.34. It follows that Xi ∈ X 1sld
∗,≥1 and Ω∞Bi ∈ X 1sld

∗,≥di for some sequence di tending to infinity
with i. Indeed, the second claim is (essentially) Lemma 3.4 (2), combined with the assumption that the
connectivity of the Bi tends to infinity with i. The first claim is proven inductively, using the second
claim, [ABH24, Theorem 4.2.3] and the definition of D1sld.

Remark 6.35. If X is resolvable and n-effective, one may choose the Xi and Bi such that they are all
n-effective, again by [ABH24, Construction 4.1.7 and Remark 4.1.13].

The next result concerns the interaction between the ∞-topos-theoretic S-localization in X and the
stable S-localization in SH(k).

Lemma 6.36. Let S ⊂ Z, and let E ∈ SH(k) be 1-connective. Denote by LS : X → X the unstable
S-localization functor. Then LSΩ

∞E ≃ Ω∞S−1E.

Proof. Consider the commutative diagram

Sp(ShvNis(Smk)) SHS
1

(k) SH(k)eff

ShvNis(Smk) Spc(k).

Ω∞

ω∞

It suffices to show that the composition on the top and left commutes with S-localization. Since both
ω∞ and the inclusion SHS

1

(k) ↪→ Sp(ShvNis(Smk)) preserve colimits by Lemma 6.29, it follows from
e.g. [Mat24a, Corollary 2.7] that they commute with S-localization. Moreover, both of these functors
preserve 1-connective objects. Hence, the result follows from [Mat24a, Lemma 3.18]. □

We also need a version of the last lemma for the n-completion functors:

Lemma 6.37. Let n ∈ Z, and let E ∈ SH(k) be 1-connective. Denote by Ln : X → X the unstable
n-completion functor from Definition C.2. Then LnΩ

∞E ≃ τ≥1Ω
∞E∧

n .

Proof. Since Ω∞E is nilpotent (as E is 1-connective), we have that LnΩ∞E ≃
∏
ℓ|n LℓΩ

∞E, cf. Theo-
rem C.6. Similarly, from Lemma C.1 we have E∧

n ≃
∏
ℓ|nE

∧
ℓ . Since Ω∞ and τ≥1 preserve finite products,

we may assume that n = ℓ. Consider again the commutative diagram

Sp(ShvNis(Smk)) SHS
1

(k) SH(k)eff

ShvNis(Smk) Spc(k).

Ω∞

ω∞

It suffices to show that the composition on the top and left commutes with ℓ-completion, up to a
connected cover. The functors on the top both preserve limits by Lemma 6.29, and hence commute with
ℓ-completion, see e.g. [Mat24b, Lemma 2.32]. Moreover, they preserve 1-connective objects. Hence, the
result follows from [Mat24b, Lemma 3.17]. □

We now discuss Bousfield–Kan completions. We now have four different situations: First, we can
look at those A such that π0(A)∗ = S−1π0(1)∗ or π0(A)∗ = π0(1)∗/n; this is similar to the case of
sheaves discussed above. But these two cases do not cover two important situations: One wants to be
able to complete at A = HZ, the motivic cohomology spectrum, or A = MGL, the algebraic cobordism
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spectrum. Here, we do not have that π0(A)∗ = π0(1)∗, but instead π0(A)∗ = π0(1)∗/η. Thus, in the
second half of this section, we will look at completions at those A such that either π0(A)∗ = S−1π0(1)∗/η,
or π0(A)∗ = π0(1)∗/(η, n). This will complicate things slightly, as it will also include an additional η-
completion. To circumvent this problem, we will restrict ourselves to fields of finite 2-étale cohomological
dimension, so that all very effective motivic spectra are already η-complete.

6.4.1. Milnor–Witt Resolutions: Localization. In this subsection, we assume that π0(A)∗ ≃ S−1π0(1)∗
with S ⊂ Z \ 0. Thus, π0(A)∗ ⊗π0(1)∗

π0(A)∗ ≃ π0(A)∗, and hence all axioms are satisfied. In this
situation, the Bousfield–Kan completion is related to unstable S-localization. We write LS for the
unstable S-localization functor in X , cf. [Mat24a, §3].

Example 6.38. Possible examples for A are the rings S−1
1 and f0S−1KMW .

Theorem 6.39. (1) Let X ∈ Spc(k)∗ be nilpotent. Then LSX ∈ Spc(k)∗ (i.e., LSX is again
A1-invariant).

(2) Let X ∈ Spc(k)∗ be resolvable. The canonical maps τ<∞LSX → τ<∞L̂AX → τ<∞T
•X are

equivalences. In particular, LSX → L̂AX → TotT •X are equivalences.
(3) For E ∈ SH(k)≥1 the canonical map LSΩ∞E → Ω∞LstAE is an equivalence.
(4) Let F → E → B be a fiber sequence of pointed nilpotent Nisnevich sheaves. Then LSF →

LSE → LSB is a fiber sequence.
(5) Let X• be a tower of pointed nilpotent Nisnevich sheaves with X = limiXi. Assume that the tower

is locally highly connected subordinate to U , e.g. it is highly connected. Then LSX ≃ limi LSXi.

Proof. Statement (1) is proven in [AFH22, Proposition 4.3.8 and Theorem 4.3.9], statement (4) is
[Mat24a, Lemma 3.13], and statement (5) is [Mat24a, Proposition 6.9].

For (3), since Ω∞E is nilpotent, we have

LSΩ
∞E ≃ Ω∞S−1E ≃ Ω∞LstAE,

where we used Lemma 6.36 for the first, and Proposition B.1 for the second equivalence.
We now prove (2). Note that L inverts S-equivalences, and so in order to show that LSX ≃ L̂AX,

it suffices to show that LSX is L-local. This is clearly true for TotT •X, and so, it is enough to show
that τ<∞LSX ≃ τ<∞T

•X. Write F := T •. Let X be resolvable, and consider the generalized Postnikov
tower. The functor LS preserves all fiber sequences and the limit appearing in the tower by (4) and
(5), and similarly F preserves all those fiber sequences by Theorem 5.7. To see that F preserves the
limit, note that (Xi)i is a highly connected tower (under X), and we conclude by Lemma 6.7 that the
connectivity of X → Xi tends to ∞. Thus, by Proposition 5.3 also the connectivity of FX → FXi

tends to ∞, even uniformly in the levels of the pro-object. Hence, by definition of τ<∞, it follows that
τ<∞FX ≃ τ<∞ limi FXi. Hence, we reduced to the case that X = Ω∞E for some motivic spectrum E ∈
Σ3,1SH(k)veff. Consider now the Postnikov tower of E in the 1-effective t-structure on SH(k)(1). With
exactly the same arguments as above, we can thus further reduce to the case that E ∈ Σm+1,1SH(k)eff♡
for m ≥ 2. Since both sides invert LS-equivalences (for F note that already L inverts them, since any
m ∈ S is invertible on A, for this note that it is enough to check that m is invertible on π∗(A)∗, but
π∗(A)∗ is a π0(A)∗-algebra, and m is invertible on π0(A)∗ = S−1π0(1)∗), we can replace X by LSX, and
we have to see that τ<∞X → τ<∞FX is an equivalence. By (3) we know X = LSΩ

∞E ≃ Ω∞S−1E.
Note that S−1E has the structure of a S−1πeff

0 (1)-module. We have

S−1πeff
0 (1) ≃ S−1f0π0(1)∗ ≃ f0S−1π0(1)∗ ≃ f0π0(A)∗ ≃ πeff

0 (A),

where we used that 1 and A are effective, that f0 preserves colimits, and that f0 is t-exact from the
homotopy t-structure to the effective t-structure, see [BY20, Lemma 6.2 (2)]. In particular, S−1E
acquires the structure of a πeff

0 (A)-module, and hence also has the structure of an A-module (via the
canonical ring map A→ πeff

0 (A)). Hence, X is in the essential image of R, and hence τ<∞X → τ<∞FX
is an equivalence by Proposition A.4 (even before applying τ<∞). □

6.4.2. Milnor–Witt Resolutions: Completion. We assume now that π0(A)∗ ≃ π0(1)∗/n with n ∈ N.
Thus, π0(A)∗⊗π0(1)∗

π0(A)∗ ≃ π0(A)∗, and hence all axioms are satisfied. In this situation, the Bousfield–
Kan completion is related to unstable n-completion. We write Ln for the unstable n-completion functors
in X , cf. Definition C.2.

Example 6.40. A possible example for A is the ring f0(KMW /n).

Theorem 6.41. (1) Let X ∈ Spc(k)∗ be nilpotent. Then LnX ∈ Spc(k)∗ (i.e., LnX is again
A1-invariant).
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(2) Let X ∈ Spc(k)∗ be resolvable. There is a canonical map LnX → τ≥1 TotT
•X, which is an

equivalence.
(3) For E ∈ SH(k)≥1 the canonical map LnΩ∞E → τ≥1Ω

∞LstAE is an equivalence.
(4) Let F → E → B be a fiber sequence of pointed nilpotent Nisnevich sheaves. Then the canonical

map LnF → τ≥1 fib(LnE → LnB) is an equivalence.
(5) Let X• be a highly connected tower of pointed nilpotent Nisnevich sheaves with X = limiXi.

Then the canonical map LnX → limi LnXi is an equivalence.

Proof. For (1) note that LnX ≃
∏
ℓ|n LℓX by Theorem C.6. Thus, since A1-invariant sheaves are stable

under limits, the claim follows from [Mat24b, Proposition 5.22]. Moreover, (3) is Lemma 6.37 combined
with Proposition B.1, (4) is Lemma C.17 and (5) is Lemma C.18.

We now show (2). Since τ≥1 : X∗ → X∗,≥1 is a right adjoint, it preserves limits. Similarly, the functor
Ln restricts to X∗,≥1 (this follows from [Mat24b, Lemma 3.12]), and the restricted functor preserves
appropriate fiber sequences (by Lemma C.17). As in the proof for π0(A)∗ = S−1π0(1)∗, we reduce to the
case that X = Ω∞ΣkM for M ∈ Σ1,1SH(k)eff♡ with k ≥ 2. Write F := τ≥1 TotT

•
A = τ≥1 mat τ<∞T

•
A.

Then
G(M) := (FΩ∞ΣkM,FΩ∞Σk+1M, . . . ) ∈ Sp(Spc(k)∗,≥1) ≃ SHS

1

(k),

since F preserves loops by Theorem 5.7. The functor G also preserves fiber sequences of 2-connective
spectra. There is a canonical map ω∞ΣkM → G(M). Assume for now that this is an equivalence
whenever M is a finite extension of πeff

0 (1)/n-modules. It follows that ΣkM → G(M) is an n-equivalence,
i.e., induces an equivalence on fibers of multiplication by n. Since ω∞ΣkM is connected, this implies
that also ω∞ΣkM → τ≥1G(M) is an n-equivalence (this follows easily from e.g. [Mat24b, Lemma 2.9 and
Corollary 2.11]; note that in the proof there it is never used that p is a prime). Hence, using Lemma C.16,
we see that

Ω∞ΣkM → Ω∞
S1τ≥1G(M) ≃ F (Ω∞ΣkM)

is also an n-equivalence. Since the target is n-complete by construction, we conclude.
We end the proof by showing that ΣkM → G(M) is an equivalence if M is a finite extension of

πeff
0 (1)/n-modules. By preservation of fiber sequences, we immediately reduce to the case where M itself

is such a module. For this, we will show that in fact M is even an A-module, whence the claim follows
from Proposition A.4. We have

πeff
0 (1)/n ≃ f0(π0(1)∗/n) ≃ f0π0(A)∗ ≃ πeff

0 (A),

where we used that 1 and A are effective, and that f0 is t-exact from the homotopy t-structure to the
effective t-structure, see [BY20, Lemma 6.2 (2)]. Thus, M acquires the structure of a πeff

0 (A)-module,
and hence also has the structure of an A-module (via the canonical ring map A→ πeff

0 (A)). This finishes
the proof. □

6.4.3. Milnor Resolutions: Generalities. From now on, we will assume that cd2(k) < ∞. We will now
study the situation that π0(A)∗ ≃ S−1(π0(1)∗/η), or that π0(A)∗ ≃ π0(1)∗/(η, n).

Remark 6.42. We quickly explain why we need the assumption that k has finite 2-étale cohomological
dimension. In topology, going from the sphere Stop to its 0-truncation π0(Stop) kills off only nilpotent
elements, hence the associated completion functors agree (at least on bounded below objects). In contrast,
going from the motivic sphere 1 to π0(1)∗/η kills the motivic Hopf map η : Gm → 1, which is known to
be non-nilpotent [Mor04, Corollary 6.4.5]. Hence, homological localization with respect to HZ introduces
a completion operation with respect to η. Unstably, the associated Bousfield localization is currently
poorly understood. The situation gets much better if one requires the 2-étale cohomological dimension
to be finite, as then every very effective motivic spectrum is automatically η-complete, and hence the
associated unstable Bousfield localization is just the identity.

Lemma 6.43. Assume that cd2(k) < ∞, and let E ∈ SH(k)veff be a very effective motivic spectrum.
Then E is η-complete. If E is 2-power-torsion, then E is slice-complete.

Proof. Since cd2(k) < ∞ we know that E[1/2] is η-complete. Indeed, there is a canonical splitting
E[1/2] ≃ E[1/2]+ ⊕E[1/2]− with E[1/2]+ an η-complete motivic spectrum by e.g. [BH21a, §2.7.3], and
under our assumption on the cohomological dimension, we have E[1/2]− = 0: Indeed, the splitting of
E[1/2] is induced by a splitting of the whole ∞-category SH(k)[1/2], since there is a splitting of the
endomorphisms of the unit GW (k)[1/2] ≃ Z[1/2] ×W (k)[1/2]. Hence, to show that E[1/2]− = 0, it
suffices to show that the Witt ring W (k) has 2N torsion for some N ≫ 0. Write I ⊂ W (k) for the
fundamental ideal. Then, by [MH+73, the discussion after Theorem 5.1], all the quotients In/In+1 are
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F2-vectorspaces, hence 2-torsion. It thus is enough to show that IN = 0 for N ≫ 0, for this one can
argue as in the proof of [Bac18b, Theorem 16], using that cd2(k) <∞.

Using that η-complete spectra are stable under fiber sequences, replacing E by the cofiber of E →
E[1/2] we may assume that E is 2-power-torsion. To prove that E is η-complete it now suffices to show
that it is slice-complete (indeed, since E is effective, the slice completion is a limit of finite extensions
of slices, and slices are η-complete as s0(1) = HZ). This follows from Levine’s convergence theorem.
If k has characteristic ̸= 2, see [Lev13, Theorem 7.3] (also recalled in [BEØ24, Theorem 5.3]). If k has
characteristic 2, see our variant in Corollary D.2. □

We need the following ad-hoc definition:

Definition 6.44. Let X ∈ Spc(k)∗ be resolvable. We say that X is 2-power-torsion if one can choose
the Xi and Bi appearing in Definition 6.32 so that Bi is 2-power-torsion (i.e. Bi[1/2] = 0) for all i.

Lemma 6.45. Suppose that cd2(k) < ∞, and let X ∈ Pro(Spc(k)∗) be nilpotent, 2-power-torsion and
∞-effective, i.e., X ≃ limi cXi, where Xi is nilpotent, 2-power-torsion and ni-effective, with limi ni =∞.
Then matX = ∗.

Proof. It suffices to show that if X ∈ Spc(k)∗ is nilpotent, 2-power-torsion and n-effective (without
loss of generality we may assume that n ≥ 2, so that X is resolvable by Remark 6.33) and U ∈ Smk

has dimension ≤ d, then X|UNis
is N(d, n)-connective, where N(d, n) is a function (independent of X

and U) with limnN(d, n) = ∞. (Indeed, the restrictions to the small sites UNis preserve all limits and
are jointly conservative, and moreover limi(Xi|UNis) = ∗ by e.g. [Mat25, Lemma 2.4] and the increasing
connectivity of the Xi|UNis

.) By an induction on the generalized Postnikov tower of Definition 6.32, we
may assume that X = Ω∞E for some E ∈ Σn,nSH(k)veff with E[1/2] = 0. The claim now follows from
Levine’s convergence theorem; see [Lev13, Theorem 7.3] (also recalled in [BEØ24, Theorem 5.3]) if k has
characteristic ̸= 2, and Corollary D.2 else. □

6.4.4. Milnor Resolutions: Localization. In this subsection, we assume that π0(A)∗ ≃ S−1(π0(1)∗/η)
with S ⊂ Z\0. In this situation, the Bousfield–Kan completion is related to unstable S-localization. We
write LS for the unstable S-localization functor in X , cf. [Mat24a, §3].

Example 6.46. Possible examples for A are the rings S−1HZ and S−1MGL. Of course, we may take
S = {1}.

Before stating the main theorem in this situation, let us identify the stable localization functor.

Lemma 6.47. Assume that cd2(k) <∞. Let E ∈ SH(k)veff. Then LstA (E) ≃ S−1E.

Proof. Let m ∈ S. We first show that A ⊗ (E
m−→ E) is invertible, for which it suffices to show

that m is invertible on A, which holds since m is invertible on π0(A)∗ = S−1π0(1)∗/η. Thus, we
see that the canonical map E → LstA (E) factors through E → S−1E, and that the resulting map
S−1E → E is inverted by LstA (−). Hence, it suffices to show that S−1E is LstA -local. We have morphisms
S−1

1→ A→ π0(A)∗ = S−1(π0(1)∗/η), and hence, get a diagram

LstS−11
E → LstAE → LstS−1(π0(1)∗/η)

E.

By Proposition B.1 we see that
LstS−11

E ≃ S−1E

and
LstS−1(π0(1)∗/η)

E ≃ LstS−11/ηE ≃ (S−1E)∧η ≃ S−1E,

where the last equivalence is Lemma 6.43. Thus, the above sequence of morphisms is equivalent to a
retract diagram S−1E → LstAE → S−1E. Since LstAE is LstA -local, the same is true for the retract S−1E,
which is what we wanted to show. □

Theorem 6.48. Assume that cd2(k) <∞.
(1) Let X ∈ Spc(k)∗ be nilpotent. Then LSX ∈ Spc(k)∗ (i.e., LSX is again A1-invariant).
(2) Let X ∈ Spc(k)∗ be resolvable. The canonical maps LSX → L̂AX → TotT •

AX are equivalences.
(3) For E ∈ SH(k)eff≥1 the canonical map LSΩ∞E → Ω∞LstAE is an equivalence.
(4) Let F → E → B be a fiber sequence of pointed nilpotent Nisnevich sheaves. Then LSF →

LSE → LSB is a fiber sequence.
(5) Let X• be a tower of pointed nilpotent Nisnevich sheaves with X = limiXi. Assume that the tower

is locally highly connected subordinate to U , e.g. it is highly connected. Then LSX ≃ limi LSXi.
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Proof. (1), (4) and (5) were already shown in Theorem 6.39.
For (3) we combine Lemma 6.36 and Lemma 6.47.
Hence, the only thing left is (2). As before, since L inverts S-equivalences, in order to prove that

LSX ≃ L̂AX, it suffices to show that LSX ≃ TotT •
AX (the latter being L-local). Write F := TotT •

A. It
is clear that F inverts S-equivalences and hence the canonical map X → FX factors through LSX. Let
X be resolvable, and consider its generalized Postnikov tower (Definition 6.32). The functor LS preserves
all fiber sequences and the limit appearing in the tower by (4) and (5), and similarly F preserves all
those fiber sequences by Theorem 5.7 and Remark 6.34. To see that F preserves the limit, note that
(Xi)i is a highly connected tower (under X), and we conclude by Lemma 6.7 that the connectivity
of X → Xi tends to ∞. Thus, by Proposition 5.3 also the connectivity of FX → FXi tends to ∞.
Moreover, the same proposition shows that FXi is a highly connected tower. In particular, it follows
again from Lemma 6.7 that FX ≃ limi FXi. We have thus reduced to the case X = Ω∞E for some
motivic spectrum E ∈ Σ3,1SH(k)veff. In fact, since both sides invert S-equivalences, we may assume
that E ≃ S−1E, and we must show that X → FX is an equivalence. Consider the fiber sequence

E → E[1/2]→ C.

Applying Ω∞, we obtain a fiber sequence preserved by F (by Theorem 5.7, as all involved motivic spaces
are 1-effective and 2-connective) and LS ; it thus suffices to treat E[1/2] and C, i.e., 2-periodic spectra
and 2-power-torsion spectra.

Let E be 2-periodic. Then since cd2(k) < ∞, η acts by zero on E: Indeed, as in the proof of
Lemma 6.43, we see that E ≃ E+ (i.e. the minus-part vanishes), and we know from [Bac18a, Lemma
39] that η acts by zero on E+. Consider now the Postnikov tower of E in the 1-effective t-structure on
SH(k)(1). By an analogous argument as in the beginning of the proof we are thus allowed to reduce
to the case where E ∈ Σk+1,1SH(k)eff♡ for some k ≥ 2, which is still S- and 2-periodic. Consider
Σkπk(E)∗, which again is S- and 2-periodic, and hence η acts by zero on E. In particular, Σkπk(E)∗
is a (S−1π0(1)∗/η = π0(A)∗)-module. Applying f1, which is t-exact from the homotopy t-structure to
the 1-effective t-structure by [BY20, Lemma 6.2 (2)], we get that E = Σkπ1eff

k (E) ≃ Σkf1πk(E)∗ ≃
Σk,1f0Σ

0,−1πk(E)∗ is an (f0π0(A)∗ = πeff
0 (A))-module. In particular, it is also an A-module, and thus

the canonical map Ω∞E → FΩ∞E is an equivalence by Proposition A.4.
Now let E be 2-power-torsion. Consider the fiber sequences fnE → E → E/fnE, which are preserved

by FΩ∞. We have FΩ∞(E/fnE) ≃ Ω∞(E/fnE): Indeed, E/fnE is a finite extension of slices (since E
is effective). Thus, as above we can reduce to the case of sn(E). Slices are HZ-modules, hence sn(E) is
an S−1HZ-module. We have

S−1HZ ≃ S−1f0(π0(1)∗/η) ≃ f0π0(A)∗ ≃ πeff
0 (A),

using [BY20, Lemma 6.2 (2)] and [Bac17, Lemma 12]. In particular, we see that sn(E) is an πeff
0 (A)-

module and hence an A-module, and thus FΩ∞(snE) ≃ Ω∞(snE) by Proposition A.4. Taking the limit
over n we obtain a fiber sequence

mat(lim
n,m

cTotm T
•
AΩ

∞(fnE))→ FΩ∞E → lim
n

Ω∞E/fnE ≃ Ω∞E,

where the equivalence is by Lemma 6.43. We finish the proof by showing that the second map is an
equivalence. Since the base is connected, for this it will be enough to show that the fiber is contractible.
This follows from Corollary 6.31 and Lemma 6.45. □

6.4.5. Milnor Resolutions: Completion. In this subsection, we assume that π0(A)∗ ≃ π0(1)∗/(η, n) with
n ∈ N. In this situation, the Bousfield–Kan completion is related to unstable n-completion. We write
Ln for the unstable n-completion functor in X , cf. Definition C.2.

Example 6.49. A possible example for A is the ring HZ/n.

Before stating the main theorem in this situation, let us identify the stable localization functor.

Lemma 6.50. Assume that cd2(k) <∞. Let E ∈ SH(k)veff. Then LstA (E) ≃ E∧
n .

Proof. By assumption, we get morphisms 1/n→ A→ πeff
0 (A) = HZ/n, and thus a diagram

Lst
1/nE → LstAE → LstHZ/nE,

where the first map is inverted by LstA (−). By definition Lst
1/nE = E∧

n . Hence, it suffices to show that
Lst
1/nE is LstA -local. By [Man24, §5.2] we get

LstHZ/nE ≃ L
st
1/(η,n)E = E∧

η,n ≃ E∧
n ,
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where the last equivalence is Lemma 6.43. Thus, the above sequence of morphisms is equivalent to a
retract diagram E∧

n → LstAE → E∧
n . Since LstAE is LstA -local, the same is true for the retract E∧

n , which
is what we wanted to show. □

Theorem 6.51. For this theorem, assume that cd2(k) <∞.

(1) Let X ∈ Spc(k)∗ be nilpotent. Then LnX ∈ Spc(k)∗ (i.e., LnX is again A1-invariant).
(2) Let X ∈ Spc(k)∗ be resolvable. There is a canonical map LnX → τ≥1 TotT

•X, which is an
equivalence.

(3) For E ∈ SH(k)≥1 the canonical map LnΩ∞E → τ≥1Ω
∞LstAE is an equivalence.

(4) Let F → E → B be a fiber sequence of pointed nilpotent Nisnevich sheaves. Then LSF ≃
τ≥1 fib(LSE → LSB).

(5) Let X• be a tower of pointed nilpotent Nisnevich sheaves with X = limiXi. Assume that the tower
is locally highly connected subordinate to U , e.g. it is highly connected. Then LnX ≃ limi LnXi.

Proof. (1), (4) and (5) were already shown in Theorem 6.41.
For (3) we combine Lemma 6.37 and Lemma 6.50.
Hence, the only thing left is (2). Exactly as in the proof of Theorem 6.41 we reduce to the case that

X = Ω∞ΣkM for M ∈ Σ1,1SH(k)eff♡ such that n acts by zero on M .
Considering the fiber sequence M → M [1/2] → C (and potentially further splitting up C into two

objects in the heart), we may furthermore assume that eitherM is 2-periodic or 2-power-torsion. One now
argues exactly as in Theorem 6.48 to show that in both cases the canonical map Ω∞ΣkM → FΩ∞ΣkM
is an equivalence. □

Appendix A. Coherence data from adjunctions

In this section, let L : C ⇄ D :R be an adjunction between ∞-categories. Alternatively, by work
of Riehl–Verity [RV15] and Haugseng [Hau21, Theorem 1.1], this adjunction is classified by a functor
M : ADJ → Cat∞ of (∞, 2)-categories, where Cat∞ is the (∞, 2)-category of ∞-categories, and ADJ
is the free living adjunction [SS86, Aud74], which is a (2, 2)-category. In particular, recall that ADJ has
two objects 0 and 1, and there are morphisms l : 0→ 1 and r : 1→ 0, such that M(0) = C, M(1) = D,
M(l) = L and M(r) = R. Moreover, there are 2-morphisms u : id0 → rl and c : lr → id1 that map
underM to the unit and counit of the adjunction L ⊣ R.

In this section, we explain how one can use this point of view to extract simplicial data out of this
adjunction, such as, for example, the cobar resolution or the codegeneracy cube. As far as we are aware,
some of the results presented in this appendix have not appeared in the literature in the setting of
∞-categories, even though they are well-known to experts.

In the following, MAPE(−,−) denotes the mapping∞-category in an (∞, 2)-category E. This appen-
dix is the only part of the article where we make (light) use of the theory of (∞, 2)-categories.

Construction A.1 (Cobar resolution). We have MAPADJ (0, 0) ≃ ∆+ [Aud74, Corollary 2.8]. This
lets us define an augmented cosimplical object (CB)•+ : ∆+ → Fun(C, C) as the composition

∆+ ≃ MAPADJ (0, 0)
M−−→ MAPCat∞(C, C) = Fun(C, C).

Remark A.2. By [Aud74, Corollary 2.8], the object [n] ∈ ∆+ corresponds to the morphism (rl)n ∈
MAPADJ (0, 0). Therefore, (CB)n+ = M((rl)n) = (RL)n. Similarly, one sees that the transition mor-
phisms in the cosimplical diagram are given by (compositions of) the co/unit of the adjunction.

Recall the categories ∆+∞ and ∆−∞ from [Lur09, Lemma 6.1.3.16] and [Lur17, Definition 4.7.2.1]. An
augmented cosimplicial object X• : ∆+ → C is called split if it extends along the inclusion ∆+ ⊂ ∆+∞
[Lur17, Definition 4.7.2.2], or equivalently along the inclusion ∆+ ⊂ ∆−∞ [Lur17, Remark 4.7.2.3].

Remark A.3. Split objects have the useful property that they are automatically limit diagrams [Lur09,
dual of Lemma 6.1.3.16], and the limit is preserved by any functor (since any functor preserves the
extension and thus split objects).

Proposition A.4. Both L(CB)•+ and (CB)•+R are split cosimplicial objects. In particular, they are limit
diagrams which are preserved by any functor.

Proof. We start with the statement about L(CB)•+. Consider the following diagram:
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∆+ MapADJ (0, 0) Fun(C, C)

∆−∞ MapADJ (0, 1) Fun(C,D).

(CB)•+

l◦(−)

M

L◦(−)

M

The squares commute essentially by [Aud74, Corollary 2.8] and sinceM is a 2-functor. The composition
on the top and then the right is L(CB)•+. Since the diagram commutes, we see that this has an extension
to ∆−∞, thus is split. For the other statement, consider instead the following diagram:

∆+ MapADJ (0, 0) Fun(C, C)

∆+∞ MapADJ (1, 0) Fun(D, C).

(CB)•+

(−)◦r

M

(−)◦R

M

The squares commute essentially by (the dual of) [Aud74, Corollary 2.8] and since M is a 2-functor.
The composition on the top and then the right is (CB)•+R. Since the diagram commutes, we see that
this has an extension to ∆+∞, thus is split. □

Construction A.5. Write ∆± ⊂ ∆ for the wide subcategory spanned by those maps that preserve
both the minimal and maximal element. Moreover, write ∆inj

+ ⊂ ∆+ and ∆surj ⊂ ∆ for the wide
subcategories of injective, respectively surjective maps. In particular, ∆surj ⊂ ∆±. Observe that there
is a canonical equivalence Φ: ∆± ≃−→ (∆+)

op [Str80, §3.11]. This equivalence restricts to an equivalence
Φ: ∆surj ≃−→ (∆inj

+ )op. For n ≥ 0, slicing over [n] induces an equivalence Φn : ∆
surj
[n]/

≃−→ (∆inj
+,/[n−1])

op.

Definition A.6. For n ≥ 0 and E an ∞-category, write Cuben(E) := Fun(∆surj
[n]/, E) for the ∞-category

of cubes in E .

Definition A.7. Let n ≥ 0. We define two cubes as the following compositions:

(CB)•surj,n : ∆
surj
[n]/ → ∆surj ⊂ ∆+ = MAPADJ (0, 0)

M−−→ Fun(C, C),

so that (CB)•surj,n ∈ Cuben(Fun(C, C)), and

(CB)•+,inj,n : ∆
surj
[n]/

Φn−−→
≃

(∆inj
+,/[n−1])

op → (∆inj
+ )op ⊂ (∆+)

op = MAPADJ (1, 1)
M−−→ Fun(D,D),

so that (CB)•+,inj,n ∈ Cuben(Fun(D,D)). We call (CB)•surj,n the n-th codegeneracy cube and (CB)•+,inj,n
the n-th face cube of the adjunction L ⊣ R.

Definition A.8. Let E be an ∞-category and n ≥ 0. We define a functor ιtop : ∆
surj
[n]/ → ∆surj

[n+1]/ via

(f : [n] ↠ [k]) 7→ ([n+ 1] = [n] ⋆ [0]
f⋆id−−−→ [k] ⋆ [0] = [k + 1]),

where ⋆ is the join operation. Precomposition with ιtop gives a functor

(−)top : Cuben+1(E)→ Cuben(E),
the top face of a cube.

Similarly, we define ιbot : ∆
surj
[n]/ → ∆surj

[n+1]/ via precomposition with the surjective function [n+1]→ [n]

that is the identity on 0 ≤ k ≤ n and sends n+ 1 to n. Precomposition with ιbot gives a functor

(−)bot : Cuben+1(E)→ Cuben(E),
the bottom face of a cube.

There is a natural transformation ιtop → ιbot given on f : [n] ↠ [k] by the square

[n+ 1] [k + 1]

[n+ 1] [k],

id

ιtop(f)

i7→i,k+17→k

ιbot(f)
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and hence an induced natural transformation

ψ : (−)top → (−)bot.

This lets us inductively define the total fiber of a cube:

Definition A.9. Let E be an ∞-category with finite limits, and n ≥ 0. We inductively define a functor
ToFib: Cuben(E) → E as follows: If n = 0, we use the equivalence ToFib: Cuben(E) ≃ E given by
evaluating at [0]. If n ≥ 1, then we define

ToFib(−) := fib(ToFib((−)top) ψ−→ ToFib((−)bot)).

We write Cn := ToFib((CB)•surj,n) : C → C and Sn := ToFib((CB)•+,inj,n) : D → D for the total fibers
of the codegeneracy and face cubes.

Proposition A.10. There is a canonical equivalence of cubes (CB)•surj,n ≃ R(CB)•+,inj,nL, and hence
also of their total fibers Cn ≃ RSnL.

Proof. We have the following diagram:

∆surj
[n]/ ∆surj ∆± ∆+ MapADJ (0, 0) Fun(C, C)

(∆inj
+,/[n−1])

op (∆inj
+ )op (∆+)

op MapADJ (1, 1) Fun(D,D).

≃Φn

(CB)•surj,n

≃Φ ≃Φ

M

(CB)•+,inj,n◦Φ
−1
n

M

r◦(−)◦l R◦(−)◦L

Here, the left two squares commute by the definitions of Φn and Φ. That the rectangle commutes can be
seen by comparing the definition of Φ with the explicit description of the morphism r◦(−)◦ l, cf. [Aud74,
Corollary 2.8]. The right square commutes since M is a 2-functor. Thus, the composition on the top
agrees with the composition on the left, bottom and right. This is exactly what we want to prove. □

Proposition A.11. There is a fiber sequence

Sn+1 → SnLR→ Sn,

where the second map is induced by the counit of the adjunction L ⊣ R.

Proof. By definition there is a fiber sequence Sn+1 → ToFib(CB)•,top+,inj,n → ToFib(CB)•,bot+,inj,n. Therefore,
it suffices to identify (CB)•,top+,inj,n ≃ (CB)•+,inj,n−1LR and (CB)•,bot+,inj,n ≃ (CB)•+,inj,n−1. We start with the
first claim, for which we have to show that the following diagram commutes:

∆surj
[n−1]/ ∆inj,op

+,/[n−2] ∆op
+ MAPADJ (1, 1) Fun(D,D)

∆surj
[n]/ ∆inj,op

+,/[n−1] ∆op
+ MAPADJ (1, 1) Fun(D,D).

ιtop

Φn−1

lr◦−

M

LR◦−

Φn M

The left rectangle commutes by the explicit description of the morphism lr◦−, cf. [Aud74, Corollary 2.8].
The right square commutes sinceM is a 2-functor. The second claim follows from the commutativity of
the diagram

∆surj
[n−1]/ ∆inj,op

+,/[n−2]

∆surj
[n]/ ∆inj,op

+,/[n−1] ∆inj,op
+ ,

ιbot

Φn−1

Φn

which is immediate from the definition. □
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Appendix B. Bousfield localizations in stable categories at Moore objects

In this section, we prove the following proposition:

Proposition B.1. Let D be a stable presentably symmetric monoidal ∞-category with unit 1, and
D≥0 ⊂ D the connective part of a t-structure that is left-complete (cf. the discussion before [Lur17,
Remark 1.2.1.18]) and compatible with the symmetric monoidal structure and filtered colimits. Suppose
that A ∈ CAlg(D≥0). Write L for the Bousfield localization at those morphisms f such that f ⊗A is an
equivalence. Suppose moreover that there are maps xi : Li → 1 such that Li ∈ D≥0 is dualizable, with
dual DLi ∈ D≥0. Let S ⊂ Z \ 0 be a set of nonzero integers. If π0(A) ≃ S−1π0(1//(x1, . . . , xn)), then
LE ≃ (S−1E)∧x1,...,xn

for all E ∈ D≥0.

Proof. As the t-structure on D is compatible with filtered colimits, it restricts to a t-structure on D[S−1]
such that the localization functor S−1(−) is t-exact. It is moreover symmetric monoidal, so that S−1Li ∈
D[S−1]≥0 is dualizable, with dual S−1DLi ∈ D[S−1]≥0. Note that A ∈ D[S−1] since S is invertible on
π0(A) by assumption. Let E ∈ D≥0. Since π0(A) = S−1π0(1//(x1, . . . , xn)) = π0((S

−1
1)//(x1, . . . , xn)),

we conclude from [BØ22, Theorems 2.1 and 2.2] that (S−1E)∧x1,...,xn
≃ lim(A⊗S−1E ⇒ A⊗A⊗S−1E · · · )

is given by the A-nilpotent completion. Consider the canonical map E → S−1E → (S−1E)∧x1,...,xn
. Since

the nilpotent completion is L-local (as a limit of A-modules), the right-hand side is L-local. Thus, as
the map is an (−⊗A)-equivalence, we get an equivalence LE ≃ (S−1E)∧x1,...,xn

. □

Appendix C. Unstable n-completion

In this appendix we discuss unstable completion at a (possibly infinite) set of primes.

Lemma C.1. Let D be a stable presentable ∞-category, and n ∈ Z \ 0. Then E∧
n ≃

⊕
ℓ|nE

∧
ℓ , where the

product is over all primes ℓ dividing n. In particular, E∧
ℓ is n-complete.

Proof. First, f is an n-equivalence if and only if f is an ℓ-equivalence for all ℓ|n. Indeed, consider the
devissage fiber sequence f//ℓ→ f//n→ f//nℓ , and conclude by induction. In particular, (−)∧n inverts all
ℓ-equivalences, therefore there is a canonical functor (−)∧n →

⊕
ℓ|n(−)∧ℓ .

We show that this map is an n-equivalence. Indeed, since the map E → E∧
n is an n-equivalence, it

suffices to show that E →
⊕

ℓ|nE
∧
ℓ is an n-equivalence, or equivalently an p-equivalence for all p|n. This

now follows since (E∧
p )

∧
p ≃ E∧

p , and (E∧
ℓ )

∧
p = 0 for all ℓ ̸= p since p is invertible on E∧

ℓ .
We finish the proof by showing that any object of the form

⊕
ℓ|nE

∧
ℓ is n-complete. Indeed, it suffices

to show that E∧
ℓ is n-complete for all ℓ|n, which is clear since it is local for all ℓ-equivalences, and every

n-equivalence is in particular an ℓ-equivalence.
For the last claim, note that n-complete objects are stable under retracts. □

Let P be a (not necessarily finite) set of primes and X be an ∞-topos. Suppose that X admits a
locally finite-dimensional cover, as in [Mat24a, Definition 5.1].

Definition C.2. Write LP : X → X for the Bousfield-localization at P-equivalences, i.e., at morphisms
f : X → Y such that Σ∞

+ f//ℓ is an equivalence for all ℓ ∈ P. We call this functor the unstable P-
completion functor.

If n ∈ Z \ 0 is a nonzero integer, we write Pn for the set of prime divisors of n, and Ln := LPn for the
unstable n-completion functor.

In particular, we have the following:

Example C.3. If n = ℓk is a prime power (for k > 0), then Ln = Lℓ is just unstable ℓ-completion. If
n = 1, then Ln = ∗, as then any morphism is an n-equivalence. Similarly, L∅ = ∗, since P1 = ∅.

The following is straightforward:

Lemma C.4. Let n ∈ Z \ 0 and f : X → Y ∈ X . Then f is an n-equivalence (i.e. Σ∞
+ f//n is an

equivalence) if and only if f is an ℓ-equivalence for all ℓ|n (i.e. LPn
f is an equivalence).

Proof. This follows since it is true stably, cf. Lemma C.1. □

Our main goal is to show that if X is nilpotent, then LPX splits into the product of LℓX. First, we
get a natural transformation between the two functors in question:

Lemma C.5. There is a canonical natural transformation φ : LP →
∏
ℓ∈P Lℓ.

If X ∈ X∗ is connected, then so is LPX. In particular, we obtain by adjunction a natural morphism
φ̃X : LPX → τ≥1

∏
ℓ∈P LℓX.
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Proof. For the first statement, it suffices to give natural transformations LP → Lℓ if ℓ ∈ P. Since by
definition any P-equivalence is also an ℓ-equivalence, we see that Lℓ inverts all P-equivalences, and hence
the canonical map id → Lℓ factors over LP .

Now to prove the second statement, let X ∈ X∗ be connected. We must show the same is true for
LPX. If P = ∅ then LPX = ∗, which is certainly connected. Otherwise, there exists ℓ ∈ P. By
definition, X → LPX is an ℓ-equivalence, and thus an equivalence on π0 by [Mat24b, Lemma 3.12].
Hence, again LPX is connected. □

We can now state the main result:

Theorem C.6. Let X ∈ X∗ be nilpotent. Then φ̃X is an equivalence.
If P is finite, then

∏
ℓ∈P LℓX is connected and in particular φX is an equivalence.

As a special case, if n ∈ Z \ 0, then LnX ≃
∏
ℓ|n LℓX.

For the proof we need some preparations. The following definition will be useful.

Definition C.7. Let X ∈ X∗ be nilpotent. A Postnikov refinement (Xn, En)n is a tower of nilpotent
sheaves (Xn)n under X, that fit into fiber sequences Xn+1 → Xn → Ω∞

∗ En for some En ∈ Σki Sp(X )♡
with ki ≥ 2, such that moreover X0 = ∗, X ≃ limnXn, and ki →∞ as i→∞.

Remark C.8. If X ∈ X∗ is nilpotent, then there always exists a Postnikov refinement, cf. [Mat24b,
Lemma A.15]. Moreover, if (Xn, En)n is a Postnikov refinement of X, then (Xn)n is a highly connected
tower.

Lemma C.9. Let X ∈ X∗ be nilpotent, and let (Xn, En)n be a Postnikov refinement of X. Then the
following holds:

(1) τ≥1

∏
ℓ∈P LℓΩ

∞En ≃ τ≥1Ω
∞ ∏

ℓ∈P(En)
∧
ℓ .

(2) τ≥1

∏
ℓ∈P LℓXn+1 ≃ τ≥1 fib(τ≥1

∏
ℓ∈P LℓXn → τ≥1

∏
ℓ∈P LℓΩ

∞En) for every n.

Proof. For (1) we have

τ≥1

∏
ℓ∈P

LℓΩ
∞En ≃ τ≥1

∏
ℓ∈P

τ≥1Ω
∞(En)

∧
ℓ ≃ τ≥1Ω

∞
∏
ℓ∈P

(En)
∧
ℓ ,

using [Mat24b, Lemma 3.17] and [Mat24a, Lemma 4.2].
For (2) we get

τ≥1

∏
ℓ∈P

LℓXn+1 ≃ τ≥1

∏
ℓ∈P

τ≥1 fib(LℓXn → LℓΩ
∞En) ≃ τ≥1 fib(τ≥1

∏
ℓ∈P

LℓXn → τ≥1

∏
ℓ∈P

LℓΩ
∞En),

using [Mat24b, Proposition 3.20] and [Mat24a, Lemma 4.2]. □

Lemma C.10. Let X ∈ X∗ be nilpotent, and let (Xn, En)n be a Postnikov refinement of X. Then for
every n ≥ 0 the sheaf τ≥1

∏
ℓ∈P LℓXn is nilpotent.

Proof. We show the claim by induction on n, the case n = 0 holds trivially. For any n ≥ 0 we get
τ≥1

∏
ℓ∈P LℓXn+1 ≃ τ≥1 fib(τ≥1

∏
ℓ∈P LℓXn → τ≥1

∏
ℓ∈P LℓΩ

∞En) from Lemma C.9 (2). The first term
on the right is nilpotent by induction, whereas the second is by combining Lemma C.9 (1) with [Mat24b,
Lemma A.11]. Hence, we conclude using [Mat24b, Lemma A.12]. □

Lemma C.11. Let U be an ∞-topos generated under colimits by a set W ⊂ U . Let X ∈ U∗ be an object
and n ∈ N such that X(w) is an n-connective space for every w ∈W . Then X is n-connective in U∗.

Proof. Consider the adjunction L : P(W ) ⇄ U : i, where L is the left Kan extension of W ↪→ U , and i
is the restricted Yoneda. Since W generates U under colimits, it follows that L is essentially surjective,
and i is fully faithful, so that Li(X) ≃ X. Moreover, note that since i preserves the terminal object (as
a right adjoint), we also get L(∗) = Li(∗) = ∗. By assumption on X, i(X) is an n-connective object of
P(W )∗ (note that in a presheaf topos n-connective objects are exactly those presheaves such that they
are n-connective on sections).

It now suffices to show that any functor F : V → U between ∞-topoi that preserves colimits and the
final object also preserves n-connective objects. Indeed, for this note first that F preserves suspensions,
i.e. ΣnFV ≃ FΣnV , since suspensions are iterated pushouts of the form ∗ ← V → ∗. Thus, the claim
follows since any n-connective object in V∗ can be written as a colimit of objects of the form ΣnV , cf.
[Mat25, Proposition 2.38]. □

Lemma C.12. Let U be an ∞-topos locally of homotopy dimension ≤ N for some N ∈ N. Let k > N
and Xℓ ∈ U∗ be a k-connective object for every ℓ ∈ P. Then

∏
ℓ∈P Xℓ is (k −N)-connective.



40 TOM BACHMANN, ANTON ENGELMANN, AND KLAUS MATTIS

Proof. It suffices to show that (
∏
ℓ∈P Xℓ)(U) is (k−N)-connective for every U ∈ U of homotopy dimension

≤ N (by Lemma C.11, since they generate the topos under colimits). By [Lur09, Lemma 7.2.1.7] (applied
to the slice topos U/U ), we have that Xℓ(U) is (k−N)-connective. This immediately implies the lemma
since evaluation of sheaves commutes with limits, and arbitrary products of (k − N)-connective spaces
are (k −N)-connective. □

Remark C.13. In the last lemma, if P is finite, then of course
∏
ℓ∈P Xℓ is even k-connective.

Lemma C.14. Let X ∈ X∗ be nilpotent, and let (Xn, En)n be a Postnikov refinement of X. The tower
(τ≥1

∏
ℓ∈P LℓXn)n is locally highly connected (subordinate to any highly connected cover of X ), with limit

τ≥1

∏
ℓ∈P LℓX.

Proof. Choose a highly connected cover U = {p∗i : X → Ui}. For the first statement, it suffices to show
that (

∏
ℓ∈P LℓXn)n is locally highly connected. Since the p∗i commute with both p-completion and

limits by [Mat24a, Lemma 6.10 and Lemma 5.2], we may assume that X itself is of homotopy dimension
≤ N for some N ∈ N, and that (Xn)n is a highly connected tower, and our goal is to show that also
(
∏
ℓ∈P LℓXn)n is highly connected. So let k ∈ N. Since (Xn)n is highly connected, there exists L ≥ 0

such that for all m ≥ L the fiber fib(Xm → XL) is (k+2N +3)-connective. We have to find M ≥ 0 such
that for all m ≥M the object

∏
ℓ∈P fib(LℓXm → LℓXM ) is (k+1)-connective (since we can commute the

product with the fiber). Setting M = L, it follows from [Mat25, Lemma 2.11] that fib(LℓXm → LℓXM )
is (k + 1 +N)-connective for every ℓ ∈ P, and hence from Lemma C.12 that

∏
ℓ∈P fib(LℓXm → LℓXM )

is (k + 1)-connective, proving the claim.
It is left to compute the limit of the tower, where we can again go to the highly connected cover.

We have limn LℓXn ≃ LℓX by [Mat25, Proposition 2.13], since (Xn)n is highly connected. Hence, we
get τ≥1 limn τ≥1

∏
ℓ∈P LℓXn ≃ τ≥1 limn

∏
ℓ∈P LℓXn ≃ τ≥1

∏
ℓ∈P LℓX, using [Mat24a, Lemma 4.2]. To

conclude, we show that limn τ≥1

∏
ℓ∈P LℓXn is already connected. This holds since (τ≥1

∏
ℓ∈P LℓXn)n is

highly connected by the first part of the proof, and thus π0(limn τ≥1

∏
ℓ∈P LℓXn) = ∗ by [Mat25, Lemma

2.4]. □

Lemma C.15. Let X ∈ X∗ be nilpotent. Then φ̃X : LPX → τ≥1

∏
ℓ∈P LℓX is a P-equivalence.

Proof. We have to see that φ̃X is an p-equivalence for every p ∈ P. By definition, we know that
X → LPX is a p-equivalence, hence, by 2-out-of-3 it suffices to show that X → τ≥1

∏
ℓ∈P LℓX is a

p-equivalence. Note that τ≥1

∏
ℓ∈P LℓX ≃ LpX × τ≥1

∏
p̸=ℓ∈P LℓX. Since Lp preserves finite products

[Mat24b, Lemma 3.15] and since LpLp ≃ Lp, it suffices to show that Lpτ≥1

∏
p̸=ℓ∈P LℓX = ∗.

Choose a Postnikov refinement (Xn, En)n of X. First, for every n we have

τ≥1

∏
p̸=ℓ∈P

LℓΩ
∞En ≃ Ω∞τ≥1

∏
p̸=ℓ∈P

(En)
∧
ℓ ,

using Lemma C.9 (1). In order to see that the p-completion of this vanishes, using [Mat24b, Lemma
3.16] it is enough to show that (τ≥1

∏
p̸=ℓ∈P(En)

∧
ℓ )//p = 0. This holds since p is invertible on (En)

∧
ℓ for

all ℓ ̸= p.
We now show inductively that Lpτ≥1

∏
p̸=ℓ∈P LℓXn = ∗, the case n = 0 holds trivially. This follows

immediately from Lemma C.9 (2), the inductive hypothesis and the case for En discussed above.
We finish the proof by showing that Lpτ≥1

∏
p̸=ℓ∈P LℓX = ∗. The tower (τ≥1

∏
p̸=ℓ∈P LℓXn)n is

locally highly connected, with limit τ≥1

∏
p̸=ℓ∈P LℓX, cf. Lemma C.14. Moreover, for every n ≥ 0 the

sheaf τ≥1

∏
p̸=ℓ∈P LℓXn is nilpotent by Lemma C.10. Hence, using [Mat25, Proposition 2.13] and the

case for Xn discussed above, we get

Lpτ≥1

∏
p̸=ℓ∈P

LℓX ≃ lim
n
Lpτ≥1

∏
p̸=ℓ∈P

LℓXn = ∗. □

We are now ready to prove the main theorem of this section.

Proof of Theorem C.6. In Lemma C.15 we have seen that φ̃X : LPX → τ≥1

∏
ℓ∈P LℓX is a P-equivalence.

Since the left-hand side is clearly P-complete, it suffices to show that the right-hand side is P-complete.
Since P-equivalences are ℓ-equivalences, limits of ℓ-complete objects (for varying ℓ) are P-complete.
Writing τ≥1 = fib(id→ π0), this reduces to showing that LℓX is ℓ-complete (which is obvious) and that
discrete sheaves are ℓ-complete (which holds by [Mat24b, Lemma 3.13]).

For the second statement, i.e. the case where P is finite, we just note that
∏
ℓ∈P LℓX is connected, since

each of the finitely many factors is (see [Mat24b, Lemma 3.12] for a proof that LℓX is connected). □
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Using the main theorem, we can now extend the results about unstable p-completion from [Mat24b,
Mat24a, Mat25] to the unstable P-completion functor. For n ∈ Z \ 0, specializing to P = Pn we also
obtain analogous results about the unstable n-completion functor.

Lemma C.16 (Infinite loop spaces). Let E ∈ Sp(X )≥1. Then LPΩ
∞E ≃ τ≥1Ω

∞ ∏
ℓ∈P E

∧
ℓ . As a special

case, we have LnΩ∞E ≃ τ≥1Ω
∞E∧

n .

Proof. We calculate

LPΩ
∞E ≃ τ≥1

∏
ℓ∈P

LℓΩ
∞E ≃ τ≥1

∏
ℓ∈P

τ≥1Ω
∞E∧

ℓ ≃ τ≥1Ω
∞

∏
ℓ∈P

E∧
ℓ ,

where we used Theorem C.6 in the first equivalence, [Mat24b, Lemma 3.17] in the second equivalence,
and that products commute with Ω∞ in the third equivalence.

The last claim holds since
∏
ℓ∈Pn

E∧
ℓ =

⊕
ℓ∈P E

∧
ℓ ≃ E∧

n by Lemma C.1. □

Lemma C.17 (Fiber sequences). Let F → X → Y be a fiber sequence of nilpotent sheaves in X∗. Then
LPF ≃ τ≥1 fib(LPX → LPY ). As a special case, we have LnF ≃ τ≥1 fib(LnX → LnY ).

Proof. We calculate

LPF ≃ τ≥1

∏
ℓ∈P

LℓF ≃ τ≥1

∏
ℓ∈P

τ≥1 fib(LℓX → LℓY )

≃ τ≥1 fib(τ≥1

∏
ℓ∈P

LℓX → τ≥1

∏
ℓ∈P

LℓY ) ≃ τ≥1 fib(LPX → LPY ),

where we used Theorem C.6 in the first and last equivalence, [Mat25, Proposition 2.8] in the second
equivalence, and that products commute with fibers in the third equivalence. □

Lemma C.18 (Highly connected towers). Let (Xi)i be a highly connected tower, where every Xi ∈ X∗
is nilpotent. Then LP limiXi ≃ limi LPXi. As a special case, we have Ln limiXi ≃ limi LnXi.

Proof. First note that limiXi is still nilpotent. This follows basically from Lemma 6.7, as then π1(X) ≃
π1(XN ) for some N ≫ 0, and hence is nilpotent by assumption, and similarly, the action of π1(X)
on πn(X) is equivalent to the action of π1(XM ) on πn(XM ) for some M ≫ 0, which is nilpotent by
assumption. We calculate

LP lim
i
Xi ≃ τ≥1

∏
ℓ∈P

Lℓ lim
i
Xi ≃ τ≥1

∏
ℓ∈P

lim
i
LℓXi ≃ τ≥1 lim

i
τ≥1

∏
ℓ∈P

LℓXi ≃ τ≥1 lim
i
LPXi,

where we used Theorem C.6 in the first and last equivalence, [Mat25, Proposition 2.13] in the second
equivalence, and that products commute with limits in the third equivalence. The lemma follows since
limi τ≥1

∏
ℓ∈P LℓXi ≃ limi LPXi is already connected, the proof of which is similar to the end of the

proof of Lemma C.14. □

Appendix D. Slice convergence

In this section we explain a minor extension of Levine’s convergence theorem, allowing us to treat
imperfect extensions of perfect base fields. The argument mainly consists of observing that [BY20,
Proposition 6.7] can be used as a slot-in replacement for a certain part of Levine’s proof, and with this
replacement, the original argument goes through in the more general setting.

Proposition D.1. Let k be a perfect field, E ∈ Σn,nSH(k)veff, and K/k a finitely generated field
extension. Then π0(E)∗(K) for ∗ ≥ −n is generated by transfers of elements in KMW

∗ (L) · π0(E)−n(L),
where L/K runs through finite field extensions.

Proof. If ∗ = 0 and n = 1 this is proved in [BY20, Proposition 6.7]. By shifting, this also proves n = 1−∗
for any value of ∗. The general case follows from this and the projection formula. (Indeed we may as well
assume that n = 0, then apply the previous case to Σr+1,r+1E to learn that π0(Σ

r+1,r+1E)0 ≃ π0(E)r+1

is generated under transfers and KMW
1 by π0(Σ

r+1,r+1E)−1 ≃ π0(E)r; now iterate.) □

Corollary D.2. There exists a function N : N2 → N with the following property: For k a perfect
field of characteristic p, m,n ≥ 0, E ∈ ΣN(m,n),N(m,n)SH(k)veff p-torsion (i.e. E[1/p] = 0), K/k of
transcendence degree at most m, i ≤ n and j ≥ 0, we have

πi(E)j(K) = 0.
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Proof. The proof is essentially the same as in [Lev13, Theorem 7.3] (also recalled in [BEØ24, Theorem
5.3]), with two key differences. Firstly, [Lev13, Theorem 5.3] is replaced by Proposition D.1. Secondly,
in Levine’s proof the Bloch–Kato conjecture is used to show that if L/k has transcendence degree ≤ m,
then KMW

i (L)/p = 0 for i > m. To conclude the proof, we supply a different argument to show that
this still holds in our situation. Let us first show that KM

i (L)/p = 0 for all i > m. This can be seen
as follows: There is an inclusion KM

i (L)/p ↪→ ΩiL by the Bloch–Kato–Gabber theorem [BK86, Theorem
2.1]. But for i > m we have ΩiL =

∧i
l=1 Ω

1
L = 0, since Ω1

L has dimension m [Mat80, Theorem 59].
We now note that modulo p the powers of the fundamental ideal of L vanish, i.e. Ii(L)/p = 0, for
i > m. Indeed, if p ̸= 2, then this holds since W (L) has 2-power torsion (indeed, W (L) is a module over
W (Fp), which is of 2-power torsion, by the explicit calculation done in e.g. [Dég23, Example 2.1.10]),
and hence p is invertible on W (L) and therefore also on Ii(L). On the other hand, if p = 2, we have
Ii+1(L)/Ii(L) ≃ KM

i (L)/2 = 0 for i > m by the Milnor Conjecture (see e.g. [Dég23, Theorem 2.2.3])
and the above vanishing result for Milnor K-theory. In particular, Im+1(L) = Im+2(L) = . . . , which
implies that all of these powers of the fundamental ideal vanish (since their intersection is 0 by the
Arason–Pfister Hauptsatz [Lam05, Chapter 10, Corollary 3.2]). In view of the short exact sequence
0→ I(L)i+1 → KMW

i (L)→ KM
i (L)→ 0 from e.g. [Dég23, Corollary 2.3.10 (1)], the snake lemma, and

the above calculations, we thus get KMW
i (L)/p ≃ KM

i (L)/p = 0 for all i > m. □
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