Unstable p-completion in motivic homotopy theory

Klaus Mattis[∗]

February 1, 2024

Abstract

We define unstable p-completion in general ∞ -topoi and the unstable motivic homotopy category, and prove that the p-completion of a nilpotent sheaf or motivic space can be computed on its Postnikov tower. We then show that the $(p$ -completed) homotopy groups of the p -completion of a nilpotent motivic space X fit into short exact sequences $0 \to \mathbb{L}_0 \pi_n(X) \to$ $\pi_n^p(X_p^{\wedge}) \to \mathbb{L}_1 \pi_{n-1}(X) \to 0$, where the \mathbb{L}_i are (versions of) the derived p-completion functors, analogous to the classical situation.

Contents

[∗]klaus.mattis@uni-mainz.de

1 Introduction

In their seminal paper [\[BK72\]](#page-96-0), Bousfield and Kan defined the p-completion functor on (nilpotent) spaces/anima. This process associates to every nilpotent anima X another anima X_p^{\wedge} , together with a map $X \to X_p^{\wedge}$, which is universal among \mathbb{F}_p -equivalences, i.e. maps $f: X \to Y$ which induce isomorphisms on \mathbb{F}_p -homology. Roughly, the p-completion functor "derived p-completes the homotopy groups of X", in the following sense: Write $L_i: Ab \to Ab$ for the derived p-completion functors on abelian groups, i.e. the composition

$$
\mathcal{A}b \hookrightarrow \mathcal{D}(\mathcal{A}b) \xrightarrow{\lim_n (-)/\!\!/p^n} \mathcal{D}(\mathcal{A}b) \xrightarrow{H_i} \mathcal{A}b,
$$

where the map in the middle is understood to be the derived limit of the cofibers (or cones) of the multiplication-by- $pⁿ$ -maps. Then, one has the following theorem:

Theorem 1.1 (Bousfield-Kan). *Let* X *be a nilpotent pointed anima (resp. a spectrum*). Then for every $n \geq 1$ (resp. any $n \in \mathbb{Z}$) there is a short exact *sequence*

$$
0 \to L_0 \pi_n(X) \to \pi_n(X_p^{\wedge}) \to L_1 \pi_{n-1}(X) \to 0.
$$

In this paper, we want to show that there is an analogous functor in unstable motivic homotopy theory over a perfect field, which behaves similar to the classical situation.

Let k be a perfect field. Recall that $Spc(k) \subset \mathcal{P}(Sm_k)$ is the full subcategory of presheaves of anima on Sm_k (the category of smooth quasi-compact k -schemes) consisting of those presheaves which are \mathbb{A}^1 -invariant and satisfy Nisnevich descent, called the category of motivic spaces. Similarly, write $SH^{S^1}(k) \subset$ $\mathcal{P}(\mathrm{Sm}_k, \mathrm{Sp})$ for the full subcategory of presheaves of spectra, consisting of the \mathbb{A}^1 -invariant Nisnevich sheaves, called the category of S^1 -spectra. There is an adjunction Σ^{∞}_+ : $\text{Spc}(k) \rightleftarrows \text{SH}^{S^1}(k)$: Ω^{∞} . We regard $\text{SH}^{S^1}(k)$ as equipped with the homotopy t-structure $(SH^{S^1}(k)_{\geq 0}, SH^{S^1}(k)_{\leq 0})$, with heart $SH^{S^1}(k)^\heartsuit$. Write $(-)_{n}^{\wedge}$ p_p^{\wedge} : SH^{S¹(k) \rightarrow SH^{S¹(k) for the p-adic completion functor, i.e. the functor}} $E \mapsto \lim_{k} E/p^{k}$, and $(SH^{S}(k))^{^{\wedge}}$ for its essential image.

Note that in this setting, classical theorems cannot be true on the nose: For example, one cannot expect that for every $A \in \text{SH}^{S^1}(k)^\heartsuit$ there are short exact sequences

$$
0 \to L_0 \pi_n(A) \to \pi_n(A_p^{\wedge}) \to L_1 \pi_{n-1}(A) \to 0,
$$

(where the L_i are defined analogously to the case of abelian groups), since it is unreasonable to expect that A_p^{\wedge} has no negative homotopy groups (although the negative homotopy groups are always uniquely p -divisible, see Lemma [2.9\)](#page-11-0). These negative homotopy groups appear since infinite products are not t-exact in $SH^{S^1}(k)$.

Luckily, there is a new t-structure (the p-adic t-structure) one can associate to $SH^{S^1}(k)$ which solves those problems. Our main theorem can now be summarized as follows:

Theorem 1.2. *There is a localization functor* $(-)_{n}^{\wedge}$ p_{p}^{\wedge} : Spc $(k) \rightarrow$ Spc (k) *which inverts* p-equivalences, *i.e.* morphisms $f: X \to Y$ in $\operatorname{Spc}(k)$, such that $(\Sigma_{+}^{\infty} f)/\!/\!p$ *is an equivalence.*

One can define the p-adic t-structure $(SH^{S^1}(k))$ $\sum_{k=0}^{p}$, SH $^{S^1}(k)$ ^p $\sum_{k=0}^{p}$) on $\text{SH}^{S^1}\!(k)$ with $heat\ \text{SH}^{S^1}(k)^{p\heartsuit}$, and derived p-completion functors

$$
\mathbb{L}_{i}: \operatorname{SH}^{S^{1}}(k)^{\heartsuit} \to \operatorname{SH}^{S^{1}}(k)^{p\heartsuit},
$$

$$
A \mapsto \pi_{i}^{p}(A) := \Omega^{i} \tau_{\leq i}^{p} \tau_{\geq i}^{p} A.
$$

For every $X \in \text{Spc}(k)_*$ *, there is a functorial sequence of p-completed homotopy groups* $\pi_n^p(X) \in \text{SH}^{S^1}(k)^{p\heartsuit}$ *for* $n \geq 2$ *. There is a simliar construction if* $n = 1.$

These constructions satisfy the following:

(1) The p*-adic t-structure is not left-separated. Write*

$$
\mathcal{SH}^{S^1}\!(k)_{\geq \infty}^p \coloneqq \bigcap_n \mathcal{SH}^{S^1}\!(k)_{\geq n}^p.
$$

Then there is a canonical equivalence

$$
\mathrm{SH}^{S^1}(k)/\mathrm{SH}^{S^1}(k)_{\geq \infty}^p \cong \left(\mathrm{SH}^{S^1}(k)\right)_p^{\wedge}.
$$

(2) A morphism $f: A \to B$ is a p-equivalence in $SH^{S^1}(k)^\heartsuit$ *(i.e.* $f/\hspace{-3pt}/ p$ *is an equivalence)* if and only if $\mathbb{L}_i(f)$ *is an equivalence for all i.*

More generally, a morphism $f: E \to F$ *in* $SH^{S^1}(k)$ *is a p-equivalence if and only if* $\pi_n^p(f)$ *is an equivalence for all* $n \in \mathbb{Z}$ *.*

- (3) An object $E \in \text{SH}^{S^1}(k)$ lives inside the p-adic heart $\text{SH}^{S^1}(k)^{p\heartsuit}$ if and only $if E/p \in SH^{S^1}(k)_{\geq 0}, E \in SH^{S^1}(k)_{\leq 0}, E \cong E_p^{\wedge}$ and $\pi_0(E)$ *is of bounded* p-divisibility (i.e. has no map from a p-divisible object $A \in \text{SH}^{S^1}(k)^\heartsuit$).
- (4) If $E \in SH^{S^1}(k)$, then there are functorial short exact sequences

$$
0 \to \mathbb{L}_0 \pi_n(E) \to \pi_n^p(E_p^{\wedge}) \to \mathbb{L}_1 \pi_{n-1}(E) \to 0.
$$

(5) If $f: X \to Y$ *is a p-equivalence of pointed nilpotent motivic spaces, then* $\pi_n^p(f)$ *is an isomorphism for all* $n \geq 1$ *. The converse holds if moreover* $\pi_1(X)$ *and* $\pi_1(Y)$ *are abelian.*

4

(6) Moreover, if X ∈ Spc(k)[∗] *is a pointed nilpotent motivic space, then for* $every \; n \geq 2 \; there \; is \; a \; functional \; short \; exact \; sequence \; in \; SH^{S^1}(k)^{p\heartsuit}$

$$
0 \to \mathbb{L}_0 \pi_n(X) \to \pi_n^p(X) \to \mathbb{L}_1 \pi_{n-1}(X) \to 0.
$$

(and there is also a similar sequence for $n = 1$).

Proof. The *p*-completion functor is constructed in Lemma [3.7.](#page-23-0) The *p*-adic t-structure is defined in Definition [2.13,](#page-13-1) and the derived p -completion functors are constructed in Definition [2.22.](#page-16-0) The definition of the p -completed homotopy groups is Definition [5.44.](#page-73-0) For proofs of the other statements, see:

- (1) Remark [2.17,](#page-14-0)
- (2) Corollary [2.21,](#page-16-1)
- (3) Lemmas [2.15](#page-13-2) and [2.19,](#page-15-0)
- (4) Lemma [2.29,](#page-18-0)
- (5) Propositions [5.47](#page-73-1) and [5.52,](#page-75-0) and
- (6) Theorem [5.49.](#page-74-0)

 \Box

Remark 1.3*.* The results about the p-adic t-structure are very general: One can associate a p-adic t-structure with the same properties to any presentable stable ∞-category which is equipped with a (right-separated) t-structure.

The situation is somewhat more complicated than the classical situation, for the following reasons: First, as already remarked above, if we have an $S¹$ spectrum $A \in \text{SH}^{S^1}(k)^\heartsuit$, then (contrary to the classical situation) A_p^\wedge is no longer concentrated in degrees 0 and 1, since there are no connectivity bounds on sequential limits of connective S^1 -spectra. Nonetheless, we can fix this problem by introducing the *p*-adic t-structure and the derived *p*-completion functors \mathbb{L}_i . In this t-structure, the p-completion A_p^{\wedge} is concentrated in degrees 0 and 1. It follows that the derived p-completion functors vanish for all $i \neq 0, 1$, see Proposition [2.26.](#page-17-0)

In particular, the *p*-adic heart $SH^{S^1}(k)^{p\heartsuit}$ does not live inside the standard heart $SH^{S^1}(k)^\heartsuit$. Therefore, in order for the short exact sequence [\(6\)](#page-4-0) to make sense, we cannot use the homotopy groups $\pi_n(X_p^{\wedge})$, but need a more elaborate construction.

Note that in the classical situation, our constructions give the same results as before, because here the heart of the p-adic t-structure on Sp (the ∞ -category of spectra) actually lives inside the normal heart, and the (new) derived pcompletion functors \mathbb{L}_i agree with the classical derived p-completion functors L_i . A proof of this fact can be found in Lemma [A.22.](#page-81-0)

In order to prove the above theorem, we introduce a notion of p-completion on a general ∞ -topos X, and then use this in the special case of the ∞ -topos of Nisnevich sheaves on smooth k -schemes. In particular, we obtain the following: **Lemma 1.4.** Let X be an ∞ -topos (or more generally any presentable ∞ *category*). Then there is a localization functor $(-)_{n}^{\wedge}$ $p_{p}^{\wedge} \colon \mathcal{X} \to \mathcal{X},$ which inverts p-equivalences (i.e. maps f such that $(\sum_{+}^{\infty} f)$ /|p is an equivalence).

Proof. The construction can be found in Lemma [3.7.](#page-23-0)

Note that the short exact sequence [\(4\)](#page-3-0) in Theorem [1.2](#page-3-1) is unsatisfying: It relates the p-completed homotopy groups of X to the derived p-completions of the homotopy groups of X . But this does (a priori) not say anything about the (p-completed) homotopy groups of $X_p^{\wedge}!$ In particular, note that we cannot use that the canonical p-equivalence $X \to X_p^{\wedge}$ induces an equivalence $\pi_n^p(X) \to$ $\pi_n^p(X_p^{\wedge})$ via [\(5\)](#page-3-2) of Theorem [1.2,](#page-3-1) since it is not clear (and probably wrong) that X_p^{\wedge} is nilpotent even if X is. But we are nonetheless able to say more: By the above lemma, we get p-completion functors in the categories of Zariski sheaves, Nisnevich sheaves, motivic spaces and connected motivic spaces, denote them by L_{zar}^p , L_{nis}^p , $L_{\mathbb{A}^1}^p$ and $L_{\mathbb{A}^1,\geq 1}^p$, respectively. We can relate the different functors:

Proposition 1.5. *Let* $X \in \text{Spc}(k)_*$ *be a nilpotent motivic space, it is in particular connected. Then there are equivalences*

$$
L_{\text{zar}}^p(X)\cong L_{\text{nis}}^p(X)\cong L_{\mathbb{A}^1,\geq 1}^p(X).
$$

In particular, the p*-completion of* X *as a Nisnevich or Zariski sheaf is again an* A 1 *-invariant Nisnevich sheaf !*

If Conjecture [5.24](#page-62-0) is true (i.e. if the p-completion $L^p_{\mathbb{A}^1}(Y)$ is connected for *every nilpotent motivic space* Y), then we also get an equivalence $L_{\text{nis}}^p(X) \cong$ $L^p_{\mathbb{A}^1}(X)$.

Proof. The equivalences can be found in Theorems [5.31](#page-63-0) and [5.34.](#page-67-0)

 \Box

 \Box

Note that here a small problem arises: Currently we do not know whether the p-completion of a nilpotent motivic spaces is still connected. The corresponding fact in an ∞ -topos is true, see Lemma [3.12.](#page-25-1) This introduces some complications, but at least for L_{zar}^p , L_{nis}^p and $L_{\mathbb{A}^1, \geq 1}^p$ we have the following:

Theorem 1.6. *Let* $X \text{ ∈ } Spc(k)_*$ *be a nilpotent motivic space. We have equivalences*

$$
\pi_n^p(X) \cong \pi_n^p(L_{\text{zar}}^p(X)) \cong \pi_n^p(L_{\text{nis}}^p(X)) \cong \pi_n^p(L_{\mathbb{A}^1, \geq 1}^p(X))
$$

for all n*. In particular, we get a short exact sequence*

$$
0 \to \mathbb{L}_0 \pi_n(X) \to \pi_n^p(X_p^{\wedge}) \to \mathbb{L}_1 \pi_{n-1}(X) \to 0,
$$

where X_p^{\wedge} is any of $L_{\text{zar}}^p(X) \cong L_{\text{nis}}^p(X) \cong L_{\mathbb{A}^1, \geq 1}^p(X)$.

Proof. See Lemma [5.46](#page-73-2) together with the above Proposition [1.5](#page-5-0) for the first claim. For the short exact sequence, see Corollary [5.50.](#page-75-1) □

In order to be able to compute p-completions of nilpotent sheaves, we will be using the following theorem:

Theorem 1.7. *If* X *is locally of finite uniform homotopy dimension (see Definition [3.22,](#page-28-0) this is a mild generalization of the notion of being of homotopy* $dimension \leq n$, which is in particular satisfied by the Nisnevich and Zariski *topoi), then the p-completion of a nilpotent sheaf* $X \in \mathcal{X}$ *(see Definition [A.10](#page-79-1)*) *for the definition of nilpotence in an* ∞*-topos) can be computed on its Postnikov tower, i.e. there is an equivalence*

$$
X_p^{\wedge} \cong \lim_k (\tau_{\leq k} X)_p^{\wedge}.
$$

 \Box

 \Box

Proof. This can be found in Theorem [3.27.](#page-30-2)

The above result about the Postnikov tower is extremely useful in computing the p-completions of nilpotent sheaves: Let $X \in \mathcal{X}$ be a nilpotent sheaf, where X is an ∞-topos locally of finite uniform homotopy dimension. Then the Postnikov tower has a principal refinement (see Definition [A.14\)](#page-79-2), i.e. there are positive integers m_n , n-truncated spaces $X_{n,k}$, abelian group objects $A_{n,k} \in \mathcal{A}b(\text{Disc}(\mathcal{X}))$ in the associated 1-topos of discrete objects for all n and all $0 \leq k \leq m_n$, and fiber sequences $X_{n,k+1} \xrightarrow{\bar{p}_{n,k}} X_{n,k} \to K(A_{n,k+1}, n+1)$ that refine the Postnikov tower (in the sense that $X_{n,0} = \tau \leq_n X$ and that the truncation map $\tau \leq_n X \to \tau \leq_{n-1} X$ can be factored as $p_{n,m_n-1} \circ \cdots \circ p_{n,0}$. Now we have the following proposition:

Proposition 1.8. *For every* n *and* k *we have an equivalence*

$$
(X_{n,k+1})_p^{\wedge} \cong \tau_{\geq 1} \operatorname{fib}\Big((X_{n,k})_p^{\wedge} \to (K(A_{n,k}, n+1))_p^{\wedge}\Big).
$$

Moreover, there is an equivalence

$$
(K(A,n))_p^\wedge \cong \tau_{\geq 1}\Omega^\infty_*((\Sigma^n HA)_p^\wedge)
$$

for every abelian group object $A \in \mathcal{A}b(Disc(\mathcal{X}))$.

Proof. See Corollary [3.18](#page-27-0) and Proposition [3.20.](#page-27-1)

The above proposition, together with Theorem [1.7](#page-5-1) about the Postnikov tower, allows us to compute the p-completion of nilpotent sheaves by reducing to the much easier case of the p-completion of sheaves of spectra, which is just given by the *p*-adic limit $E \mapsto E_p^{\wedge} \cong \lim_k E/p^k$. This computational tool will power almost all of our results.

Outline

We will start with the construction of and some basic results about the stable p-completion functor on a stable ∞ -category in Section [2.](#page-9-0) We will then construct the p-adic t-structure on a stable ∞ -category, which is a t-structure which behaves exceptionally well with respect to p -completion. In particular, we will show that this t-structure admits an analog of the fundamental short exact sequence for the (stable) p-completion of spectra in Lemma [2.29.](#page-18-0)

In Section [3,](#page-20-0) we will first construct the unstable p -completion functor on an arbitrary presentable ∞ -category X, and then show that if X is moreover an ∞-topos, then this functor is very well-behaved. In particular, we prove our fundamental computational result, that we can calculate the p-completion of a nilpotent sheaf by reducing to its Postnikov tower; and then to the much easier case of Eilenberg MacLane spaces, see Theorem [1.7](#page-5-1) and Proposition [1.8.](#page-6-0)

In order to show that there is a short exact sequence as in Theorem [1.2,](#page-3-1) we will use the following diagram of right adjoints:

$$
\mathcal{P}(W) \longleftrightarrow_{\iota_{\Sigma}} \mathcal{P}_{\Sigma}(W) \xrightarrow{\cong} \text{Shv}_{\text{prozar}}(\text{ProZar}(\text{Sm}_{k}))
$$

$$
\downarrow_{\iota_{*}} \downarrow_{\iota_{*}} \text{Spc}(k) \xrightarrow{\iota_{\text{al}}} \text{Shv}_{\text{nis}}(\text{Sm}_{k}) \xrightarrow{\iota_{\text{nis}}} \text{Shv}_{\text{zar}}(\text{Sm}_{k}).
$$

First, we will show that there is a short exact sequence for objects in $\mathcal{P}(W)$ in Section [4.1,](#page-30-1) by using the classical short exact sequence on each level. Then, we will show in Section [4.2](#page-34-0) that this also gives short exact sequences on the nonabelian derived category $\mathcal{P}_{\Sigma}(W)$ for suitable W. We will then show in Section [4.3](#page-38-0) that if we have an embedding of ∞ -topoi ν^* : $\mathcal{X} \rightleftarrows \mathcal{P}_{\Sigma}(W)$: $\nu_*,$ then (at least in good cases), we also get a short exact sequence for objects in \mathcal{X} . An example of such an embedding of ∞ -topoi is the embedding of the Zariski topos into the pro-Zariski topos, constructed in Appendix [B.](#page-86-0) Thus, we get a short exact sequence for (certain) objects in $\text{Shv}_{\text{zar}}(\text{Sm}_k)$. Then, in Section [5,](#page-53-0) we will show that the sequence on the Zariski topos actually induces a sequence for objects in the Nisnevich topos, and then, finally, for nilpotent motivic spaces.

Note that in $\text{Shv}_{\text{zar}}(\text{Sm}_k)$, the short exact sequence only exists for a nilpotent Zariski sheaf X if the following technical condition is satisfied: $(\mathbb{L}_1(\pi_n\nu^*X))/\!/\!p$ must be classical (i.e. in the essential image of ν^*). Therefore, we will spend some time in Section [4.5](#page-48-0) to find a geometric condition that will always imply this technical statement: Gersten injectivity of $\pi_n(X)/p^k$, see Definition [4.60.](#page-49-0) If X is a motivic space, then we will deduce Gersten injectivity of $\pi_n(X)/p^k$ from the Gabber presentation lemma in Section [5.](#page-53-0)

In the remainder of Section [5](#page-53-0) we will compare the various different notions of p-completion (we can p-complete as a (connected) motivic space, as a Nisnevich sheaf or as a Zariski sheaf), see Proposition [1.5.](#page-5-0)

Notation

We will write An for the ∞ -category of anima/homotopy types/spaces, and Sp for the stable ∞ -category of spectra. More generally, if $\mathcal V$ is a presentable ∞ -category, we write Sp(V) for the stabilization of V.

Conventions

We will adhere to the following derived convention:

If D and E are stable ∞ -categories equipped with t-structures and $F: \mathcal{D} \to \mathcal{E}$ is an exact functor, we will also write F for the composition

$$
\mathcal{D}^{\heartsuit} \hookrightarrow \mathcal{D} \xrightarrow{F} \mathcal{E}.
$$

In contrast, we write F^{\heartsuit} for the functor

$$
\mathcal{D}^{\heartsuit} \hookrightarrow \mathcal{D} \xrightarrow{F} \mathcal{E} \xrightarrow{\pi_0} \mathcal{E}^{\heartsuit}.
$$

Note that in particular limits in \mathcal{D}^{\heartsuit} are calculated as $\lim_{I} {\mathcal{O}}(-) = \pi_0(\lim_{I} (-)),$ and similar for colimits. To avoid awkward notation, if $f: X \to Y \in \mathcal{D}^{\heartsuit}$ is a morphism, we will write $\ker(f)$ for the kernel of f in the abelian category \mathcal{D}^{\heartsuit} (instead of e.g. fib^{$\heartsuit(f)$}), whereas fib(f) refers to the fiber of f in the stable ∞ -category \mathcal{D} , and similar for coker(f) and cofib(f). If $n \in \mathbb{Z}$ is an integer, then *n* induces an endomorphism $n: X \to X$. We will write $X/n \coloneqq \operatorname{coker}(X \xrightarrow{n} X) \in \mathcal{D}^{\heartsuit}$ and $X/\!\!/n \coloneqq \operatorname{cofib}\left(X \xrightarrow{n} X\right) \in \mathcal{D}$.

Moreover, suppose that X and Y are ∞ -topoi, and that $F: \mathcal{X} \to \mathcal{Y}$ is a functor that respects *n*-truncated objects for every $n \geq 0$ and finite limits (e.g. the left adjoint or the right adjoint of a geometric morphism). Then F induces a functor on the stabilizations $Sp(\mathcal{X}) \to Sp(\mathcal{Y})$, which we also denote by F. Note that there is a standard t-structure on $Sp(\mathcal{X})$, and an equivalence $\mathcal{A}b(\text{Disc}(\mathcal{X})) \cong \text{Sp}(\mathcal{X})^{\heartsuit}$, where the left-hand side denotes the abelian group objects in the underlying 1-topos of discrete objects in $\mathcal X$. Using this equivalence, we will identify the homotopy object functors π_n with functors

$$
\pi_n\colon \mathcal{X}\to \mathrm{Sp}(\mathcal{X})^\heartsuit
$$

for $n \geq 2$. Since F commutes with finite products, it also induces a functor

$$
\mathcal{A}b(\text{Disc}(\mathcal{X})) \to \mathcal{A}b(\text{Disc}(\mathcal{Y})).
$$

Under the above identifications, we will refer to this functor as

$$
F^{\heartsuit} \colon \mathrm{Sp}(\mathcal{X})^{\heartsuit} \to \mathrm{Sp}(\mathcal{Y})^{\heartsuit}.
$$

Note that this coincides with the earlier use of the symbol F^{\heartsuit} from above. If F is the left adjoint of a geometric morphism, it induces a t-exact functor on the stabilization. Therefore, the functors F^{\heartsuit} and F (restricted to the heart) are equivalent, and we will usually omit the heart. However, if F is the right adjoint of a geometric morphism, this is usually not the case, and we will always write F^{\heartsuit} if we refer to the functor on the hearts. (Although, in many of our cases, the right adjoint will actually be t-exact.)

Let (C, τ) is a site and $\mathcal{X} := \text{Shv}_{\tau}(\mathcal{C})$ is the associated ∞ -topos. Suppose that $A \in \mathrm{Sp}(\mathcal{X})^{\heartsuit} \cong \mathrm{Shv}_{\tau}(\mathcal{C}, \mathrm{Sp})^{\heartsuit}$. For $U \in \mathcal{C}$, we will write $\Gamma(U, A) \in \mathrm{Sp}$ for the value of A at U (note that this spectrum knows about the τ -cohomology of A at U!). In contrast, $\Gamma^{\heartsuit}(U, A) = \pi_0(\Gamma(U, A))$ are the global sections of $A \in$ $\mathcal{A}b(\text{Disc}(\mathcal{X}))$. Note that in particular, the equivalence $\text{Sp}(\mathcal{X})^{\heartsuit} \to \mathcal{A}b(\text{Disc}(\mathcal{X}))$ is realized by the functor $A \mapsto \Gamma^{\heartsuit}(-, A)$.

Acknowledgement

I want to thank my advisor Tom Bachmann for suggesting the topic, for answering an uncountable amount of questions, and for his excellent comments on drafts of this paper. I also want to thank Lorenzo Mantovani, Luca Passolunghi and Timo Weiß for helpful discussions about parts of this paper.

2 Stable p-Completion

Let $\mathcal D$ be a presentable stable ∞ -category [\[Lur17,](#page-96-1) Definition 1.1.1.9]. Suppose that D is equipped with an accessible t-structure $(\mathcal{D}_{\geq 0}, \mathcal{D}_{\leq 0})$ [\[Lur17,](#page-96-1) Definition 1.2.1.4 and Definition 1.4.4.12]. Suppose moreover that this t-structure is right-separated (i.e. $\bigcap_{n} \mathcal{D}_{\leq n} = 0$). We will call this t-structure the *standard tstructure* (on D). Let $\mathcal{D}^{\heartsuit} := \mathcal{D}_{\geq 0} \cap \mathcal{D}_{\leq 0}$ be the heart of the standard t-structure. This is an abelian category, see [\[Lur17,](#page-96-1) Remark 1.2.1.12]. We write $\tau_{\leq n}$ and $\tau_{\geq n}$ for the truncation functors, and $\pi_n : \mathcal{D} \to \mathcal{D}^{\heartsuit}$ for the *n*-th homotopy object. We say that an object $E \in \mathcal{D}$ is k-connective (resp. k-coconnective or k-truncated) for some $k \in \mathbb{Z}$ if $E \in \mathcal{D}_{\geq k}$ (resp. $E \in \mathcal{D}_{\leq k}$).

2.1 Properties of the Stable p-Completion Functor

In this section, we define the stable *p*-completion functor and prove some basic properties. Most of the results are well-known, see for example [\[MNN17,](#page-97-0) Section 2.2] or [\[Bac21,](#page-96-2) Section 2.1].

Definition 2.1. Let $\left(\frac{-}{p}\right)$ be the endofunctor on \mathcal{D} given on objects by $E \mapsto$ $\mathrm{cofib}\left(E \xrightarrow{p} E\right).$

We say that a morphism $f: E \to F$ in D is a p-equivalence if $f/\!\!/p$ is an equivalence. We say that an object $E \in \mathcal{D}$ is *p-complete* if for all *p*-equivalences $F \to F'$ the induced map on mapping spaces $\text{Map}_{\mathcal{D}}(F', E) \to \text{Map}_{\mathcal{D}}(F, E)$ is an equivalence.

Write \mathcal{D}_p^{\wedge} for the subcategory of *p*-complete objects.

Remark 2.2. If D is equipped with a symmetric monoidal structure \otimes that is exact in each variable, then the endofunctor $\left(\frac{-}{p}\right)$ is equivalent to the functor $-\otimes$ (S/|p), where S is the unit of the symmetric monoidal structure. This follows immediately from the assumption that the tensor product is exact in each variable.

Lemma 2.3. *The class* S *of* p*-equivalences in* D *is strongly saturated and of small generation.*

Proof. Using [\[Lur09,](#page-96-3) Proposition 5.5.4.16], it suffices to show that $S = f^{-1}(S')$ for some colimit-preserving functor f and a strongly saturated class S' of small generation. This holds for $f = (-/p)$ and S' the collection of equivalences in D . S' is of small generation because it is the smallest saturated class of morphisms in \mathcal{D} , see [\[Lur09,](#page-96-3) Example 5.5.4.9], and therefore generated by the empty collection. \Box **Lemma 2.4.** The category \mathcal{D}_p^{\wedge} is presentable, and the inclusion $\mathcal{D}_p^{\wedge} \to \mathcal{D}$ has *a left adjoint* $\left($ − $\right)$ ^{\wedge}^{*n*} $p_{p}^{\wedge} : \mathcal{D} \to \mathcal{D}_{p}^{\wedge}$. In other words, $(-)_{p}^{\wedge}$ \int_{p}^{∞} *is a localization functor.*

Proof. This is an application of [\[Lur09,](#page-96-3) Proposition 5.5.4.15], using that the class S of p-equivalences in $\mathcal D$ is of small generation, see Lemma [2.3.](#page-9-2) \Box

This localization functor is called the *(stable)* p*-completion functor*. By abuse of notation, we will also write $(-)_{n}^{\wedge}$ $p \nightharpoonup p : \mathcal{D} \to \mathcal{D}$ for the composition of the localization functor with the inclusion. The p-completion functor has an easy description:

Lemma 2.5. *There is a natural isomorphism of functors* $(-)_{n}^{\wedge}$ $p^{\wedge} \cong \lim_{n} (-/\!\!/ p^n).$ *Proof.* Suppose that \mathcal{D} is equipped with a symmetric monoidal structure \otimes that is exact in each variable. Then this follows from the discussion before [\[MNN17,](#page-97-0) Proposition 2.23].

We also give a second proof, which does not require the existence of a stably symmetric monoidal structure: Let $L_p: \mathcal{D} \to \mathcal{D}$ be the functor given by $E \mapsto$ $\lim_{n} (E/p^{n})$. It suffices to show that $L_{p}(E)$ is p-complete for every E and that the canonical map $\alpha_E : E \to L_p(E)$ induced by the maps $E \to E/p^n$ is a p-equivalence.

Since the inclusion of p -complete objects is a right adjoint, it commutes with limits. In particular, in order to show that $\lim_{n} E/p^n$ is p-complete, it suffices to show that E/p^n is p-complete for all n.

First, let $f: X \to Y$ be a p-equivalence, i.e. $f/\!\!/p$ is an equivalence. For every n, there is a fiber sequence (in the stable category $\text{Fun}(\Delta^1, \mathcal{D}))$

$$
f/\!\!/p \to f/\!\!/p^n \to f/\!\!/p^{n-1}.
$$

By induction, we deduce that if f / p is an equivalence, so is $f / pⁿ$ for all n.

We now show that E/p^n is p-complete for all n. For this, let $f: X \to Y$ be a p-equivalence. We have the following chain of natural equivalences:

$$
\begin{aligned} \text{Map}_{\mathcal{D}}(f, E/\hspace{-0.12cm}/p^n) &\cong \text{Map}_{\mathcal{D}}\left(f, \text{fib}\Big(\Sigma E \xrightarrow{p^n} \Sigma E\Big)\right) \\ &\cong \text{fib}\Big(\text{Map}_{\mathcal{D}}(f, \Sigma E) \xrightarrow{p^n} \text{Map}_{\mathcal{D}}(f, \Sigma E)\Big) \\ &\cong \text{Map}_{\mathcal{D}}\left(f/\hspace{-0.12cm}/p^n, \Sigma E\right). \end{aligned}
$$

Here, we use that the mapping space functor is left exact in both variables, and that $\text{cofib}(g) = \text{fib}(\Sigma g)$ for every morphism g in a stable category. Thus, since f/p^n is an equivalence by the above, we conclude that $\text{Map}_{\mathcal{D}}(f, E/p^n)$ is an equivalence. In other words, E/p^n is p-complete.

Thus, we are left to show that for every E, $\alpha_E/p : E/p \to (\lim_n E/p^n)/\!/p$ is an equivalence. Indeed, we can write

$$
(\lim_{n} E/p^{n})/p \cong \lim_{n} ((E/p^{n})/p)
$$

$$
\cong \lim_{n} ((E/p)/p^{n})
$$

$$
\cong \lim_{n} (E/p \oplus \Sigma E/p)
$$

$$
\cong E/p.
$$

The first equivalence holds because $\mathcal D$ is stable, and thus the cofiber $(-/\!\!/p)$ is also a (suspension of) a limit, and limits commute with limits. The last equality holds, because in the limit, the transition maps on the left part are the identity, □ and are multiplication by p on the right part.

From now on we will use the equivalence from Lemma [2.5](#page-10-0) without reference.

Lemma 2.6. Let $f: E \to F$ be a morphism in \mathcal{D} . The following are equivalent:

- *(1)* f *is a* p*-equivalence,*
- (2) (f) ^{\wedge}ⁿ \int_{p}^{∞} *is an equivalence,*
- (3) Map_D (f, T) *is an equivalence of anima for every* $T \in \mathcal{D}_p^{\wedge}$.

In particular, for any object E *the unit* $E \to E_p^{\wedge}$ *is a p-equivalence, and* E *is* p-complete if and only if $E \cong E_p^{\wedge}$.

Proof. This follows immediately from the fact that $(-)_{n}^{\wedge}$ \int_{p}^{∞} is a localization functor, and that the class of p-equivalences is strongly saturated by Lemma [2.3.](#page-9-2) See [\[Lur09,](#page-96-3) Proposition 5.5.4.2 and Proposition 5.5.4.15 (4)]. \Box

Lemma 2.7. Let $E \in \mathcal{D}$ be k-truncated. Then E_p^{\wedge} is $(k+1)$ -truncated.

Proof. For each *n*, we see that $E/p^n = \text{cofib}\left(E \xrightarrow{p^n} E\right) \cong \text{Stib}\left(E \xrightarrow{p^n} E\right)$. Since $\mathcal{D}_{\leq k}$ is stable under limits (see [\[Lur17,](#page-96-1) Corollary 1.2.1.6]), we conclude that $E/\overline{p}^n \in \mathcal{D}_{\leq k+1}$. By the same corollary we now get that $E_p^{\wedge} = \lim_n (E/p^n)$ is $(k + 1)$ -truncated. П

Definition 2.8. Let A be an abelian category, and let $A \in \mathcal{A}$. We say that A is *uniquely* p-divisible, if $A \xrightarrow{p} A$ is an isomorphism. Similarly, we say that A is $p\text{-}divisible$, if $\text{coker}(A \xrightarrow{p} A) = 0$.

Lemma 2.9. Let $f: F \to E$ be a p-equivalence in D such that F is k-connective *for some k. Then* $\pi_n E$ *is uniquely p-divisible for all* $n < k$ *.*

Proof. Since f is a p-equivalence, it induces an equivalence $F/\!\!/p \rightarrow E/\!\!/p$. We have a cofiber sequence $E \stackrel{p}{\to} E \to E/p$, and thus a cofiber sequence $E \stackrel{p}{\to} E \to$ F/p . This induces a long exact sequence on homotopy objects, which gives us

$$
\pi_{i+1}(F/\hspace{-0.15cm}/p) \to \pi_i(E) \xrightarrow{p} \pi_i(E) \to \pi_i(F/\hspace{-0.15cm}/p)
$$

for all i .

If $i \leq k-2$, then the outer terms vanish $\left(F/p\right)$ is k-connective). Thus, $\pi_i(E)$ is uniquely p-divisible.

If $i = k - 1$, we get

$$
\pi_k(E/\hspace{-0.1cm}/p) \xrightarrow{\alpha} \pi_{k-1}(E) \xrightarrow{p} \pi_{k-1}(E) \longrightarrow \pi_{k-1}(F/\hspace{-0.1cm}/p) = 0
$$

\n
$$
\cong \uparrow \qquad \qquad \uparrow
$$

\n
$$
\pi_k(F/\hspace{-0.1cm}/p) \longrightarrow \pi_{k-1}(F) = 0
$$

Commutativity of the square implies that $\alpha = 0$. Thus, also $\pi_{k-1}(E)$ is uniquely p-divisible. П

Lemma 2.10. *Let* $E \in \mathcal{D}$ *. Consider the following statements:*

- (1) $E_p^{\wedge} = 0$,
- *(2)* $\pi_n(E_p^{\wedge}) = 0$ *for all n*,
- *(3)* $\pi_n(E/p) = 0$ *for all n, and*
- *(4)* $\pi_n(E)$ *is uniquely p-divisible for all n.*

Then $(1) \implies (2) \implies (3) \iff (4)$ $(1) \implies (2) \implies (3) \iff (4)$. If $\mathcal{D}_{\geq \infty} := \bigcap_n \mathcal{D}_{\geq n}$ *is stable under sequential limits, then also* [\(2\)](#page-12-1) \iff [\(3\).](#page-12-2) If the *t*-structure is moreover left*separated, then also* $(1) \iff (2)$.

Note that if the t-structure is left-separated, then $D_{\geq \infty} = 0$ *is in particular stable under sequential limits (i.e. in this case, all four statements are equivalent).*

Proof. It is clear that $(1) \implies (2)$. Moreover, if the t-structure is left-separated, then it follows directly that $(2) \implies (1)$ (note that the t-structure is assumed to be right-separated).

We now show (2) \implies (3). Since $E \to E_p^{\wedge}$ is a *p*-equivalence, we have $E/p \cong E_p^{\wedge}/p$. In other words, there is a cofiber sequence

$$
E_p^{\wedge} \xrightarrow{p} E_p^{\wedge} \to E/\!\!/p.
$$

This induces the following long exact sequence on homotopy:

$$
\cdots \xrightarrow{p} \pi_n(E_p^{\wedge}) \longrightarrow \pi_n(E/p) \longrightarrow \pi_{n-1}(E_p^{\wedge}) \xrightarrow{p} \cdots.
$$

We conclude that $\pi_n(E/p) = 0$ for all *n*.

The equivalence (3) \iff (4) follows immediately from the long exact sequence associated to the fiber sequence $E \stackrel{p}{\to} E \to E/p$, similar to the proof of Lemma [2.9.](#page-11-0)

We are left to show that (4) \implies (2) if we assume that $\mathcal{D}_{\geq \infty}$ is stable under sequential limits. Using the cofiber sequence $E \stackrel{p^k}{\longrightarrow} E \to E/p^k$ we conclude as above that $\pi_n(E/p^k) = 0$ for all $k \geq 1$ and all n. In particular, since the standard t-structure is right-separated, we see that $E/p^k \in \mathcal{D}_{\geq \infty}$. But now we conclude that $E_p^{\wedge} = \lim_k E/p^k \in \mathcal{D}_{\geq \infty}$. This implies that $\pi_n(E_p^{\wedge}) \cong 0$ for all $\boldsymbol{n}.$ П

Corollary 2.11. Let $f: E \to F$ be a morphism in D. Consider the following *statements:*

- *(1)* f *is a* p*-equivalence,*
- (2) $(fib(f))_p^{\wedge} = 0,$
- (3) $(\text{cofib}(f))_p^{\wedge} = 0,$
- *(4)* fib(f) *has uniquely* p*-divisible homotopy objects,*
- *(5)* cofib(f) *has uniquely* p*-divisible homotopy objects.*

Then $(1) \iff (2) \iff (3) \implies (4) \iff (5)$. If moreover the standard *t*-structure is left-separated, then also $(4) \implies (3)$.

Proof. The equivalence of (1) and (2) follows from the fiber sequence fib(f) \rightarrow $E \to F$. That (2) implies (4) was proven in Lemma [2.10.](#page-12-4) If the t-structure is left-separated, then also (4) implies (2), again by Lemma [2.10.](#page-12-4) The other equivalences follow because $\mathcal D$ is stable and thus there is an equivalence cofib $(f) \cong$ Σ fib (f) . \Box

Lemma 2.12. *Suppose that* D *is equipped with a symmetric monoidal structure* ⊗ *that is exact in each variable.*

Let $f_i: E_i \to F_i$ be a p-equivalence in $\mathcal D$ for $i = 1, ..., n$. Then also Let $f_i: E_i \to F_i$ be a p-equivalence in \mathcal{D} for $i = 1, ..., n$. Then also $\bigotimes_i f_i: \bigotimes_i E_i \to \bigotimes_i F_i$ is a p-equivalence, *i.e.* p-completion is compatible with the symmetric monoidal structure *in the language of [\[Lur17,](#page-96-1) Definition 2.2.1.6].*

Proof. Note that by [\[Lur17,](#page-96-1) Example 2.2.1.7], it suffices to show that for every p-equivalence $f: E \to F$, and any object $Z \in \mathcal{D}$, also $f \otimes Z : E \otimes Z \to F \otimes Z$ is a p-equivalence. We thus have to show that $(f \otimes Z)/p$ is an equivalence. Since the symmetric monoidal structure is exact in each variable, we can write $(f \otimes Z)/\!\!/p \cong (f/\!\!/p) \otimes Z$, which is an equivalence by assumption. \Box

2.2 The p-adic t-structure

The aim of this section is to define a t-structure on $\mathcal D$ which is suited for p completions.

Definition 2.13. For $i \in \mathbb{Z}$, let $\mathcal{D}_{\geq i}^p$ be the full subcategory of \mathcal{D} given by objects

 ${E \in \mathcal{D} \mid \pi_j(E) \text{ uniquely } p\text{-divisible } \forall j < i-1, \pi_{i-1}(E) \text{ p-divisible }}.$

Let $\mathcal{D}_{\leq i}^p$ be the right orthogonal complement of $\mathcal{D}_{\geq i+1}^p$, i.e. $E \in \mathcal{D}_{\leq i}^p$ if and only if for all $F \in \mathcal{D}_{\geq i+1}^p$ the mapping space $\text{Map}(F, E)$ is contractible. We will show below in Lemma [2.16](#page-14-1) that this defines a t-structure $(\mathcal{D}_{\geq 0}^p, \mathcal{D}_{\leq 0}^p)$ on D. We will call this t-structure the *p-adic t-structure* on D. Denote by $\bar{\pi}_n^p$ the *n*-th homotopy object and by $\tau_{\leq n}^p$ and $\tau_{\geq n}^p$ the truncations of this t-structure. Moreover, denote by $\mathcal{D}^{p\heartsuit} := \mathcal{D}^{p\heartsuit}_{\geq 0} \cap \mathcal{D}^{p}_{\leq 0} \subset \mathcal{D}$ the heart.

Remark 2.14. Note that the *p*-adic t-structure $(\mathcal{D}_{\geq 0}^p, \mathcal{D}_{\leq 0}^p)$ depends on the tstructure $(\mathcal{D}_{\geq 0}, \mathcal{D}_{\leq 0})$. This is suppressed in our notation. Later, \mathcal{D} will be the stabilization of a presentable ∞ -category, which admits a canonical t-structure, so this slight abuse of notation will not be a problem.

In order to prove that the p -adic t-structure is a t-structure, we will need the following lemma:

Lemma 2.15. *Let* $E \in \mathcal{D}$ *. The following are equivalent:*

- *(1)* $E \in \mathcal{D}_{\geq 0}^p$,
- *(2)* $E/\hspace{0.1cm}/p^n$ ∈ $\mathcal{D}_{\geq 0}$ *for all n and*
- *(3)* E ∥ p ∈ $D_{>0}$ *.*

Proof. The fiber sequence $E \xrightarrow{p^n} E \to E/p^n$ yields the long exact sequence

$$
\cdots \to \pi_{k+1}(E/\hspace{-0.15cm}/p^n) \to \pi_k(E) \xrightarrow{p^n} \pi_k(E) \to \pi_k(E/\hspace{-0.15cm}/p^n) \to \cdots
$$

We conclude that $\pi_k(E/p^n) = 0$ for all $k < 0$ if and only if $\pi_k(E)$ is uniquely pⁿ-divisible for all $k < -1$ and $\pi_{-1}(E)$ is pⁿ-divisible. But being (uniquely) $pⁿ$ -divisible is the same as being (uniquely) p -divisible. Since the standard tstructure is right-separated by assumption, we see that $\pi_k(E/p^n) = 0$ for all $k < 0$ is equivalent to $E/p^n \in \mathcal{D}_{\geq 0}$. \Box

Lemma 2.16. *The pair* $(\mathcal{D}_{\geq 0}^p, \mathcal{D}_{\leq 0}^p)$ *from Definition [2.13](#page-13-1) defines an accessible t-structure on* D*.*

Proof. Using [\[Lur17,](#page-96-1) Proposition 1.4.4.11], it suffices to show that $\mathcal{D}_{\geq 0}^p$ is presentable and closed under colimits and extensions. Note that by Lemma [2.15,](#page-13-2) we see that $\mathcal{D}_{\geq 0}^p = \{ E \in \mathcal{D} \mid E \# p \in \mathcal{D}_{\geq 0} \}.$

We first show that $\mathcal{D}_{\geq 0}^p$ is presentable. Note that by assumption, the standard t-structure is accessible, i.e. $\mathcal{D}_{\geq 0}$ is presentable. Using Lemma [2.15,](#page-13-2) we see that there is a cartesian diagram of ∞ -categories

$$
\mathcal{D}_{\geq 0}^p \longrightarrow \mathcal{D}_{\geq 0} \\
\downarrow \qquad \qquad \downarrow \qquad \mathcal{D} \xrightarrow{(-)//p} \mathcal{D}.
$$

The inclusion $\mathcal{D}_{\geq 0} \hookrightarrow \mathcal{D}$ and the functor $\left(\frac{-}{\ell}\right)$ commute with colimits (by [\[Lur17,](#page-96-1) Corollary 1.2.1.6], and since colimits commute with colimits). By assumption, $\mathcal D$ and $\mathcal D_{\geq 0}$ are presentable. Thus, the limit of the above diagram can be computed in the ∞ -category of presentable ∞ -catgories $\mathcal{P}r^L$ (see [\[Lur09,](#page-96-3) Proposition 5.5.3.13]), and we conclude that $\mathcal{D}_{\geq 0}^p$ is presentable. In particular, we see that the functor $\mathcal{D}_{\geq 0}^p \hookrightarrow \mathcal{D}$ commutes with colimits, i.e. the subcategory $\mathcal{D}_{\geq 0}^p$ is closed under colimits.

We are left to show that $\mathcal{D}_{\geq 0}^p$ is closed under extensions. This follows immediately from the fact that $\mathcal{D}_{\geq 0}^{\leq}$ is closed under extensions (this is true for the connective part of any t-structure), and that $(-)//p: \mathcal{D} \to \mathcal{D}$ commutes with extensions (because it is an exact functor). \Box

Remark 2.17*.* We quickly explain why we made those choices. We will see in Lemma [2.20](#page-15-1) that the p-adic t-structure is not left-separated, with

$$
\bigcap_{n} \mathcal{D}_{\geq n}^{p} = \{ E \in \mathcal{D} \mid \pi_n(E) \text{ uniquely } p\text{-divisible for all } n \}.
$$

Note that this is exactly the kernel of the p-completion functor $(-)_{n}^{\wedge}$ $_p^{\prime}$, hence the left-seperation of this t-structure (i.e. the Verdier quotient $\mathcal{D}/\bigcap_n \hat{\mathcal{D}}_{\geq n}^p$) is given by \mathcal{D}_p^{\wedge} . There is another t-structure with the same property:

Let $\mathcal{C} := \{ E \in \mathcal{D} \mid \pi_j(E) \text{ uniquely } p\text{-divisible } \forall j < 0 \}.$ Then we could define a t-structure by declaring the −1-coconnective objects to be the right orthogonal complement of C , and the connective objects to be the left orthogonal complement of the -1 -coconnective objects. (Note that C itself cannot be the subcategory of connective objects of a t-structure since it is not closed under extensions). If $\mathcal{D} = \text{Sp}$ is the category of spectra (or more generally the stabilization of an ∞ -topos locally of homotopy dimension 0), then these two t-structures agree. But in general, this is not true: Let $\mathcal X$ be the ∞ -topos of étale sheaves (of anima) on the small étale site of Spec(Q). Let $\mu_{p^{\infty}}$ be the sheaf of p-power roots of unity, i.e. $\mu_{p^{\infty}}(\text{Spec}(k)) = \{x \in k \mid \exists n, x^{p^n} = 1\}$. The associated Eilenberg-MacLane spectrum $H\mu_{p^{\infty}}$ lies inside $Sp(X)_{\geq 1}^p$ (since $\mu_{p^{\infty}}$ is p-divisible), but is only 0-connective in this second t-structure. If one views $\mu_{p^{\infty}}$ as an étale version of the (ordinary) spectrum $H(\mathbb{Z}[p^{-1}]/\mathbb{Z})$, then one would expect this shift.

Definition 2.18. Let A be an abelian category. Let $A \in \mathcal{A}$. We say that A has *bounded* p-divisibility if for all p-divisible $B \in \mathcal{A}$ we have $\text{Map}(B, A) = 0$.

Lemma 2.19. *Let* $E \in \mathcal{D}$. *Then* $E \in \mathcal{D}_{\leq 0}^p$ *if and only if* $E = \tau_{\leq 0} E$, $E = E_p^{\wedge}$ and $\pi_0(E)$ has bounded p-divisibility.

Proof. Suppose first that $E \in \mathcal{D}_{\leq 0}^p$. Note that $\mathcal{D}_{\geq 1} \subseteq \mathcal{D}_{\geq 1}^p$ since the zero object $0 \in \mathcal{D}^{\heartsuit}$ is (uniquely) *p*-divisible. Thus, $\mathcal{D}_{\leq 0} \supseteq \mathcal{D}_{\leq 0}^p$. Hence, $E = \tau_{\leq 0} E$. In order to show that E is p-complete, it suffices to show that $\text{Map}(A, E) = 0$ for all A with $A_p^{\wedge} = 0$. So let $A_p^{\wedge} = 0$. Hence, by Lemma [2.10,](#page-12-4) $\pi_n(A)$ is uniquely p-divisible for all n. Thus, $A \in \mathcal{D}_{\geq 1}^p$. Thus, by definition of $\mathcal{D}_{\leq 0}^p$ we know that $\text{Map}(A, E) = 0$. For the bounded p-divisibility, suppose that \overline{B} is a p-divisible object of \mathcal{D}^{\heartsuit} . Then $B \in \mathcal{D}_{\geq 1}^p$. Hence, $\text{Map}(B, \pi_0(E)) \cong \text{Map}(B, E) = 0$, where we used that $E \in \mathcal{D}_{\leq 0}$ and thus $\pi_0(E) \cong \tau_{\geq 0}E$ in the first equivalence, and that $E \in \mathcal{D}_{\leq 0}^p$ in the second.

For the other direction, assume that $E = \tau \leq 0E$, $E = E_p^{\wedge}$ and that $\pi_0(E)$ has bounded p-divisiblity. Let $F \in \mathcal{D}_{\geq 1}^p$. We need to show that $\text{Map}(F, E) = 0$. But by assumption on F , $\tau_{\geq 0}F \to F$ is a *p*-equivalence (see e.g. Corollary [2.11\)](#page-12-5) and $\pi_0(F)$ is *p*-divisible. Thus,

$$
Map(F, E) \cong Map(\tau_{\geq 0} F, E)
$$

\n
$$
\cong Map(\pi_0(F), E)
$$

\n
$$
\cong Map(\pi_0(F), \pi_0(E)) = 0.
$$

The first equivalence holds because E is p -complete and the second exists because E is coconnective. The third follows because $\pi_0(F)$ is connective. The last equality holds because $\pi_0(E)$ has bounded *p*-divisibility and $F \in \mathcal{D}_{\geq 1}^p$.

Lemma 2.20. *We have*

$$
\bigcap_n \mathcal{D}^p_{\leq n} = 0
$$

and

$$
\bigcap_{n} \mathcal{D}_{\geq n}^{p} = \{ E \in \mathcal{D} \mid \pi_n(E) \text{ uniquely } p\text{-divisible for all } n \}.
$$

In particular, we have that $\pi_n^p(E) = 0$ *for all n if and only if* $\pi_n(E)$ *is uniquely* p*-divisible for all* n*.*

Proof. Note that $\mathcal{D}_{\leq n}^p \subset \mathcal{D}_{\leq n}$ by Lemma [2.19.](#page-15-0) Hence, $\bigcap_n \mathcal{D}_{\leq n}^p \subset \bigcap_n \mathcal{D}_{\leq n} = 0$ since $(\mathcal{D}_{\geq 0}, \mathcal{D}_{\leq 0})$ is right-separated. The second statement is clear since uniquely p -divisible abelian group objects are in particular p -divisible. For the last part, note that $\pi_n^p(E) = 0$ for all n if and only if E lives in the stable subcategory of D generated by $\bigcap_n \mathcal{D}_{\geq n}^p$ and $\bigcap_n \mathcal{D}_{\leq n}^p$. But by the above, the latter is zero, and the former consists of exactly those spectra which have uniquely p-divisible homotopy objects. \Box

Corollary 2.21. *Suppose that the standard t-structure is left-separated. Let* $f: E \to F$ *be a morphism in* D . Then f *is a p-equivalence if and only if* $\pi_n^p(E) \to \pi_n^p(F)$ *is an isomorphism for all n.*

Proof. From Corollary [2.11](#page-12-5) we see that f is a p-equivalence if and only if fib(f) has uniquely p-divisible homotopy objects. Using Lemma [2.20,](#page-15-1) this is equivalent to fib $(f) \in \bigcap_n \mathcal{D}_{\geq n}^p$. The long exact sequence now implies that this is the case if and only if $\pi_n^p(\overline{f})$ is an equivalence for all n. □

Definition 2.22. For every $n \in \mathbb{Z}$ define a functor $\mathbb{L}_n : \mathcal{D}^{\heartsuit} \to \mathcal{D}^{p\heartsuit}$ via $A \mapsto$ $\pi_n^p(A)$, i.e. the restriction of π_n^p to the heart.

Definition 2.23. Let A be an abelian category. Let $A \in \mathcal{A}$, and $n \in \mathbb{N}$. Denote by $A[p^n] := \ker(A \xrightarrow{p^n} A)$ the p^n -torsion of A.

Lemma 2.24. Let $A \in \mathcal{D}_{\leq 0}$. Then $\pi_1(A_p^{\wedge}) \cong \lim_{n \to \infty}^{\infty} \pi_0(A)[p^n]$ is of bounded p*-divisibility. Here, the transition maps in the limit are multiplication by* p*.*

Proof. Let $E := A_p^{\wedge} \cong \lim_n A/p^n$. Note that A/p^n is 1-truncated, with $\pi_1(A/p^n) \cong \pi_0(A)[p^n]$. (This can be seen from the long exact sequence associated to the fiber sequence $A \xrightarrow{p^n} A \to A/p^n$.) Since $\tau_{\geq 1}$ is a right adjoint, it commutes with limits. We now compute

$$
\pi_1(E) \cong \pi_1(\tau_{\geq 1}E)
$$

\n
$$
\cong \pi_1(\lim_n \tau_{\geq 1}(A/\hspace{-0.1cm}/p^n))
$$

\n
$$
\cong \pi_1(\lim_n \Sigma(\pi_0(A)[p^n]))
$$

\n
$$
\cong \pi_0(\lim_n \pi_0(A)[p^n])
$$

\n
$$
= \lim_n \pi_0(A)[p^n].
$$

In order to show that $\pi_1(E)$ has bounded p-divisibility, let $B \in \mathcal{D}^{\heartsuit}$ be pdivisible. We need to show that $\text{Map}(B, \pi_1(E)) = 0$. By pulling out the limit (note that $\lim_{n} \mathcal{O}_{n}$ is the categorical limit in \mathcal{D}^{\heartsuit}) we get

$$
\operatorname{Map}_{D^{\heartsuit}}(B, \pi_1(E)) \cong \lim_{n} \operatorname{Map}_{D^{\heartsuit}}(B, \pi_0(A)[p^n]).
$$

Thus, it suffices to show that for every n we have $\text{Map}(B, \pi_0(A)[p^n]) = 0$. So fix $n \geq 1$ and a map $\phi: B \to \pi_0(A)[p^n]$. Since $p^n: B \to B$ is an epimorphism (B is p-divisible), in order to show that $\phi = 0$, it suffices show that $\phi \circ p^n = 0$. But $\phi \circ p^n = p^n \circ \phi$. Now we conclude by noting that the endomorphism $p^n: \pi_0(A)[p^n] \to \pi_0(A)[p^n]$ is zero. \Box

Lemma 2.25. Let $A \in \mathcal{D}^{\heartsuit}$. If A is uniquely p-divisible, then $\mathbb{L}_n A = 0$ for all n*.*

Proof. If A is uniquely p-divisible, then $A \in \mathcal{D}_{\geq k}^p$ for all k. Hence, $\mathbb{L}_n A =$ $\pi_n^p(A) = 0$ for all *n*.

Proposition 2.26. *Let* $E \in \mathcal{D}$ *. We have the following:*

- (1) If $E \in \mathcal{D}_{\leq 0}$, then $E_p^{\wedge} \in \mathcal{D}_{\leq 1}^p$,
- (2) if $E/p \in \mathcal{D}_{\geq 0}$, then $E_p^{\wedge} \in \mathcal{D}_{\geq 0}^p$,
- (3) if $E \in \mathcal{D}_{\geq 0}$, then $E_p^{\wedge} \in \mathcal{D}_{\geq 0}^p$, and
- (4) if $E \in \mathcal{D}^{\heartsuit}$, then $E_p^{\wedge} \in \mathcal{D}_{\geq 0}^p \cap \mathcal{D}_{\leq 1}^p$.

In particular, if $E \in \mathcal{D}^{\heartsuit}$ *, then* $\mathbb{L}_n E = 0$ *for all* $n \neq 0, 1$ *.*

Proof. We start with (1): We have seen in Lemma [2.7](#page-11-1) that $\pi_k(E_p^{\wedge}) = 0$ for all $k > 1$. E_p^{\wedge} is p-complete by definition. By Lemma [2.24,](#page-16-2) we get that $\pi_1(E_p^{\wedge})$ is of bounded *p*-divisibility. Thus, $E_p^{\wedge} \in \mathcal{D}_{\leq 1}^p$ by Lemma [2.19.](#page-15-0)

We now prove (2): By Lemma [2.15](#page-13-2) we see that $E_p^{\wedge} \in \mathcal{D}_{\geq 0}^p$ if and only if $E_p^{\wedge}/\hspace{-3pt}/p \in \mathcal{D}_{\geq 0}$. But $E_p^{\wedge}/\hspace{-3pt}/p \cong E/\hspace{-3pt}/p \in \mathcal{D}_{\geq 0}$.

Part (3) follows from (2), noting that $E \in \mathcal{D}_{\geq 0}$ implies that $E/\hspace{-.1cm}/p \in \mathcal{D}_{\geq 0}$, since $\mathcal{D}_{\geq 0}$ is stable under colimits, see [\[Lur17,](#page-96-1) Corollary 1.2.1.6].

Part (4) is an immediate consequence of (1) and (3). The last statement follows immediately from (4): Corollary [2.21](#page-16-1) implies that $\mathbb{L}_n E = \pi_n^p(E) \cong$ $\pi_n^p(E_p^{\wedge})$, thus $\mathbb{L}_n(E) = 0$ for all $n \neq 0, 1$. This proves the lemma. \Box

Lemma 2.27. Let $A \in \mathcal{D}^{\heartsuit}$. Then there is a canonical fiber sequence

$$
\Sigma \mathbb{L}_1 A \to A_p^{\wedge} \to \mathbb{L}_0 A.
$$

Proof. Proposition [2.26](#page-17-0) shows that $A_p^{\wedge} \in \mathcal{D}_{\geq 0}^p \cap \mathcal{D}_{\leq 1}^p$. Thus, using Corollary [2.21,](#page-16-1) we conclude $\mathbb{L}_0 A \cong \pi_0^p(A_p^{\wedge}) \cong \pi_{\leq 0}^p(A_p^{\wedge})$. Similar, we see $\Sigma \mathbb{L}_1(A) \cong \Sigma \pi_1^p(A_p^{\wedge}) \cong$ $\tau_{\geq 1}^p(A_p^{\wedge})$. The lemma now immediately follows since we have a canonical fiber sequence

$$
\tau_{\geq 1}^p(A_p^{\wedge}) \to A_p^{\wedge} \to \tau_{\leq 0}^p(A_p^{\wedge}).
$$

 \Box

Lemma 2.28. *Let* $A \in \mathcal{D}^{\heartsuit}$. *Then* $(\mathbb{L}_1 A)/p \in \mathcal{D}^{\heartsuit}$ *and there is a short exact sequence in* \mathcal{D}^{\heartsuit}

$$
0 \to (\mathbb{L}_1 A)/\!\!/p \to A[p] \to \pi_1((\mathbb{L}_0 A)/\!\!/p) \to 0,
$$

coming from the fiber sequence of Lemma [2.27.](#page-17-1)

Proof. Consider the fiber sequence

$$
\Sigma \mathbb{L}_1 A \to A_p^{\wedge} \to \mathbb{L}_0 A
$$

from Lemma [2.27.](#page-17-1) Applying $\left(\frac{-}{p}\right)$ yields the fiber sequence

$$
\Sigma(\mathbb{L}_1 A)/\!\!/p \to A_p^\wedge/\!\!/p \to (\mathbb{L}_0 A)/\!\!/p.
$$

Note that $A_p^{\wedge}/p \cong A/p$ is concentrated in degrees 0 and 1. Using Lemma [2.15](#page-13-2) we know that $\mathbb{L}_i A/p \in \mathcal{D}_{\geq 0}$ for $i = 0, 1$. Since $\mathbb{L}_0 A \in \mathcal{D}_{\leq 0}^p \subset \mathcal{D}_{\leq 0}$, we conclude that $(\mathbb{L}_0 A)/p \in \mathcal{D}_{\leq 1}$. Now the long exact sequence in homotopy associated to the above fiber sequence yields that $\pi_i((\mathbb{L}_1 A)/\!\!/p) = 0$ for all $i \geq 1$. We therefore conclude that $(\mathbb{L}_1 A)/p \in \mathcal{D}^{\heartsuit}$. The long exact sequence also gives us

$$
0 \to \pi_1(\Sigma(\mathbb{L}_1 A)/\!\!/p) \to \pi_1(A/\!\!/p) \to \pi_1((\mathbb{L}_0 A)/\!\!/p) \to 0.
$$

We conclude by noting that $\pi_1(\Sigma(\mathbb{L}_1 A)/\!\!/p) = \pi_0((\mathbb{L}_1 A)/\!\!/p) = (\mathbb{L}_1 A)/\!\!/p$ and that $\pi_1(A/p) \cong A[p].$ П

Lemma 2.29. *Let* $E \in \mathcal{D}$ *and* $n \in \mathbb{Z}$ *. Then there is a short exact sequence*

$$
0 \to \mathbb{L}_0 \pi_n(E) \to \pi_n^p(E) \to \mathbb{L}_1 \pi_{n-1}(E) \to 0
$$

natural in E*.*

Proof. Note that for any spectrum F we have the following: If F is k -connective, then $\pi_n^p(F) = 0$ for all $n < k$ ($\mathcal{D}_{\geq k} \subseteq \mathcal{D}_{\geq k}^p$), and if F is k-truncated, then $\pi_n^p(F) = 0$ for all $n > k + 1$ (Lemma [2.7\)](#page-11-1).

Consider the fiber sequence

$$
\tau_{\geq n}E \to E \to \tau_{\leq n-1}E.
$$

This gives the following long exact sequence in $\mathcal{D}^{p\heartsuit}$:

$$
\pi_{n+1}^p(\tau_{\leq n-1}E)\to \pi_n^p(\tau_{\geq n}E)\to \pi_n^p(E)\to \pi_n^p(\tau_{\leq n-1}E)\to \pi_{n-1}^p(\tau_{\geq n}E).
$$

Since $\tau_{\leq n-1}E$ is $n-1$ -truncated, we get that $\pi_{n+1}^p(\tau_{\leq n-1}E)=0$. Similarly, since $\tau_{\geq n} E$ is *n*-connective, we get that $\pi_{n-1}^p(\tau_{\geq n} E) = 0$. Thus, we arrive at a short exact sequence

$$
0\to \pi_n^p(\tau_{\geq n}E)\to \pi_n^p(E)\to \pi_n^p(\tau_{\leq n-1}E)\to 0.
$$

Now consider the fiber sequence

$$
\Sigma^{n-1}\pi_{n-1}E \to \tau_{\leq n-1}E \to \tau_{\leq n-2}E,
$$

which induces the following long exact sequence in $\mathcal{D}^{p\heartsuit}$:

$$
\pi_{n+1}^p(\tau_{\leq n-2}E) \to \pi_n^p(\Sigma^{n-1}\pi_{n-1}E) \to \pi_n^p(\tau_{\leq n-1}E) \to \pi_n^p(\tau_{\leq n-2}E).
$$

Again, since $\tau \lt_{n-2}E$ is $n-2$ -truncated, the outer terms vanish, and we are left with an isomorphism $\pi_n^p(\tau_{\leq n-1}E) \cong \pi_n^p(\Sigma^{n-1}\pi_{n-1}E) \cong \pi_1^p(\pi_{n-1}E) =$ $\mathbb{L}_1(\pi_{n-1}E)$.

Similarly, we can consider the fiber sequence

$$
\tau_{\geq n+1}E \to \tau_{\geq n}E \to \Sigma^n \pi_n(E),
$$

which induces the following long exact sequence in $\mathcal{D}^{p\heartsuit}$:

$$
\pi_n^p(\tau_{\geq n+1}E)\to \pi_n^p(\tau_{\geq n}E)\to \pi_n^p(\Sigma^n\pi_n(E))\to \pi_{n-1}^p(\tau_{\geq n+1}E).
$$

Now $\tau_{\geq n+1}E$ is $n+1$ -connective, so the outer terms vanish, and we are left with and isomorphism $\pi_n^p(\tau_{\geq n}E) \cong \pi_n^p(\Sigma^n \pi_n(E)) = \pi_0^p(\pi_n(E)) = \mathbb{L}_0(\pi_n(E)).$

Plugging those isomorphisms into the short exact sequence from the beginning, we get a short exact sequence

$$
0 \to \mathbb{L}_0 \pi_n(E) \to \pi_n^p(E) \to \mathbb{L}_1 \pi_{n-1}(E) \to 0.
$$

Corollary 2.30. *Let* $E \in \mathcal{D}$ *and* $n \in \mathbb{Z}$ *. We have equivalences* $\pi_n^p(E) \cong$ $\pi_n^p(\tau_{\geq k}E) \cong \pi_n^p(\tau_{\leq l}E)$ for all $k \leq n-1$ and all $l \geq n$.

Proof. This follows immediately from Lemma [2.29.](#page-18-0)

Corollary 2.31. *Suppose that the standard t-structure is left-separated. Let* $f: E \to F$ *be a map in* \mathcal{D} *. If* f *induces isomorphisms* $\mathbb{L}_i \pi_n(E) \to \mathbb{L}_i \pi_n(F)$ for *all* n and $i = 0, 1$, then f is a p-equivalence.

Proof. Combine Lemma [2.29](#page-18-0) and Corollary [2.21.](#page-16-1)

2.3 Comparison Results

In this section, we will compare the p-adic t-structures on different stable categories. For this suppose that $\mathcal D$ and $\mathcal E$ are two presentable stable categories, satisfying the assumptions from the beginning of the section, i.e. they both come equipped with accessible right-separated t-structures ($\mathcal{D}_{\geq 0}, \mathcal{D}_{\leq 0}$) and $(\mathcal{E}_{\geq 0}, \mathcal{E}_{\leq 0})$. We again call those t-structures the standard t-structures, in contrast to the p-adic t-structures.

Lemma 2.32. Let $F: \mathcal{D} \to \mathcal{E}$ be an exact functor. Then F preserves p*equivalences.*

If moreover F *commutes with sequential limits (e.g. if* F *is a right adjoint functor), then* F *commutes with* p*-completion, and in particular preserves* p*complete objects.*

 \Box

 \Box

 \Box

Proof. Since F is exact, it commutes with $\cofb\left(-\frac{p}{\rightarrow}\right)$. Thus, since F sends equivalences to equivalences, it follows that F preserves p-equivalences.

Suppose now that F commutes with sequential limits. Let $X \in \mathcal{D}$. Then we compute $(FX)_n^{\wedge}$ $\frac{\wedge}{p}$ ≅ $\lim_{n} (FX)/\!\!/p^n$ ≅ $\lim_{n} F(X/\!\!/p^n)$ ≅ $F(\lim_{n} X/\!\!/p^n)$ ≅ $F(X_p^{\wedge}).$

Lemma 2.33. Let $F: \mathcal{D} \to \mathcal{E}$ be an exact conservative functor. Then F detects p-equivalences, *i.e.* for every $f: E \to F$ in D the following holds: If $F(f)$ is a p*-equivalence, then* f *is a* p*-equivalence.*

Proof. Let $f: E \to F$ in D a morphism such that $F(f)$ is a p-equivalence, i.e. $F(f)/\!/p$ is an equivalence. Note that since F is exact, we have $F(f)/\!/p$ ≅ $F(f / p)$. Now since F is conservative, we conclude that f / p is an equivalence, i.e. f is a p -equivalence. \Box

Lemma 2.34. *Let* $L: \mathcal{D} \to \mathcal{E}$ *be an exact functor which is right t-exact for the standard t-structures. Then* L *is right t-exact for the* p*-adic t-structures. If* L *has a right adjoint* R*, then* R *is left t-exact for the* p*-adic t-structures.*

Proof. Suppose that $X \in \mathcal{D}_{\geq 0}^p$. Lemma [2.15](#page-13-2) implies that $X/p \in \mathcal{D}_{\geq 0}$. Since L is exact and right t-exact for the standard t-structures, we also have $LX/p \cong$ $L(X/\hspace{-3pt}/ p) \in \mathcal{E}_{\geq 0}$. But this now implies that $LX \in \mathcal{E}^p_{\geq 0}$, again by Lemma [2.15.](#page-13-2)

The last statement is a general fact about t-structures, see e.g. [\[BBD82,](#page-96-4) Proposition 1.3.17 (iii)] (note that in the reference, cohomological indexing is used). \Box

Lemma 2.35. Let $L: \mathcal{D} \to \mathcal{E}$ be an exact conservative functor which is t-exact *for the standard t-structures. Suppose that* $X \in \mathcal{D}$ *such that* $LX \in \mathcal{E}_{\geq n}^p$ *for some n*. *Then* $X \in \mathcal{D}_{\geq n}^p$.

Proof. Suppose $X \in \mathcal{D}$ such that $LX \in \mathcal{E}_{\geq n}^p$ for some n. Lemma [2.15](#page-13-2) implies that $L(X/p) \cong LX/p \in \mathcal{E}_{\geq n}$. Using the same lemma, it suffices to show that $X/p \in \mathcal{D}_{\geq n}$. Therefore, the lemma follows from the following more general statement, that any $Y \in \mathcal{D}$ with $LY \in \mathcal{E}_{\geq n}$ already lives in $\mathcal{D}_{\geq n}$. So suppose that we have such a $Y \in \mathcal{D}$. Then the map $\tau_{\geq n}LY \to LY$ is an equivalence. By t-exactness of L for the standard t-structures, L commutes with connective covers, i.e. $L\tau_{\geq n}Y \cong \tau_{\geq n}LY$. Conservativity of L implies that $\tau_{\geq n}Y \to Y$ is an equivalence, i.e. $Y \in \mathcal{D}_{\geq n}$. \Box

3 Unstable p-Completion in ∞ -Topoi

Let X be a presentable ∞ -category [\[Lur09,](#page-96-3) Definition 5.5.0.1]. We will have to deal with pointed and unpointed objects. Write \mathcal{X}_{*} for the category of pointed objects, i.e. the category \mathcal{X}_{*} of objects under the terminal object $*$. The forgetful functor $\mathcal{X}_* \to \mathcal{X}$ has a left adjoint $(-)_+ : \mathcal{X} \to \mathcal{X}_*$ given on objects by the formula $X \mapsto X \sqcup *$.

Let $Sp(\mathcal{X})$ be the stabilization of X. See [\[Lur17,](#page-96-1) Section 1.4.2] for a discussion of the stabilization of ∞ -categories. We have an adjoint pair of functors

$$
\Sigma^\infty\colon \mathcal{X}_* \rightleftarrows \mathrm{Sp}(\mathcal{X})\colon \Omega^\infty_*.
$$

Write $\Sigma^{\infty}_+ : \mathcal{X} \to \text{Sp}(\mathcal{X})$ for the composition $\Sigma^{\infty} \circ (-)_+$. Hence, this is left adjoint to Ω^{∞} : Sp(\mathcal{X}) $\to \mathcal{X}$, which forgets about the basepoint of the infinite loop space.

There is an accessible right-separated t-structure $(Sp(\mathcal{X})_{\geq 0}, Sp(\mathcal{X})_{\leq 0})$ on $\text{Sp}(\mathcal{X})$, given by $\text{Sp}(\mathcal{X})_{\leq -1} = \{ E \in \text{Sp}(\mathcal{X}) \mid \Omega_*^{\infty} E \cong * \},\$ see Lemma [A.5.](#page-78-0) We will call this t-structure the *standard t-structure* on $Sp(X)$. Therefore we can apply the results from Section [2.](#page-9-0)

Remark 3.1. Later in this section, we will only work in the situation where X is an ∞ -topos. But since the category of motivic spaces is not an ∞ -topos, we have to make some definitions in this more general setting.

Later, we will reduce statements about the p -completion of motivic spaces to the easier case of p-completion in suitable ∞ -topoi.

3.1 Definition of the p-Completion Functor

In this section, $\mathcal X$ will always be a presentable ∞ -category. We will define the unstable p-completion functor on the category \mathcal{X} . As in the stable case, the p -completion functor is a localization along a suitable class of p -equivalences:

Definition 3.2. Let $q: X \to Y$ be a morphism in \mathcal{X}_* . We say that q is a *p*-equivalence (of pointed objects) if Σ^{∞} g is a p-equivalence.

Similarly, if $g: X \to Y$ is a morphism in X, we say that g is a p-equivalence (of unpointed objects) if $g_+ : X_+ \to Y_+$ is a p-equivalence of pointed objects, i.e. if $\Sigma^{\infty}_+ g$ is a *p*-equivalence.

As the next lemma shows, the distinction between pointed and unpointed p-equivalences does not matter:

Lemma 3.3. Let $g: X \to Y$ be a morphism in \mathcal{X}_* . Then g is a p-equivalence *of pointed objects if and only if* g *is a* p*-equivalence of the underlying unpointed objects.*

Proof. We need to prove that $\Sigma^{\infty} g$ is a *p*-equivalence if and only if $\Sigma^{\infty} g$ is a p-equivalence.

Note that we have natural cofiber sequences in \mathcal{X}_* for every $X \in \mathcal{X}_*$: First we have the inclusion of the basepoint $\eta_X : * \to X$. This induces a morphism $\eta_{X,+} : *_{+} \to X_{+}$. Second, we have the counit $c_X : X_{+} \to X$. Both constructions are natural in \mathcal{X}_* . We claim that $*_{+} \xrightarrow{\eta_{X,+}} X_{+} \xrightarrow{c_X} X$ is a cofiber sequence. Consider the following diagram:

$$
\begin{array}{ccc}\n & * & \xrightarrow{\cdot} & * & \xrightarrow{c_{\ast}} & * \\
 \downarrow \eta x & & \downarrow \eta x, & \downarrow \eta x \\
 X & \longrightarrow X_+ & \xrightarrow{c_X} & X.\n \end{array}
$$

The left horizontal arrows are the natural inclusions. The left square is clearly cocartesian. Since this is a retract diagram, the outer rectangle is also cocartesian. Thus, also the right square is cocartesian, see [\[Lur09,](#page-96-3) Lemma 4.4.2.1]. In other words, the above sequence is a cofiber sequence.

Since the sequence is natural in \mathcal{X}_{*} , we get a morphism of cofiber sequences in \mathcal{X}_* :

$$
\begin{array}{c}\n\ast_+ \xrightarrow{\eta_{X,+}} X_+ \xrightarrow{c_X} X \\
\downarrow \qquad \qquad \downarrow f_+ \\
\ast_+ \xrightarrow{\eta_{X,+}} Y_+ \xrightarrow{c_Y} Y.\n\end{array}
$$

Since Σ^{∞} and $(-)//p$ commute with colimits (as Σ^{∞} is left adjoint to Ω_*^{∞}), and since $\Sigma_{+}^{\infty} = \Sigma^{\infty} \circ (-)_{+}$, we get a morphism of cofiber sequences

$$
\Sigma^{\infty}_{+} * /p \xrightarrow{\eta_{X,+}} \Sigma^{\infty}_{+} X /p \xrightarrow{cx} \Sigma^{\infty} X /p
$$

\n
$$
\downarrow \Sigma^{\infty}_{+} f /p \xrightarrow{\downarrow} \Sigma^{\infty} f /p
$$

\n
$$
\Sigma^{\infty}_{+} * /p \xrightarrow{\eta_{Y,+}} \Sigma^{\infty}_{+} Y /p \xrightarrow{cy} \Sigma^{\infty} Y /p.
$$

Taking cofibers of the vertical maps, we get a cofiber sequence

$$
0 \to \mathrm{cofib}\left(\Sigma^{\infty}_+ f/\!\!/p\right) \to \mathrm{cofib}\left(\Sigma^{\infty} f/\!\!/p\right).
$$

Hence, $\text{cofib}(\Sigma^{\infty}_+ f / \! / p) \cong \text{cofib}(\Sigma^{\infty} f / \! / p)$. Thus, $\text{cofib}(\Sigma^{\infty}_+ f / \! / p) = 0$ if and only if cofib($\Sigma^{\infty} f/\!\!/p$) = 0. This proves that $\Sigma^{\infty}_+ f$ is a p-equivalence if and only if $\Sigma^{\infty} f$ is a p-equivalence.

Definition 3.4. We say that $X \in \mathcal{X}$ is *(unpointed) p*-complete if every *p*equivalence of unpointed objects $f: Y \to Y'$ induces on mapping spaces an equivalence $\operatorname{Map}_{\mathcal{X}}(Y',X) \to \operatorname{Map}_{\mathcal{X}}(Y,X)$. Denote by \mathcal{X}_p^{\wedge} the full subcategory of p-complete objects.

Similarly, we say that a pointed object $X \in \mathcal{X}_*$ is *(pointed)* p-complete if every p-equivalence of pointed objects $f: Y \to Y'$ induces an equivalence $\text{Map}_{\mathcal{X}_*}(Y', X) \to \text{Map}_{\mathcal{X}_*}(Y, X)$. We write \mathcal{X}_*^{\wedge} for the full subcategory of pcomplete objects.

Again, this distinction between pointed and unpointed objects does not matter:

Lemma 3.5. *Let* $X \in \mathcal{X}_*$ *. Then* X *is pointed p-complete if and only if the underlying unpointed object is unpointed* p*-complete.*

Proof. Suppose that the underlying unpointed object is unpointed p-complete. Let $f: Z \to Z'$ be a p-equivalence of pointed objects. Consider the following commutative cube:

Here, the vertical maps $* \to \text{Map}_{\mathcal{X}}(*, X)$ select the map $* \to X$ given by the pointing of X. The horizontal map $\text{Map}_{\mathcal{X}}(Z, X) \to \text{Map}_{\mathcal{X}}(*, X)$ is given by precomposition with the basepoint $* \to Z$, and similarly for Z'. Note that the front and back squares are cartesian by definition of \mathcal{X}_{*} . Thus, since $f^* \colon \text{Map}_{\mathcal{X}}(Z', X) \to \text{Map}_{\mathcal{X}}(Z, X)$ is an equivalence by assumption, also the map f^* : $\text{Map}_{\mathcal{X}_*}(Z', X) \to \text{Map}_{\mathcal{X}_*}(Z, X)$ is an equivalence. This proves that X is pointed p-complete.

For the other direction, we have to show that a p -equivalence of unpointed objects $g: Z \to Z'$ induces an equivalence $\text{Map}_{\mathcal{X}}(Z', X) \to \text{Map}_{\mathcal{X}}(Z, X)$. By definition, g_{+} is a p-equivalence of pointed objects. This implies that the induced map $\text{Map}_{\mathcal{X}_*}(Z'_+, X) \to \text{Map}_{\mathcal{X}_*}(Z_+, X)$ is an equivalence, since X was assumed to be pointed p-complete. But this gives

$$
\operatorname{Map}_{\mathcal{X}}(Z', X) \cong \operatorname{Map}_{\mathcal{X}_*}(Z'_+, X) \cong \operatorname{Map}_{\mathcal{X}_*}(Z_+, X) \cong \operatorname{Map}_{\mathcal{X}}(Z, X),
$$

using that $(-)_+$ is left adjoint to the forgetful functor. In other words, X is unpointed p-complete. \Box

In view of the last lemmas, being a p -equivalences or being p -complete is independent of a choice of basepoint. Below, we will use this without reference.

Lemma 3.6. *The collection of p-equivalences in* \mathcal{X} *(resp. in* \mathcal{X}_* *) is strongly saturated and of small generation.*

Proof. Write S for the class of p-equivalences in \mathcal{X} . Using [\[Lur09,](#page-96-3) Proposition 5.5.4.16], it suffices to show that $S = f^{-1}(S')$ for some colimit-preserving functor f and a strongly saturated class S' of small generation. Then let $f = \sum_{+}^{\infty} (-),$ and S' be the collection of p-equivalences in $Sp(X)$. S' is strongly saturated and of small generation by Lemma [2.3.](#page-9-2)

In the pointed case, on argues in the same way, using the functor $f =$ Σ_+^{∞} . \Box

Lemma 3.7. The inclusion $\mathcal{X}_p^{\wedge} \to \mathcal{X}$ has a left adjoint $\left(-\right)_p^{\wedge}$ $_{p}^{\wedge}:\mathcal{X}\rightarrow\mathcal{X}_{p}^{\wedge}.$ We *call this functor the* p*-completion functor.*

Similarly, the inclusion $\mathcal{X}_p^{\wedge} \to \mathcal{X}_*$ *has a left adjoint, which we also denote by* $(-)$ ^{\wedge} p *.*

Proof. This is an application of [\[Lur09,](#page-96-3) Proposition 5.5.4.15], using Lemma [3.6.](#page-23-1) П

As in the stable case, the theory of Bousfield localizations gives us the following characterization of p-equivalences:

Lemma 3.8. Let $f: X \to Y$ be a morphism in X (resp. \mathcal{X}_*). Then f is a p-equivalence if and only if f_p^{\wedge} is an equivalence.

Proof. This follows from [\[Lur09,](#page-96-3) Proposition 5.5.4.15 (4)], where we use that the class of p-equivalences is strongly saturated, see Lemma [3.6.](#page-23-1) \Box

Lemma 3.9. Let I be a small ∞ -category and $(X_i)_i$ an I-indexed diagram in *X. Suppose that* X_i *is p-complete for each* $i \in I$ *. Then* $\lim_{i \in I} X_i$ *is p-complete. In particular,* $* \in \mathcal{X}$ *is p-complete.*

The same is true for limits in \mathcal{X}_* .

Proof. The inclusion $\mathcal{X}_p^{\wedge} \to \mathcal{X}$ is a right adjoint by Lemma [3.7,](#page-23-0) hence it commutes with limits. The final object ∗ is the limit over the empty diagram, hence it is p-complete.

For the pointed case, we can use the same proof, or note that \mathcal{X}_* is presentable by [\[Lur09,](#page-96-3) Proposition 5.5.3.11]. Thus, we can apply the above result to the presentable ∞ -category \mathcal{X}_{*} . \Box

Corollary 3.10. *Let* $X \in \mathcal{X}_*$ *be p*-complete. Then ΩX *is p*-complete.

Proof. ΩX is the limit of the diagram $* \to X \leftarrow *$. Since X is p-complete by assumption, and $*$ is p-complete by Lemma [3.9,](#page-24-0) we conclude that ΩX is p-complete as a limit of p-complete objects (again by Lemma [3.9\)](#page-24-0). \Box

Lemma 3.11. Let \mathcal{Y}_i be a collection of presentable ∞ -categories. Suppose $s_i^* : \mathcal{X} \rightleftarrows \mathcal{Y}_i : s_{i,*}$ are adjunctions. Let $f : X \to X'$ be a morphism in X. If f *is a p-equivalence, so is* $s_i^* f$ *for every i. The converse holds if the* s_i^* *form a* conservative family of functors, and all of the s_i^* are left-exact (i.e. commute *with finite limits).*

In particular, if X *is an* ∞ *-topos with enough points, then* f *is a p*-equivalence *if and only if it is a* p*-equivalence on stalks.*

Proof. Using Lemma [A.1,](#page-77-2) we see that the $s_i^* \dashv s_{i,*}$ induce exact functors on the stabilizations, such that the following diagram of functors commutes:

$$
\text{Sp}(\mathcal{X}) \xrightarrow{\quad s_i^* \quad} \text{Sp}(\mathcal{Y}_i) \\
\text{Exp}(\mathcal{Y}_i) \xrightarrow{\quad s_i^* \quad} \text{Exp}(\mathcal{Y}_i) \\
\mathcal{X}_* \xrightarrow{\quad s_i^* \quad} \mathcal{Y}_{i,*}
$$

If the s_i^* are left-exact, then the functors on stabilizations are jointly conservative if the corresponding family of functors on $\mathcal X$ is, see Lemma [A.3.](#page-77-3) The lemma follows from Lemmas [2.32](#page-19-1) and [2.33.](#page-20-1) □

3.2 Basic Properties of Unstable p-Completion

From now on, we will assume that X is actually an ∞ -topos [\[Lur09,](#page-96-3) Defini-tion 6.1.0.4], it is in particular presentable [\[Lur09,](#page-96-3) Theorem 6.1.0.6]. If \mathcal{X} is hypercomplete (see the discussion directly before [\[Lur09,](#page-96-3) Remark 6.5.2.11]), then the standard t-structure is left-separated: If $E \in Sp(\mathcal{X})$ is ∞ -connective, then $\Omega_*^{\infty} \Sigma^n E$ is ∞ -connective for every *n*. By hypercompleteness, we conclude $\Omega_*^{\infty} \Sigma^n E \cong *$ for all *n*. But this implies that $E \cong 0$, in other words, the tstructure is left-separated.

Write $Disc(\mathcal{X})$ for the category of discrete objects in \mathcal{X} , i.e. the essential image of the truncation functor $\tau_{\leq 0} : \mathcal{X} \to \mathcal{X}$. This is an ordinary 1-topos. Write $Ab(\text{Disc}(\mathcal{X}))$ for the category of abelian group objects in $\text{Disc}(\mathcal{X})$. Note that there is an equivalence $\text{Sp}(\mathcal{X})^{\heartsuit} \cong \mathcal{A}b(\text{Disc}(\mathcal{X}))$ from the heart of the tstructure to the category of abelian group objects in \mathcal{X} , see [\[Lur18a,](#page-96-5) Proposition] 1.3.2.7 (4)]. We will identify these two categories. In particular, for $n \geq 2$ we will regard the homotopy object functors $\pi_n: \mathcal{X} \to \mathcal{A}b(\text{Disc}(\mathcal{X}))$ as functors $\pi_n\colon \mathcal{X}\to \mathrm{Sp}(\mathcal{X})^\heartsuit.$

There is a symmetric monoidal structure \otimes on $Sp(\mathcal{X})$, see [\[Lur18a,](#page-96-5) Proposition 1.3.4.6]. Moreover, \otimes is exact (and moreover cocontinuous) in each variable. Note that Σ_{+}^{∞} admits the structure of a symmetric monoidal functor from \mathcal{X} with the cartesian structure to $Sp(\mathcal{X})$ with ⊗, see again [\[Lur18a,](#page-96-5) Proposition 1.3.4.6].

Lemma 3.12. *Let* $f: X \to Y$ *be a p-equivalence in* X. *Then* $\pi_0(f): \pi_0(X) \to$ $\pi_0(Y)$ *is an equivalence.*

Proof. Consider the following diagram:

$$
\mathcal{X} \xrightarrow{\Sigma_{+}^{\infty}} \operatorname{Sp}(\mathcal{X}) \xrightarrow{\tau_{\geq 0}} \operatorname{Sp}(\mathcal{X})_{\geq 0}
$$

$$
\downarrow_{\tau_{0}}^{\tau_{\leq 0}} \qquad \qquad \downarrow_{\tau_{\leq 0}}
$$

$$
\operatorname{Disc}(\mathcal{X}) \xrightarrow{\mathbb{Z}[-]} \mathcal{A}b(\operatorname{Disc}(\mathcal{X})) \xrightarrow{\cong} \operatorname{Sp}(\mathcal{X})^{\heartsuit},
$$

where $\mathbb{Z}[-]$ is the left adjoint to the forgetful functor $Ab(\text{Disc}(\mathcal{X})) \to \text{Disc}(\mathcal{X})$. This functor exists since all categories are presentable, and the forgetful functor commutes with limits and filtered colimits. The diagram commutes: We can see this by uniqueness of adjoints: Note that $\mathbb{Z}[\pi_0(-)]$ is left adjoint to the forgetful functor $\mathcal{A}b(\text{Disc}(\mathcal{X})) \to \mathcal{X}$, and $\tau_{\leq 0} \tau_{\geq 0} \Sigma_{+}^{\infty}$ is left adjoint to $\Omega^{\infty} \colon \text{Sp}(\mathcal{X})^{\heartsuit} \to \mathcal{X}$ (note that Σ^{∞} actually factors over $\text{Sp}(\mathcal{X})_{\geq 0}$). But these two right adjoint functors agree under the identification $\mathcal{A}b(\overline{\mathrm{Disc}}(\mathcal{X})) \cong \mathrm{Sp}(\mathcal{X})^{\heartsuit}$.

We can enlarge the diagram to the following:

$$
\mathcal{X} \xrightarrow{\Sigma_{+}^{\infty}} \operatorname{Sp}(\mathcal{X})_{\geq 0} \xrightarrow{(-)/p} \operatorname{Sp}(\mathcal{X})_{\geq 0}
$$

$$
\downarrow_{\pi_{0}} \qquad \qquad \downarrow_{\tau_{\leq 0}} \qquad \qquad \downarrow_{\tau_{\leq 0}}
$$

$$
\operatorname{Disc}(\mathcal{X}) \xrightarrow{\mathbb{Z}[-]} \operatorname{Sp}(\mathcal{X})^{\heartsuit} \xrightarrow{(-)/p} \operatorname{Sp}(\mathcal{X})^{\heartsuit},
$$

Here, $\left(\frac{-}{p}\right)$ is the functor given by $X \mapsto \mathrm{coker}(X \stackrel{p}{\to} X)$. We have seen above that the left square commutes. The commutativity of the right hand side can be easily seen from the long exact sequence.

Since f is a p-equivalence, $(\Sigma^{\infty}_+ f)/\!/\!p$ is an equivalence. This implies that $\mathbb{Z}[\pi_0(f)]/p$ is an isomorphism. Note that the functor $(\mathbb{Z}[-])/p$ can be identified with $\mathbb{F}_p[-]$. Here, $\mathbb{F}_p[-]$ is the left adjoint to the forgetful functor from p-torsion abelian group objects (i.e. sheaves of \mathbb{F}_p -vectorspaces) in $Disc(\mathcal{X})$ to $Disc(\mathcal{X})$. Note that this functor is conservative, see Proposition [A.36.](#page-85-0) This implies that $\pi_0(f)$: $\pi_0(X) \to \pi_0(Y)$ is an isomorphism. □

Lemma 3.13. *Let* $D \in \mathcal{X}$ *a* discrete space. Then D is p-complete.

Proof. We need to show that $\text{Map}(Y, D) \to \text{Map}(X, D)$ is an equivalence for all p-equivalences $f: X \to Y$. But since D is discrete, $\text{Map}(Y, D) \cong \text{Map}(\pi_0(Y), D)$ and Map $(X, D) \cong \text{Map}(\pi_0(X), D)$. Thus, it suffices to show that $\pi_0(X) \to$ $\pi_0(Y)$ is an equivalence, which was proven in Lemma [3.12.](#page-25-1) \Box

Corollary 3.14. *Let* $X \in \mathcal{X}_*$ *be p*-complete. Then $\tau_{\geq 1}X$ *is p*-complete.

Proof. There is a fiber sequence $\tau_{\geq 1}X \to X \to \tau_{\leq 0}X$. But X is p-complete by assumption, and $\tau_{\leq 0} X$ is p-complete because it is discrete, see Lemma [3.13.](#page-26-1) Thus, $\tau_{\geq 1} X$ is p-complete as a limit of p-complete objects, see Lemma [3.9.](#page-24-0) \Box

Lemma 3.15. Let $f_i: X_i \to Y_i$ be p-equivalences in X for $i = 1, ..., n$. Then **Lemma 3.15.** Let $f_i \colon X_i \to Y_i$ be p-equivalences in $\mathcal X$ for $i = 1, ..., n$. Then $\prod_i f_i \colon \prod_i X_i \to \prod_i Y_i$ is a p-equivalence, and hence $(\prod_i X_i)_p^{\wedge} \cong \prod_i X_i_{p}^{\wedge}$. $\bigcap_{p}^{\wedge} \cong \prod_{i} X_{i} \bigcap_{p}^{\wedge}$.

Proof. We need to show that $\Sigma^{\infty}_+(\prod_i f_i) \cong \bigotimes_i (\Sigma^{\infty}_+ f_i)$ is a *p*-equivalence of spectra. This follows immediately from Lemma [2.12.](#page-13-3) For the last point, it suffices to note that the canonical maps $X_i \to X_i^{\wedge}$ are *p*-equivalences, and that $\prod_i X_i^{\wedge}$ is *p*-complete as a limit of *p*-complete objects, see Lemma 3.9. $i_i X_i^{\wedge}$ is p-complete as a limit of p-complete objects, see Lemma [3.9.](#page-24-0)

3.3 Completions via Postnikov-towers

Suppose from now on that $\mathcal X$ has enough points, see [\[Lur09,](#page-96-3) Remark 6.5.4.7]. In particular, $\mathcal X$ is hypercomplete (again [\[Lur09,](#page-96-3) Remark 6.5.4.7]).

Lemma 3.16. Let $f: E \to F$ be a p-equivalence in $\text{Sp}(\mathcal{X})$, with E and F 1-connective. Then $\Omega_*^{\infty} f: \Omega_*^{\infty} E \to \Omega_*^{\infty} F$ is a p-equivalence.

Proof. Since $\mathcal X$ has enough points and Ω_*^{∞} commutes with points (see Lemma [A.3\)](#page-77-3), this statement can be checked on stalks, see Lemma [3.11.](#page-24-1) Thus, the lemma follows from the corresponding statement about anima, see Lemma [A.27.](#page-83-0) \Box

Lemma 3.17. *Let* $E \in Sp(\mathcal{X})$ *such that* E *is* k *-connective for some* $k \geq 1$ *. Then* $\Omega_*^{\infty} E \to \Omega_*^{\infty} \tau_{\geq k}(E_p^{\wedge})$ *is a p-equivalence. Moreover*, $(\Omega_*^{\infty} \check{E})_p^{\wedge}$ $\frac{\wedge}{p} \cong \Omega_*^{\infty} \tau_{\geq 1}(E_p^{\wedge}).$

Proof. By the last Lemma [3.16,](#page-26-2) it is enough to show that $E \to \tau_{\geq k} E_p^{\wedge}$ is a p-equivalence. But $E \to E_p^{\wedge}$ is a p-quivalence, and since E is k-connective, we conclude that $\pi_n(E_p^{\wedge})$ is uniquely *p*-divisible for all $n < k$, see Lemma [2.9.](#page-11-0)

Thus, $\tau_{\leq k} E_p^{\wedge}$ has uniquely p-divisible homotopy objects, and it follows that $\tau_{\geq k}E_p^{\wedge} \to \dot{E}_p^{\wedge}$ is a p-equivalence, see Corollary [2.11.](#page-12-5) Since $E \to E_p^{\wedge}$ is a pequivalence, we conclude by 2-out-of-3 (the class of p-equivalences is strongly saturated by Lemma [3.6\)](#page-23-1).

For the last part, note that $\Omega_*^{\infty} E \to \Omega_*^{\infty} \tau_{\geq 1}(E_p^{\wedge})$ is a *p*-equivalence by the first part(since a k-connective spectrum is in particular 1-connective). Thus, it suffices to show that $\Omega_*^{\infty} \tau_{\geq 1}(E_p^{\wedge})$ is p-complete. But we have an equivalence $\Omega_*^{\infty} \tau_{\geq 1}(E_p^{\wedge}) \cong \tau_{\geq 1} \Omega_*^{\infty}(E_p^{\wedge})$. Since Ω_*^{∞} preserves *p*-complete objects (as a right adjoint to Σ^{∞} , which preserves p-equivalences), we conclude by Corollary [3.14.](#page-26-3) \Box

Corollary 3.18. *Let* $K = K(A, n)$ *be an Eilenberg-MacLane object in* \mathcal{X}_* *with* $n \geq 1$ and $A \in \mathrm{Sp}(\mathcal{X})^{\heartsuit}$. Then $K_p^{\wedge} \cong \Omega_*^{\infty} \tau_{\geq 1}((\Sigma^n A)_p^{\wedge})$ $\binom{\wedge}{p} \cong \tau_{\geq 1} \Omega_*^{\infty}((\Sigma^n A)^{\wedge}_p)$ p)*. In particular,* K_p^{\wedge} *is connected and* $n + 1$ -truncated, and $\pi_i(K_p^{\wedge})$ *is abelian and uniquely p-divisible for all* $1 \leq i \leq n$ *.*

Proof. Note that $K = \Omega_*^{\infty} \Sigma^n A$. Thus, the result follows immediately from Lemmas [2.7,](#page-11-1) [2.9](#page-11-0) and [3.17.](#page-26-4) \Box

In Appendix [A.2](#page-79-0) (in particular in Definition [A.10\)](#page-79-1), we will define what a nilpotent object $X \in \mathcal{X}_*$ is. Nilpotent objects have the property, that their Postnikov tower can be built by repeatedly building in an Eilenberg-MacLane space $K(A, n)$, see Definition [A.14](#page-79-2) and Lemma [A.15.](#page-80-1) This allows one to prove statements about nilpotent objects by induction over the (refined) Postnikov tower, and from the corresponding statement about Eilenberg-MacLane objects.

Proposition 3.19. *Let* $f: X \to Y \in \mathcal{X}$ *be a morphism of pointed nilpotent* spaces, such that X_p^{\wedge} and Y_p^{\wedge} are also nilpotent. Then

$$
\left(\tau_{\geq 1} \text{fib}\left(X \xrightarrow{f} Y\right)\right)_p^{\wedge} \cong \tau_{\geq 1} \text{fib}\left(X_p^{\wedge} \xrightarrow{f_p^{\wedge}} Y_p^{\wedge}\right).
$$

Proof. The right-hand side is p-complete as the connected cover of a limit of p-complete spaces, see Corollary [3.14.](#page-26-3) Thus, it suffices to show that the map $\tau_{\geq 1}$ fib $(f) \to \tau_{\geq 1}$ fib (f_p^{\wedge}) is a *p*-equivalence. This can be checked on stalks, see Lemma [3.11.](#page-24-1) Since stalks preserve connected covers, nilpotent spaces, fibers and p-equivalences, this immediately follows from Lemma [A.20,](#page-81-1) applied to the following diagram of fiber sequences of pointed anima (where s is a point of \mathcal{X})

$$
s^*\text{fib}(f) = \text{fib}(s^*f) \longrightarrow s^*X \longrightarrow s^*Y
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
s^*\text{fib}(f_p^{\wedge}) = \text{fib}(s^*(f_p^{\wedge})) \longrightarrow s^*(X_p^{\wedge}) \longrightarrow s^*(Y_p^{\wedge}),
$$

where the middle and right vertical maps are *p*-equivalences.

 \Box

Proposition 3.20. *Let* $X \in \mathcal{X}_*$ *be nilpotent and choose a principal refinement of the Postnikov tower as in Lemma [A.15.](#page-80-1) Then for all* $n \geq 1$ *and all* $1 \leq k \leq 1$ $m_n, (X_{n,k})_n^{\wedge}$ \int_{p}^{\wedge} *is nilpotent and there is an equivalence*

$$
(X_{n,k})_p^{\wedge} \cong \tau_{\geq 1} \text{fib}\Big((X_{n,k-1})_p^{\wedge} \to K(A_{n,k}, n+1)_p^{\wedge}\Big).
$$

Proof. We prove the lemma by induction on n and k, note that $X_{n,0} \cong X_{n-1,m_n}$. Also note that $X_{1,0} = * = *_{p}^{\wedge} = (X_{1,0})_{p}^{\wedge}$ \sum_{p}^{∞} is nilpotent.

 $X_{n,k}$ is connected and fits into a fiber sequence of pointed spaces

$$
X_{n,k} \to X_{n,k-1} \to K(A_{n,k}, n+1).
$$

 $K(A_{n,k}, n+1)$ is nilpotent by Lemma [A.11](#page-79-3) and $(X_{n,k-1})_n^{\wedge}$ \int_{p}^{∞} is nilpotent by induc-tion. Moreover, by Corollary [3.18](#page-27-0) there is an equivalence $(K(A_{n,k}, n+1))_p^{\wedge} \cong$ $\Omega_*^{\infty}(\tau_{\geq 1}(\Sigma^{n+1}A_{n,k})_p^{\wedge}),$ which is thus also nilpotent by Lemma [A.11.](#page-79-3) We con-clude by Proposition [3.19](#page-27-2) that $(X_{n,k})_p^{\wedge}$ $p_p^{\wedge} \cong \tau_{\geq 1} \text{fib}\Big((X_{n,k-1})_p^{\wedge} \to K(A_{n,k}, n+1)_p^{\wedge}\Big).$ Note that $(X_{n,k})_n^{\wedge}$ $\sum_{p=1}^{\infty}$ is now nilpotent as the connected cover of a fiber of nilpotent spaces, see Lemma [A.12.](#page-79-4) \Box

Proposition 3.21. *Let* $X \in \mathcal{X}_*$ *be nilpotent and n-truncated for some* $n \in \mathbb{Z}$ *. Then* X_p^{\wedge} *is* $(n + 1)$ *-truncated.*

Proof. Choose a principal refinement $X_{m,k}$ of the Postnikov tower, which is possible by Lemma [A.15.](#page-80-1) Since X is *n*-truncated, we see that $X = X_{n,0}$. We proceed by induction on m and k as in the proof of Proposition [3.20.](#page-27-1) Note that $(X_{1,0})_p^\wedge = (*)_p^\wedge = *$ is clearly $(n+1)$ -truncated. So suppose that $1 \leq m < n$ and $1 \leq k \leq m_m$ and that $(X_{m,k-1})_p^{\wedge}$ \int_{p}^{∞} is $(n+1)$ -truncated. Now we have a fiber sequence

$$
(X_{m,k})_p^{\wedge} \cong \tau_{\geq 1} \text{fib}\Big((X_{m,k-1})_p^{\wedge} \to K(A_{m,k}, m+1)_p^{\wedge}\Big)
$$

from Proposition [3.20.](#page-27-1) Since $(n + 1)$ -truncated objects are closed under limits (see [\[Lur09,](#page-96-3) Proposition 5.5.6.5]), we conclude from the induction hypothesis and Corollary [3.18](#page-27-0) that $(X_{m,k})_p^{\lambda}$ \int_{p}^{∞} is $(n + 1)$ -truncated. If $m = n$, then the Postnikov tower stabilizes, and we conclude that $X_p^{\wedge} = (X_{n,0})_p^{\wedge} = (X_{n-1,m_n})_p^{\wedge}$ p is $(n + 1)$ -truncated.

Suppose now that $\mathcal{X} = \text{Shv}(\mathcal{T})$ is the category of hypercomplete sheaves on $\mathcal T$ where $\mathcal T$ is a Grothendieck site.

Definition 3.22. We say that X is *locally of finite uniform homotopy dimension* if there is

- a conservative family of points S of $\mathcal{X},$
- for every $s \in \mathcal{S}$ a pro-object \mathcal{I}_s in \mathcal{T} such that $s^*F \cong \text{colim}_{U \in \mathcal{I}_s} F(U)$ for every $F \in \mathcal{X}$, and

• a function htpydim: $S \to \mathbb{N}$,

such that for all $s \in S$ every object $U \in \mathcal{I}_s$ has homotopy dimension htpydim(s), i.e. if $F \in \mathcal{X}$ is k-connective, then $F(U)$ is (k-htpydim(s))-connective.

Suppose from now on that $\mathcal X$ is locally of finite uniform homotopy dimension, and choose S, \mathcal{I}_s and htpydim as in Definition [3.22.](#page-28-0) In the rest of this section we show that then p-completion of nilpotent spaces can be computed on the Postnikov tower.

Lemma 3.23. Let $s \in \mathcal{S}$, $U \in \mathcal{I}_s$ and $E \in \text{Sp}(\mathcal{X})$. Suppose that E is m*connective. Then* $E_p^{\wedge}(U)$ *is (m*-htpydim(s)-1)-*connective.*

Proof. We may assume $m = 0$. Since $E/p^n = \text{cofib}(E \xrightarrow{p^n} E)$ is also connective, it suffices to prove the more general fact that a sequential limit $F = \lim_{n} F_n$ of connective spectra F_n has the property that $(\lim_n F_n)(U)$ is $(-\text{htpydim}(s)-1)$ connective for all $U \in \mathcal{I}_s$. By assumption, $F_n(U)$ is (-htpydim(s))-connective for all n. But then $(\lim_{n} F_n)(U) = \lim_{n} F_n(U)$ is $(\text{-htpydim}(s)-1)$ -connective as a sequential limit of $(-\text{htpydim}(s))$ -connective spectra (see e.g. [\[MP11,](#page-97-1) Proposition 2.2.9] for the corresponding fact about anima, then shift the F_n such that they are $(\text{htpydim}(s) + l)$ -connective for some $l \geq 1$, and use that Ω_*^{∞} commutes with limits, and with homotopy objects in non-negative degrees). \Box

Lemma 3.24. Let X_k be an N-indexed inverse system of connected anima. *Suppose that for all* $n \geq 0$ *, there exists a* $k_n > 0$ *such that* $\pi_n(X_k) = \pi_n(X_{k_n})$ *for all* $k \geq k_n$. Then $\pi_n(\lim_k X_k) \cong \lim_k \mathcal{O}_{\pi_n}(X_k) \cong \pi_n(X_{k_n})$ *for all* n.

Proof. See e.g. [\[MP11,](#page-97-1) Proposition 2.2.9]. Note that the $\lim_{h \to 0} 1$ -term vanishes because the homotopy groups get eventually constant, and hence satisfy the Mittag-Leffler property. The last equivalence holds because the limit is eventually constant. П

Lemma 3.25. Let X_k be an N-indexed inverse system of connected objects in \mathcal{X}_* *. Suppose that for all* $n, d \geq 0$ *there exists a* $k_{d,n} > 0$ *such that* $\pi_n(X_k(U)) \cong$ $\pi_n(X_{k_{\text{htpydim}(s),n}}(U))$ *for all* $s \in S, k \geq k_{\text{htpydim}(s),n}$ and $U \in \mathcal{I}_s$. Then s^* lim_k $X_k \cong \lim_k s^* X_k$ for all point $s \in \mathcal{S}$.

Proof. Fix a point $s \in \mathcal{S}$. Note that for $k \geq k_{\text{ht}_{\text{pvdim}}(s),n}$ and $n \geq 0$ we have

$$
\pi_n s^* X_k \cong \operatorname{colim}_{U \in \mathcal{I}_s} \pi_n(X_k(U)) \cong \operatorname{colim}_{U \in \mathcal{I}_s} \pi_n(X_{k_{\operatorname{htpydim}(s),n}}(U)) \cong \pi_n s^* X_{k_{\operatorname{htpydim}(s),n}}.
$$

Lemma [3.24](#page-29-0) implies (use $k_n = k_{\text{htpydim}(s),n}$) that for every n and $U \in \mathcal{I}_s$ we have isomorphisms

$$
\pi_n(\lim_k X_k(U)) \cong \pi_n(X_{k_{\mathrm{htpydim}(s),n}}(U))
$$

$$
\pi_n(\lim_k s^* X_k) \cong \pi_n(s^* X_{k_{\mathrm{htpydim}(s),n}}).
$$

We now compute

$$
\pi_n(s^* \lim_k X_k) \cong s^* \pi_n(\lim_k X_k)
$$

\n
$$
\cong \operatorname{colim}_{U \in \mathcal{I}_s} \pi_n(\lim_k X_k(U))
$$

\n
$$
\cong \operatorname{colim}_{U \in \mathcal{I}_s} \pi_n(X_{k_{\operatorname{htpydim}(s),n}}(U))
$$

\n
$$
\cong \pi_n(s^* X_{k_{\operatorname{htpydim}(s),n}})
$$

\n
$$
\cong \pi_n(\lim_k s^* X_k).
$$

Since *n* was arbitrary, we conclude that $s^* \lim_k X_k \cong \lim_k s^* X_k$, using Whitehead's theorem. □

Lemma 3.26. *Let* $X \in \mathcal{X}_*$ *be nilpotent,* $s \in \mathcal{S}$ *be a point and* $n \in \mathbb{N}$ *. Define* $k_{\text{htpydim}(s),n} := n + \text{htpydim}(s) + 2$. Then for all $U \in \mathcal{I}_s$ we have that $\pi_n((\tau_{\leq k}X)^{\wedge}_p$ $p_p(Y)$ *is independent of* k for $k \geq k_{\text{htpydim}(s),n}$.

Proof. Fix $n \in \mathbb{N}$ and $U \in \mathcal{I}_s$. We proceed by induction on k, the case $k = k_{\text{htpvdim}(s),n}$ holds tautologically. Using Lemma [A.15,](#page-80-1) we find a principal refinement of the Postnikov tower. For every $1 \leq l \leq m_k$, there is an equivalence

$$
(X_{k,l})_p^\wedge \cong \tau_{\geq 1} \text{fib}\Big((X_{k,l-1})_p^\wedge \to (K(A_{k,l},k+1))_p^\wedge\Big),
$$

see Proposition [3.20.](#page-27-1) Thus, it is enough to show that $(K(A_{k,l}, k+1))_p^{\wedge}(U)$ is $n+$ 2-connective. Using Corollary [3.18,](#page-27-0) it suffices to prove that $(\Sigma^{k+1}A_{k,l})_p^{\wedge}(U)$ is $n+2$ -connective. Note that the connectivity of $\Sigma^{k+1}A_{k,l}$ is at least $k_{\text{htpvdim}(s),n}+$ $1 = n + \text{htpydim}(s) + 3$. Using Lemma [3.23,](#page-29-1) we conclude that the connectivity of $(\Sigma^{k+1} A_{k,l})\rangle_p^{\wedge}(U)$ is at least $n + \text{htpydim}(s) + 3 - \text{htpydim}(s) - 1 = n + 2$.

Theorem 3.27. Let $X \in \mathcal{X}_*$ be nilpotent. Then $X_p^{\wedge} \cong \lim_k (\tau_{\leq k} X_p)^{\wedge}$ p *.*

Proof. The right-hand side is p-complete because it is a limit of p-complete objects. Hence, it suffices to show that $X \to \lim_k (\tau \leq_k X)^{\wedge}_n$ \int_{p}^{\wedge} is a *p*-equivalence. This can be checked on stalks. So let $s \in \mathcal{S}$ be a point, we need to show that $s^*X \to s^* \lim_k (\tau_{\leq k} X)_p^{\wedge}$ $\frac{\pi}{p}$ is a p-equivalence. Using Lemma [3.25](#page-29-2) and Lemma [3.26,](#page-30-3) we conclude that s^* lim $_k(\tau \leq kX)$ ^{\wedge} $\frac{\wedge}{p} \cong \lim_k s^* ((\tau_{\leq k} X)^{\wedge}_p)$ $\binom{n}{p}$. The left-hand side is $s^*X = \lim_k \tau_{\leq k} s^*X \cong \lim_k s^* \tau_{\leq k} X$, using that An is Postnikov-complete and that s ∗ commutes with truncations, see [\[Lur09,](#page-96-3) Proposition 5.5.6.28]. Note that $s^*\tau_{\leq k}X \to s^*((\tau_{\leq k}X)^{\wedge}_n)$ $p_{p}^{(\kappa)}$ is a *p*-equivalence for each k. Hence, the result follows from Lemma [A.31.](#page-84-1) \Box

4 Completions via Embeddings

4.1 Completions of Presheaves

Let C be a small ∞ -category. For every ∞ -category D, denote by $\mathcal{P}(\mathcal{C}, \mathcal{D}) \coloneqq$ Fun($\mathcal{C}^{\text{op}}, \mathcal{D}$) the category of presheaves with values in \mathcal{D} . Denote by $\mathcal{P}(\mathcal{C}) \coloneqq$ $\mathcal{P}(\mathcal{C}, \mathcal{A}_n)$ the category of presheaves (of anima) on C. Recall that there is a canonical equivalence of categories $Sp(\mathcal{P}(\mathcal{C})) \cong \mathcal{P}(\mathcal{C}, Sp)$, see [\[Lur17,](#page-96-1) Remark] 1.4.2.9].

Lemma 4.1. P(C) *is locally of homotopy dimension* 0*, and thus in particular of cohomological dimension* 0*.* In particular, if $F \in \mathcal{P}(\mathcal{C}, \text{Sp})^{\heartsuit}$ and $U \in \mathcal{C}$, *then* $\Gamma^{\heartsuit}(U, F) \cong \Gamma(U, F)$ *(i.e. there is no sheaf cohomology on presheaf topoi). Therefore, we will just write* $F(U)$ *for the abelian group* $\Gamma^{\heartsuit}(U, F)$ *.*

Moreover, P(C) *is Postnikov-complete.*

Proof. This follows from [\[Lur09,](#page-96-3) Example 7.2.1.9, Corollary 7.2.2.30 and Proposition 7.2.1.10]. \Box

Proposition 4.2. *Let* $f: X \to Y \in \mathcal{P}(\mathcal{C})$ *be a morphism of presheaves. Then* f *is a p-equivalence if and only if* $f(U): X(U) \to Y(U)$ *is a p-equivalence for all* $U \in \mathcal{C}$ *. Moreover,* X *is* p-complete if and only if $X(U)$ is p-complete for all $U \in \mathcal{C}$. Thus, we have $X_p^{\wedge}(U) = (X(U))_p^{\wedge}$ for all $U \in \mathcal{C}$.

Proof. By definition, f is a p-equivalence if and only if $\Sigma^{\infty}_+(f)/\!/p$ is an equivalence. Using the equivalence $Sp(\mathcal{P}(\mathcal{C})) \cong \mathcal{P}(\mathcal{C}, Sp)$, we see that this can be checked on sections.

For the second point, suppose first that X is p-complete. Let $U \in \mathcal{C}$ and arbitrary object. Let $A \rightarrow A'$ be a p-equivalence of pointed anima. Denote by c_A and $c_{A'}$ the presheaves on C given by $j_U \otimes A$ and $j_U \otimes A'$, respectively (where j_U denotes the Yoneda embedding of U), i.e. c_A is the presheaf such that $c_A(V) = j_U(V) \times A = \sqcup_{\text{Hom}(V,U)} A$ for all V, and similar for $c_{A'}$. By the above, $c_A \rightarrow c_{A'}$ is a p-equivalence. Thus, we get a chain of equivalences

$$
Map(A', X(U)) \cong Map(A', Map(j_U, X))
$$

\n
$$
\cong Map(c_{A'}, X)
$$

\n
$$
\cong Map(c_A, X)
$$

\n
$$
\cong Map(A, Map(j_U, X))
$$

\n
$$
\cong Map(A, X(U)),
$$

where the first and last equivalences follow from the Yoneda lemma, the second and fourth equivalences follow because ⊗ exhibits $\mathcal{P}(\mathcal{C})$ as tensored over An (note that An is the tensor unit of the Lurie tensor product of presentable ∞ -categories, see [\[Lur17,](#page-96-1) Example 4.8.1.20], and hence $\mathcal{P}(\mathcal{C})$ is a module over \mathcal{A}_n), and the middle map is an equivalence because X is p -complete. Thus, since $A \rightarrow A'$ was arbitrary, we conclude that $X(U)$ is p-complete.

Suppose now that $X(U)$ is p-complete for all $U \in \mathcal{C}$. We need to show that the *p*-equivalence $X \to X_p^{\wedge}$ is an equivalence. Note that for every U, $X(U) \to X_p^{\wedge}(U)$ is a p-equivalence. But since X_p^{\wedge} is p-complete, we have already seen that $\hat{X}_p^{\wedge}(U)$ is p-complete. Since $X(U)$ is p-complete by assumption, we conclude that $X(U) \to X_p^{\wedge}(U)$ is an equivalence.

For the last point, let F be the presheaf $(-)_{n}^{\wedge}$ $p \atop p \in X$. Then by the above, the canonical morphism $X \to F$ is a p-equivalence, and F is p-complete. This shows that F is the p-completion of X . \Box

Lemma 4.3. Let $F \in \mathcal{P}(\mathcal{C})$ be a presheaf. If F is n-connective, then F_p^{\wedge} is n*-connective.*

Proof. Since connectivity and p-completions can be computed on sections (see Proposition [4.2](#page-31-0) for the statement about p-completions), the result follows from the analogous result in the category of anima, see Lemma [A.18.](#page-80-2) \Box

Recall the p-adic t-structure from Definition [2.13.](#page-13-1)

Lemma 4.4. Let $U \in \mathcal{C}$ be an object. Then the functor $ev_U : \mathcal{P}(\mathcal{C}, Sp) \to Sp$ *(given by precomposition with the functor* $\Delta^0 \rightarrow \mathcal{C}, * \rightarrow U$ *) is t-exact for the standard t-structures and t-exact for the* p*-adic t-structures.*

Moreover, a presheaf of spectra $E \in \mathcal{P}(\mathcal{C}, Sp)$ *is connective or coconnective for the standard t-structure (resp. the p-adic t-structure) if and only if* $ev_U(E)$ *is connective or coconnective for the standard t-structure on* Sp *(resp. the* p*-adic t*-structure on Sp) for all $U \in \mathcal{C}$.

Proof. The claim about the standard t-structures follows immediately from the fact that Ω_*^{∞} is computed on section, and that the ev_U are jointly conservative.

Thus, ev_U is also right t-exact for the p-adic t-structures by Lemma [2.34](#page-20-2) (applied to $L = ev_U$). The last part about connective objects follows from Lemma [2.35.](#page-20-3)

So let $E \in \mathcal{P}(\mathcal{C}, \text{Sp})$. We need to show that $E \in \mathcal{P}(\mathcal{C}, \text{Sp})^p_{\leq 0}$ if and only if $E(U) \in \text{Sp}_{\leq 0}^p$ for all U. By Lemma [2.19,](#page-15-0) it thus suffices to show that

- (1) $E = \tau \leq 0E$ if and only if $E(U) = (\tau \leq 0E)(U)$ for all U,
- (2) $\pi_0(E)$ has bounded p-divisibility if and only if $\pi_0(E)(U)$ has bounded p -divisiblity for all U and
- (3) E is p-complete if and only if $E(U)$ is p-complete for all U.

the first point follows because everything can be computed on sections. The third point is Proposition [4.2,](#page-31-0)

For the second point, assume first that $\pi_0(E)(U)$ has bounded p-divisibility for all U. Let $B \in \mathcal{P}(\mathcal{C}, \text{Sp})^{\heartsuit}$ be *p*-divisible. Then $B(U)$ is *p*-divisible for all U. In particular, $\text{Map}(B, \pi_0(E)) \subset \prod_U \text{Map}(B(U), \pi_0(E)(U)) \cong 0$. On the other hand, suppose that $\pi_0(E)$ has bounded p-divisibility, and suppose that $U \in \mathcal{C}$. We have to show that $\pi_0(E)(U)$ has bounded p-divisibility. So let $B \in \text{Sp}^{\heartsuit} \cong Ab$ be p-divisible. As in the proof of Proposition [4.2,](#page-31-0) let c_B be the presheaf $j_U \otimes B$. Then we have $\text{Map}(B, \pi_0(E)(U)) \cong \text{Map}(c_B, \pi_0(E))$. Since c_B is clearly p-divisible, the right mapping space is 0. Thus, $\pi_0(E)(U)$ has bounded p-divisibility. \Box

Lemma 4.5. *Let* $E \in \mathcal{P}(\mathcal{C}, \text{Sp})$ *be a presheaf of spectra. Then there are natural equivalences* $(\pi_n^p(E))(U) \cong \pi_n^p(E(U))$ *for all* $U \in \mathcal{C}$ *. In particular,* $\pi_n^p(E) \in$ $\mathcal{P}(\mathcal{C}, \operatorname{Sp})^{\heartsuit}.$

If $A \in \mathcal{P}(\mathcal{C}, \text{Sp})^{\heartsuit}$ be a presheaf of abelian groups, then there are natural equiv*alences* $(\mathbb{L}_i A)(U) \cong \mathbb{L}_i (A(U))$ *for all* $U \in \mathcal{C}$ *. In particular,* $\mathbb{L}_i A \in \mathcal{P}(\mathcal{C}, \text{Sp})^{\heartsuit}$ *.*

Proof. The second part is a special case of the first (note that $\mathbb{L}_i A = \pi_i^p A$).

The lemma follows from t-exactness of the evaluation functors for the p-adic t-structures, see Lemma [4.4.](#page-32-0) For the last statement, note that $\pi_n^p(E(U)) \in \text{Sp}^{\heartsuit}$ \Box by Lemma [A.22.](#page-81-0)

In presheaf categories, the p -adic heart is particularly simple: it lives inside the normal heart, and consists exactly of the p-complete objects therein:

Lemma 4.6. We have $\mathcal{P}(\mathcal{C}, \text{Sp})^{p\heartsuit} \subset \mathcal{P}(\mathcal{C}, \text{Sp})^{\heartsuit}$, consisting exactly of the p*complete objects in the standard heart.*

In particular, for every p-complete $E \in \mathcal{P}(\mathcal{C}, Sp)$ *, we have* $\pi_n(E) \cong \pi_n^p(E)$ *.*

Proof. The inclusion is an immediate consequence of Lemma [4.5.](#page-32-1) Suppose that $E \in \mathcal{P}(\mathcal{C}, \text{Sp})^{\heartsuit}$ is p-complete. We now note that by Lemma [A.22](#page-81-0) $E(U) \cong$ $\pi_0(E(U)) \cong \pi_0^p(E(U))$ for all U (note that $E(U)$ is p-complete since evaluation commutes with limits), and thus $\pi_0^p(E) \cong E$, again by Lemma [4.5.](#page-32-1) \Box

Definition 4.7. Let $G \in \mathcal{G}rp(\text{Disc}(\mathcal{P}(\mathcal{C})))$ be a nilpotent presheaf of groups (i.e. the conjugation action of G on itself is nilpotent, see Definition [A.8\)](#page-79-5). We define

$$
\mathbb{L}_i G \coloneqq \pi_{i+1}((BG)^\wedge_p)
$$

for $i \geq 0$.

Remark 4.8*.* Since the p-completion of a 1-truncated nilpotent object is 2- truncated (see Proposition [3.21\)](#page-28-1), we see that $\mathbb{L}_i G = 0$ for all $i \geq 2$.

Lemma 4.9. Let $A \in \mathcal{P}(\mathcal{C}, \text{Sp})^{\heartsuit} \cong Ab(\text{Disc}(\mathcal{P}(\mathcal{C})))$. Denote by G the un*derlying nilpotent presheaf of groups (i.e. we forget that* A *is abelian). Then* $\mathbb{L}_i A \cong \mathbb{L}_i G$ *for all* $i ≥ 0$ *.*

Proof. Note first that G is actually nilpotent, see Lemma [A.9.](#page-79-6) Let $U \in \mathcal{C}$. We have the following chain of natural equivalences

$$
(\mathbb{L}_i A)(U) \cong \mathbb{L}_i (A(U))
$$

\n
$$
\cong \mathbb{L}_i (G(U))
$$

\n
$$
\cong \pi_{i+1} ((B(G(U)))_p^{\wedge})
$$

\n
$$
\cong \pi_{i+1} ((BG)_p^{\wedge})(U)
$$

\n
$$
\cong (\mathbb{L}_i G)(U).
$$

Here, the first equivalence is Lemma [4.5,](#page-32-1) the second is Lemma [A.24,](#page-82-0) the third and fifth equivalences hold by definition and the fourth equivalence exists because homotopy groups, Eilenberg-MacLane objects and p-completions can be computed on sections (see Proposition [4.2](#page-31-0) for the claim about p-completions). \Box

Proposition 4.10. Let $F \in \mathcal{P}(\mathcal{C})_*$ be a pointed nilpotent presheaf. Then for *every* $n \geq 2$ *there exists a canonical short exact sequence in* $\mathcal{P}(\mathcal{C}, \text{Sp})^{\heartsuit}$ (or a *short exact sequence in* $Grp(\text{Disc}(\mathcal{P}(\mathcal{C})))$ *if* $n = 1$ *)*

$$
0 \to \mathbb{L}_0 \pi_n(F) \to \pi_n(F_p^{\wedge}) \to \mathbb{L}_1 \pi_{n-1}(F) \to 0,
$$

where we use Definition [4.7](#page-33-0) for $\mathbb{L}_i \pi_1(X)$ *. Note that this distinction does not matter if* $\pi_1(X)$ *is abelian, see Lemma [4.9.](#page-33-1) Here we define* $\mathbb{L}_1 \pi_0(F) \coloneqq 0$ *, since* F *is connected.*

Proof. By Lemma [A.25,](#page-82-1) for every U there are functorial short exact sequences

$$
0 \to \mathbb{L}_0 \pi_n(F(U)) \to \pi_n(F(U)_{p}^{\wedge}) \to \mathbb{L}_1 \pi_{n-1}(F(U)) \to 0.
$$

But by Proposition [4.2](#page-31-0) and Lemma [4.5,](#page-32-1) this is equivalently a short exact sequence

$$
0 \to (\mathbb{L}_0 \pi_n(F))(U) \to (\pi_n(F_p'))(U) \to (\mathbb{L}_1 \pi_{n-1}(F))(U) \to 0
$$

for every $U \in \mathcal{C}$. These sequences thus give

$$
0 \to \mathbb{L}_0 \pi_n(F) \to \pi_n(F_p^{\wedge}) \to \mathbb{L}_1 \pi_{n-1}(F) \to 0.
$$

4.2 Completions in the Nonabelian Derived Category

Let $\mathcal C$ be an (essentially) small category with finite coproducts. Recall that $\mathcal{P}_{\Sigma}(\mathcal{C}) \subset \mathcal{P}(\mathcal{C})$ is the full subcategory of presheaves that transform finite coproducts into finite products. It is the category freely generated by $\mathcal C$ under sifted colimits. Write $\iota: \mathcal{P}_{\Sigma}(\mathcal{C}) \to \mathcal{P}(\mathcal{C})$ for the inclusion, and $L_{\Sigma}: \mathcal{P}(\mathcal{C}) \to \mathcal{P}_{\Sigma}(\mathcal{C})$ for the left adjoint.

Definition 4.11. Recall from [\[BH17,](#page-96-6) Definition 2.3] that a category is called *extensive* if it admits finite coproducts, coproducts are disjoint (i.e. for objects $X, Y \in \mathcal{C}$, the pullback $X \times_{X \sqcup Y} Y$ exists and is an initial object), and finite coproduct decompositions are stable under pullbacks.

Lemma 4.12. Suppose that C is extensive. Then $\mathcal{P}_{\Sigma}(\mathcal{C}) = \text{Shv}_{\square}(\mathcal{C})$, where *we write* ⊔ *for the Grothendieck topology on* C *generated by covers of the form* ${U_i \to U}_{i \in I}$ *with I a finite set such that* $\bigcup_i U_i \to U$ *is an equivalence. In particular,* $\mathcal{P}_{\Sigma}(\mathcal{C})$ *is a topos and* L_{Σ} *is left exact.*

Proof. This is [\[BH17,](#page-96-6) Lemma 2.4].

Suppose from now on that C is extensive, so that $\mathcal{P}_{\Sigma}(\mathcal{C})$ is a topos, and L_{Σ} is the left adjoint of a geometric morphism $\mathcal{P}_{\Sigma}(\mathcal{C}) \to \mathcal{P}(\mathcal{C})$.

Lemma 4.13. $\mathcal{P}_{\Sigma}(\mathcal{C})$ *is Postnikov-complete.*

 \Box

 \Box

Proof. See [\[BH17,](#page-96-6) Lemma 2.6].

Lemma 4.14. *We have a canonical equivalence* $Sp(\mathcal{P}_{\Sigma}(\mathcal{C})) \cong \mathcal{P}_{\Sigma}(\mathcal{C}, Sp)$ *.*

Proof. This is proven in [\[Lur18b,](#page-96-7) Remark 1.2].

Lemma 4.15. Let $X \in \mathcal{P}_{\Sigma}(\mathcal{C})_{*}$ be a pointed sheaf. Then for every $U \in \mathcal{C}$ and $n \geq 0$ *we have* $\pi_n(X)(U) = \pi_n(X(U)).$

Proof. It suffices to show that the homotopy presheaf $U \mapsto \pi_n(X(U))$ is actually a sheaf. This is immediate since homotopy groups of anima preserve finite products. П

Lemma 4.16. *Let* $G \in \mathcal{G}rp(\mathcal{P}_{\Sigma}(\mathcal{C}))$ *be a sheaf of groups. Then the classifying space can be computed on sections, i.e. for every* $U \in \mathcal{C}$ *we have* $BG(U) \cong$ $B(G(U))$.

Proof. Using Lemma [4.15,](#page-35-0) it suffices to show that the classifying presheaf $U \mapsto$ $B(G(U))$ is actually a sheaf. This is clear since the classifying space of a product of two groups is the product of the classifying spaces. \Box

Proposition 4.17. *A morphism* $f: F \to G$ *in* $\mathcal{P}_{\Sigma}(\mathcal{C})$ *is a p-equivalence (in* $\mathcal{P}_{\Sigma}(\mathcal{C})$ *)* if and only if $\iota(f)$ is a p-equivalence in $\mathcal{P}(\mathcal{C})$ *.*

Proof. One direction is immediate: If ιf is a p-equivalence, so is $f = L_{\Sigma}(\iota f)$. For this, note that L_{Σ} is the left adjoint of a geometric morphism $\mathcal{P}(\mathcal{C}) \rightleftarrows \mathcal{P}_{\Sigma}(\mathcal{C})$, and use Lemma [3.11.](#page-24-1)

So suppose that f is a p-equivalence. Write $Mod_{\mathbb{F}_n,\text{gr}}$ for the category of graded \mathbb{F}_p -vectorspaces, and

$$
\mathrm{CoAlg}(\mathrm{Mod}_{\mathbb{F}_p,\mathrm{gr}})\coloneqq \mathrm{CAlg}(\mathrm{Mod}_{\mathbb{F}_p,\mathrm{gr}}^\mathrm{op})^\mathrm{op}
$$

for the category of cocommutative graded coalgebras in \mathbb{F}_p -vectorspaces. Note that the categorical product of coalgebras is given by the tensor-product of the underlying graded \mathbb{F}_p -vectorspaces, i.e. the forgetful functor

 $U\colon \mathrm{CoAlg}(\mathrm{Mod}_{\mathbb{F}_p,\mathrm{gr}}) = \mathrm{CAlg}(\mathrm{Mod}_{\mathbb{F}_p,\mathrm{gr}}^{\mathrm{op}})^{\mathrm{op}} \to (\mathrm{Mod}_{\mathbb{F}_p,\mathrm{gr}}^{\mathrm{op}})^{\mathrm{op}} = \mathrm{Mod}_{\mathbb{F}_p,\mathrm{gr}}$

is symmetric monoidal where we equip $\text{CoAlg}(\text{Mod}_{\mathbb{F}_p, \text{gr}})$ with the categorical product, and $\text{Mod}_{\mathbb{F}_p,\text{gr}}$ with the tensor product of graded \mathbb{F}_p -vectorspaces. Note that for every $F \in \mathcal{P}(\mathcal{C})$, the presheaf $H_*(F(-), \mathbb{F}_p) \colon \mathcal{C}^{\mathrm{op}} \to \mathrm{Mod}_{\mathbb{F}_p, \mathrm{gr}}$ can be promoted to a presheaf of cocommutative graded coalgebras in \mathbb{F}_p -vectorspaces (see e.g. [\[tD08,](#page-97-2) 19.6.2]). By abuse of notation, write again $H_*(F(-), \mathbb{F}_p): C^{\text{op}} \to$ CoAlg(Mod_{F_{p,gr}) for this presheaf. If $F \in \mathcal{P}_{\Sigma}(\mathcal{C})$ is in the nonabelian derived} category, then also $H_*(F(-), \mathbb{F}_p) \in \mathcal{P}_\Sigma(\mathcal{C}, \mathrm{CoAlg}(\mathrm{Mod}_{\mathbb{F}_p, \mathrm{gr}}))$: This is clear since the product of anima yields the tensor product on homology (by the Künneth formula, using that we take the homology with coefficients in a field), which is the categorical product in $\text{CoAlg}(\text{Mod}_{\mathbb{F}_p,gr})$. Now note that since f is a p-equivalence, we know that s^*f is a p-equivalence for all points s. This im-plies (using Lemma [A.17\)](#page-80-3) that $H_*(s^*f, \mathbb{F}_p)$ is an equivalence for all s. Since

 \Box
homology commutes with filtered colimits, it commutes with stalks, thus we get that $s^*H_*(f, \mathbb{F}_p)$ is an equivalence for all s (here we implicitly use that $H_*(F(-), \mathbb{F}_p) \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{CoAlg}(\text{Mod}_{\mathbb{F}_p, \text{gr}})))$. Thus, using e.g. [\[Hai21,](#page-96-0) Example 2.13] and the fact that $\text{CoAlg}(\text{Mod}_{\mathbb{F}_p,\text{gr}})$ is compactly generated (this is the fun-damental theorem of coalgebras, see [\[Swe69,](#page-97-0) II.2.2.1]), already $H_*(f, \mathbb{F}_p)$ is an equivalence. But this means, on every section $U \in \mathcal{C}$ we have an isomorphism $H_*(F(U), \mathbb{F}_p) \stackrel{\simeq}{\to} H_*(G(U), \mathbb{F}_p)$. Using Lemma [A.17](#page-80-0) again, we conclude that $f_U: F(U) \to G(U)$ is a p-equivalence for all U. Thus, ιf is a p-equivalence by Proposition [4.2.](#page-31-0) 口

Proposition 4.18. *Write temporarily* $L_p := (-)^\wedge_p$ $p_p^{\wedge} \circ \iota \colon \mathcal{P}_{\Sigma}(\mathcal{C}) \to \mathcal{P}(\mathcal{C})$ *.* If $F \in$ $\mathcal{P}_{\Sigma}(\mathcal{C})$ *, then* $L_p(F) \in \mathcal{P}_{\Sigma}(\mathcal{C})$ *and* $L_p(F) = F_p^{\wedge}$ *.*

Proof. Let $F \in \mathcal{P}_{\Sigma}(\mathcal{C})$. We need to prove that $L_p(F)$ transforms finite coproducts into finite products. Thus let $U, V \in \mathcal{C}$. Then

$$
L_p(F)(U \amalg V) = (tF)^\wedge_p (U \amalg V)
$$

\n
$$
\cong (F(U \amalg V))^\wedge_p
$$

\n
$$
\cong (F(U) \times F(V))^\wedge_p
$$

\n
$$
\cong (F(U))^\wedge_p \times (F(V))^\wedge_p
$$

\n
$$
\cong (tF)^\wedge_p (U) \times (tF)^\wedge_p (V)
$$

\n
$$
= L_p(F)(U) \times L_p(F)(V),
$$

where the second and fifth equivalence are Proposition [4.2,](#page-31-0) the third equivalence exists because $F \in \mathcal{P}_{\Sigma}(\mathcal{C})$, and the fourth equivalence holds because p-completion commutes with products, see Lemma [3.15.](#page-26-0) Thus, $L_p(F) \cong L_\Sigma(L_p(F))$. Since L_{Σ} preserves p-equivalences, we get that $F \to L_p(F)$ is a p-equivalence. Thus, we are left to show that $L_p(F)$ is p-complete in $\mathcal{P}_{\Sigma}(\mathcal{C})$. Let $f: G \to G'$ be a p-equivalence in $\mathcal{P}_{\Sigma}(\mathcal{C})$. Then $\mathrm{Map}_{\mathcal{P}_{\Sigma}(\mathcal{C})}(f, L_p(F)) \cong \mathrm{Map}_{\mathcal{P}(\mathcal{C})}(if, \iota L_p(F)) \cong$ $\operatorname{Map}_{\mathcal{P}(\mathcal{C})}(\iota f, (\iota F)^{\wedge}_p)$ $p_{p}^{(\gamma)}$ is an equivalence because ιf is a *p*-equivalence by Proposi-tion [4.17.](#page-35-0) We conclude that $L_p(F)$ is p-complete. 口

Lemma 4.19. Let $F \in \mathcal{P}_{\Sigma}(\mathcal{C})$ be *n*-connective. Then F_p^{\wedge} is *n*-connective.

Proof. By Proposition [4.18](#page-36-0) we can compute the *p*-completion on the underlying presheaf. Then the result follows from Lemmas [4.3](#page-31-1) and [4.15.](#page-35-1) □

Lemma 4.20. $\mathcal{P}_{\Sigma}(\mathcal{C})$ *is locally of homotopy dimension* 0*. In particular, it is locally of cohomological dimension* 0, and thus for every $A \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{\heartsuit}$, $\Gamma(U, A) \in \text{Sp}^{\heartsuit}$ *for all* $U \in \mathcal{C}$ *(i.e. there is no sheaf cohomology).*

Proof. Since the elements of C generate $\mathcal{P}_{\Sigma}(\mathcal{C})$ under colimits, it suffices to show that for every $C \in \mathcal{C}$ the topos $\mathcal{P}_{\Sigma}(\mathcal{C})/C$ is of homotopy dimension 0. Note that $\mathcal{P}_{\Sigma}(\mathcal{C})_{/C} \cong \mathcal{P}_{\Sigma}(\mathcal{C}_{/C})$. Therefore, we may assume that C has a final element, and we want to prove that $\mathcal{P}_{\Sigma}(\mathcal{C})$ has homotopy dimension 0.

Note that there is a unique geometric morphism const: $An \nightharpoonup \mathcal{P}_{\Sigma}(\mathcal{C})$: Γ. Since C has a final object \ast , the functor Γ is given by evaluating at the final object. By [\[Lur09,](#page-96-1) Lemma 7.2.1.7], it suffices to show that Γ preserves effective epimorphisms. By Lemma [4.15,](#page-35-1) the homotopy sheaves can be calculated as the underlying homotopy presheaves. Therefore, we see that for an effective epimorphism $f: X \to Y$, that $\Gamma(f)$ is still surjective on π_0 , i.e. $\Gamma(f)$ is an effective epimorphism. (Note that in the disjoint union topology a surjective map of sheaves of sets is already surjective on sections).

The last part is [\[Lur09,](#page-96-1) Corollary 7.2.2.30].

 \Box

Lemma 4.21. Let $F \in \mathcal{P}_{\Sigma}(\mathcal{C})$ be nilpotent. Then $F_p^{\wedge} = (\lim_{n \to \infty} F_p)^{\wedge}$ $\frac{\wedge}{p}$ ≅ $\lim_{n} (\tau_{\leq n} F)^{\wedge}_n$ p *.*

Proof. Using Theorem [3.27,](#page-30-0) it suffices to show that $\mathcal{P}_{\Sigma}(\mathcal{C})$ is locally of finite uniform homotopy dimension. This is clear, since $\mathcal{P}_{\Sigma}(\mathcal{C})$ is locally of homotopy dimension 0, see Lemma [4.20.](#page-36-1) \Box

Recall the p-adic t-structure from Definition [2.13.](#page-13-0)

Lemma 4.22. *The inclusion functor* $\iota_{\Sigma} \colon \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp}) \to \mathcal{P}(\mathcal{C}, \text{Sp})$ *is t-exact for the standard t-structures and t-exact for the* p*-adic t-structures.*

Proof. The claim about the standard t-structures is immediate as homotopy objects can be computed on the level of presheaves.

Using Lemma [4.4,](#page-32-0) it suffices to show that $E \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})$ is connective (resp. coconnective) for the *p*-adic t-structure if and only if $E(U)$ is connective (resp. coconnective) for the p-adic t-structure on Sp for all $U \in \mathcal{C}$. Here, one ar-gues as in the proof of Lemma [4.4,](#page-32-0) noting that the homotopy objects of E are calculated as the homotopy objects of the underlying presheaves, and using Proposition [4.18.](#page-36-0) \Box

Lemma 4.23. Let $A \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{\heartsuit}$. Then $(\mathbb{L}_i A)(U) \cong \mathbb{L}_i(A(U))$ for every $U \in \mathcal{C}$ *. In particular,* $\mathbb{L}_i A \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{\heartsuit}$ *.*

Proof. First note that $A(U) \in \text{Sp}^{\heartsuit}$ by Lemma [4.20,](#page-36-1) so the statement makes sense. Note that the presheaf $U \mapsto L_i(A(U))$ is actually a sheaf. This is clear since \mathbb{L}_i is additive and thus preserves finite products.

Thus, the lemma follows from the t-exactness of ι_{Σ} for the p-adic t-structures (Lemma [4.22\)](#page-37-0) and Lemma [4.4.](#page-32-0) The last claim follows, because ι_{Σ} is fully faithful and t-exact for the standard t-structures (by the same lemma) and the corresponding claim about presheaves. \Box

As in the case of presheaves, the heart of the p-adic t-structure has a very simple description:

Lemma 4.24. We have $\mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{p\heartsuit} \subset \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{\heartsuit}$, consisting exactly of the p*-complete objects in the standard heart.*

In particular, if $E \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})$ *is p-complete, then* $\pi_n(E) \cong \pi_n^p(E)$ *.*

Proof. The inclusion ι_{Σ} is fully faithful and t-exact for the standard t-structures and t-exact for the p-adic t-structures by Lemma [4.22.](#page-37-0) Thus, the lemma follows from Lemma [4.6](#page-33-0) (note that ι_{Σ} preserves p-complete objects, see Lemma [2.32\)](#page-19-0). □

Definition 4.25. Let $G \in \mathcal{G}rp(\text{Disc}(\mathcal{P}_{\Sigma}(\mathcal{C})))$ be a nilpotent sheaf of groups (i.e. the conjugation action of G on itself is nilpotent). We define

$$
\mathbb{L}_i G \coloneqq \pi_{i+1}((BG)^\wedge_p)
$$

for $i \geq 0$.

Remark 4.26*.* Since the p-completion of a 1-truncated nilpotent object is 2- truncated (see Proposition [3.21\)](#page-28-0), we see that $\mathbb{L}_i G = 0$ for all $i \geq 2$.

Lemma 4.27. *Let* $A \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{\heartsuit} \cong \mathcal{A}b(\text{Disc}(\mathcal{P}_{\Sigma}(\mathcal{C})))$ *. Denote by G the underlying nilpotent presheaf of groups (i.e. we forget that* A *is abelian). Then* $\mathbb{L}_i A \cong \mathbb{L}_i G$ *for all* $i > 0$ *.*

Proof. Since homotopy sheaves (Lemma [4.15\)](#page-35-1), classifying spaces (Lemma [4.16\)](#page-35-2) and p-completions (Proposition [4.18\)](#page-36-0) in $\mathcal{P}_{\Sigma}(\mathcal{C})$ can be computed in $\mathcal{P}(\mathcal{C})$, we conclude that also $\mathbb{L}_i G$ can be computed in $\mathcal{P}(\mathcal{C})$. Also, $\mathbb{L}_i A$ can be computed in $\mathcal{P}(\mathcal{C})$ by Lemmas [4.5](#page-32-1) and [4.23.](#page-37-1) Thus, the lemma follows immediately from the corresponding Lemma [4.9.](#page-33-1) \Box

Proposition 4.28. Let $X \in \mathcal{P}_{\Sigma}(\mathcal{C})_{*}$ be a pointed nilpotent sheaf. Then for *every* $n \geq 2$ *there exists a short exact sequence in* $\mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{\mathcal{P}^{\mathcal{O}}}$ *(or a short exact sequence in* $Grp(\text{Disc}(\mathcal{P}_{\Sigma}(\mathcal{C})))$ *if* $n = 1$ *)*

$$
0 \to \mathbb{L}_0\pi_n(X) \to \pi_n(X_p^{\wedge}) \to \mathbb{L}_1\pi_{n-1}(X) \to 0,
$$

where we use Definition [4.25](#page-38-0) for $\mathbb{L}_i \pi_1(X)$ *. Note that this distinction does not matter if* $\pi_1(X)$ *is abelian, see Lemma [4.27.](#page-38-1)* Here we define $\mathbb{L}_1 \pi_0(X) \coloneqq 0$. *since* X *is connected by assumption.*

Proof. Note that everything can be computed on the underlying presheaves (Lemmas [4.15,](#page-35-1) [4.16](#page-35-2) and [4.23](#page-37-1) and Proposition [4.18\)](#page-36-0), thus the lemma follows immediately from Proposition [4.10.](#page-33-2) \Box

4.3 Completions via Embeddings

Let $\mathcal X$ be an ∞ -topos. Suppose moreover that there is a small extensive category $\mathcal C$ and a geometric morphism

$$
\nu^* \colon \mathcal{X} \rightleftarrows \mathcal{P}_{\Sigma}(\mathcal{C}) \colon \nu_*,
$$

such that the left adjoint ν^* is fully faithful. We will freely use that ν^* and ν_* induce an adjoint pair on stabilizations, see Lemma [A.1.](#page-77-0) Note that since ν^* is fully faithful, also the induced functor on stabilizations is fully faithful (see Lemma [A.4\)](#page-78-0).

Lemma 4.29. In this situation $\mathcal X$ is Postnikov-complete te. In particular, $\mathcal X$ is *hypercomplete.*

Proof. We need to show that for every $X \in \mathcal{X}$ the canonical map $X \to \lim_{n \to \infty} X$ is an equivalence. Lemma [4.13](#page-34-0) shows that $\mathcal{P}_{\Sigma}(\mathcal{C})$ is Postnikov-complete. Hence, the canonical map $\nu^* X \to \lim_{n} \tau \leq n \nu^* X$ is an equivalence. We now compute

$$
X \cong \nu_* \nu^* X
$$

\n
$$
\cong \nu_* \lim_n \tau_{\leq n} \nu^* X
$$

\n
$$
\cong \lim_n \nu_* \nu^* \tau_{\leq n} X
$$

\n
$$
\cong \lim_n \tau_{\leq n} X.
$$

Here, we used in the first and last equivalence that ν^* is fully faithful. The third equivalence holds because ν_* commutes with limits (as a right adjoint), and ν^* commutes with truncations, see [\[Lur09,](#page-96-1) Proposition 5.5.6.28].

The last part follows from the first, see the proof of [\[Lur09,](#page-96-1) Corollary 7.2.1.12], where only Postnikov-completeness of $\mathcal X$ is used. \Box

Lemma 4.30. *Let* $E \in Sp(\mathcal{X})$ *. Then* $E_p^{\wedge} \cong \nu_*((\nu^*E)_p^{\wedge})$ p)*.*

Proof. We have $\nu_*((\nu^*E)^{\wedge}_n)$ p_p^{\wedge}) $\cong \nu_* \lim_n (\nu^* E)/\!/p^n \cong \lim_n (\nu_* \nu^* E)/\!/p^n = E_p^{\wedge}$ where we used that ν_* commutes with limits and cofibers, and that ν^* is fully faithful, i.e. $\nu_* \nu^* \cong id$. П

Lemma 4.31. Let $A \in \text{Sp}(\mathcal{X})^{\heartsuit}$ and $n \geq 1$. Then $K(A, n)_{p}^{\wedge} \cong \tau_{\geq 1} \nu_{*}(K(\nu^{*}A, n)_{p}^{\wedge})$.

Proof. The statement makes sense: Note that $\nu^* A$ is in the heart of the standard t-structure, see Lemma [A.6.](#page-78-1) Therefore, the Eilenberg-MacLane space $K(\nu^* A, n)$ is defined.

We have the following chain of equivalences

$$
K(A, n)_p^{\wedge} \cong \Omega_*^{\infty}(\tau_{\geq 1}(\Sigma^n A)_p^{\wedge})
$$

\n
$$
\cong \Omega_*^{\infty}(\tau_{\geq 1}\nu_*(\nu^*\Sigma^n A)_p^{\wedge})
$$

\n
$$
\cong \tau_{\geq 1}\nu_*\Omega_*^{\infty}((\Sigma^n(\nu^* A))_p^{\wedge})
$$

\n
$$
\cong \tau_{\geq 1}\nu_*(K(\nu^* A, n)_p^{\wedge}).
$$

The first and fourth equivalences are Corollary [3.18,](#page-27-0) noting that $(\Sigma^n(\nu^*A))_p^{\wedge}$ is already n-connective, see Lemma [4.19.](#page-36-2) The second equivalence is Lemma [4.30.](#page-39-0) The third equivalence follows from the definition of the standard t-structure on $Sp(\mathcal{X})$ and Lemma [A.1.](#page-77-0) \Box

We will repeatedly use the following fact about the interaction of connective covers with limits and geometric morphisms:

Lemma 4.32. *Fix* $n \geq 0$. Let $X \in \mathcal{P}_{\Sigma}(\mathcal{C})_{*}$ be a pointed space. We have an *equivalence*

$$
\tau_{\geq n} \nu_* X \cong \tau_{\geq n} \nu_* \tau_{\geq n} X.
$$

Similar, if X_i *is an I-indexed system in* X_* *for some* ∞ *-category I, then there is an equivalence*

$$
\tau_{\geq n} \lim_k X_k \cong \tau_{\geq n} \lim_k \tau_{\geq n} X_k.
$$

Proof. Since ν_* commutes with limits, we have a canonical fiber sequence

$$
\nu_* \tau_{\geq n} X \to \nu_* X \to \nu_* \tau_{\leq n-1} X.
$$

Since $\nu_* \tau_{\leq n-1} X$ is $(n-1)$ -truncated (see [\[Lur09,](#page-96-1) Proposition 5.5.6.16]), we conclude from the long exact sequence that for $k \geq n$ we have isomorphisms $\pi_k(\nu_*\tau_{\geq n}X) \cong \pi_k(\nu_*X)$. Thus, using hypercompleteness of X (Lemma [4.29\)](#page-38-2), the induced map

$$
\tau_{\geq n}\nu_*X\cong \tau_{\geq n}\nu_*\tau_{\geq n}X
$$

is an equivalence.

In the case of limits one argues as above, and uses that a limit of fiber sequences is again a fiber sequence (as limits commute with limits), and that limits preserve $(n-1)$ -truncated objects (see [\[Lur09,](#page-96-1) Proposition 5.5.6.5]). □

Lemma 4.33. Let $F \in \mathcal{X}_*$ be nilpotent and n-truncated. Then $\tau_{\geq 1} \nu_*((\nu^* F)_{p}^{\wedge})$ $\binom{n}{p} =$ F_p^{\wedge} .

Proof. We do a proof by induction on n, the case $n = 0$ being trivial. So suppose we have proven the statement for $n \geq 0$. Since F is nilpotent, its Postnikov tower has a principal refinement, see Lemma [A.15.](#page-80-1) So assume by induction that the statement holds for $\tau \leq n-1$ = $F_{n,0}$. We proceed by induction on $1 \leq k \leq m_n$. From Proposition [3.20](#page-27-1) we know that

$$
(\nu^* F_{n,k})_p^\wedge = \tau_{\geq 1} \text{fib}\Big((\nu^* F_{n,k-1})_p^\wedge \to K(\nu^* A_{n,k}, n+1)_p^\wedge\Big)
$$

and therefore by applying $\tau_{\geq 1}\nu_*(-)$ we get

$$
\tau_{\geq 1}\nu_{*}((\nu^{*}F_{n,k})_{p}^{\wedge}) \cong \tau_{\geq 1}\nu_{*}\tau_{\geq 1} \text{fib}\Big((\nu^{*}F_{n,k-1})_{p}^{\wedge} \to K(\nu^{*}A_{n,k}, n+1)_{p}^{\wedge}\Big)
$$

\n
$$
\cong \tau_{\geq 1}\nu_{*} \text{fib}\Big((\nu^{*}F_{n,k-1})_{p}^{\wedge} \to K(\nu^{*}A_{n,k}, n+1)_{p}^{\wedge}\Big)
$$

\n
$$
\cong \tau_{\geq 1} \text{fib}\Big(\nu_{*}(\nu^{*}F_{n,k-1})_{p}^{\wedge} \to \nu_{*}K(\nu^{*}A_{n,k}, n+1)_{p}^{\wedge}\Big)
$$

\n
$$
\cong \tau_{\geq 1} \text{fib}\Big(\tau_{\geq 1}\nu_{*}(\nu^{*}F_{n,k-1})_{p}^{\wedge} \to \tau_{\geq 1}\nu_{*}K(\nu^{*}A_{n,k}, n+1)_{p}^{\wedge}\Big)
$$

\n
$$
\cong \tau_{\geq 1} \text{fib}\Big((F_{n,k-1})_{p}^{\wedge} \to K(A_{n,k-1}, n+1)_{p}^{\wedge}\Big)
$$

\n
$$
\cong (F_{n,k})_{p}^{\wedge}.
$$

The second and fourth equivalences are Lemma [4.32.](#page-39-1) The third equivalence holds because ν_* preserves limits (as a right adjoint). The fifth equivalence holds by induction and Lemma [4.31.](#page-39-2) The sixth equivalence is again Proposition [3.20.](#page-27-1) Thus, by induction, we conclude that the statement holds for $F_{n,m_n} = F_{n+1,0} = \tau_{\leq n} F = F$. $\tau_{\leq n}F = F.$

Lemma 4.34. Assume that X is locally of finite uniform homotopy dimension. Let $F \in \mathcal{X}_*$ be nilpotent. Then $\tau_{\geq 1} \nu_*((\nu^* \tilde{F})_p^{\wedge}$ $_{p}^{\wedge})=F_{p}^{\wedge}.$

Proof. We will freely use that \mathcal{X} and $\mathcal{P}_{\Sigma}(\mathcal{C})$ are Postnikov-complete (Lem-mas [4.13](#page-34-0) and [4.29\)](#page-38-2). Note that ν^* commutes with truncations, see [\[Lur09,](#page-96-1) Proposition 5.5.6.28]. Using Lemma [4.21,](#page-37-2) we get

$$
(\nu^* F)_p^{\wedge} \cong \lim_n (\nu^* \tau_{\leq n} F)_p^{\wedge}.
$$

Applying $\nu_*,$ we conclude

$$
\nu_*((\nu^*F)_p^{\wedge}) \cong \nu_* \lim_n (\nu^* \tau_{\leq n} F)_p^{\wedge} \cong \lim_n \nu_* (\nu^* \tau_{\leq n} F)_p^{\wedge},
$$

where we use that ν_* is a right adjoint for the second equivalence. Thus,

$$
\tau_{\geq 1} \nu_*((\nu^* F)_p^{\wedge}) \cong \tau_{\geq 1} \lim_n \nu_*((\nu^* \tau_{\leq n} F)_p^{\wedge})
$$

\n
$$
\cong \tau_{\geq 1} \lim_n \tau_{\geq 1} \nu_*((\nu^* \tau_{\leq n} F)_p^{\wedge})
$$

\n
$$
\cong \tau_{\geq 1} \lim_n (\tau_{\leq n} F)_p^{\wedge}
$$

\n
$$
\cong \tau_{\geq 1} F_p^{\wedge}
$$

\n
$$
\cong F_p^{\wedge}.
$$

The second equivalence is Lemma [4.32.](#page-39-1) The third equivalence was proven in Lemma [4.33.](#page-40-0) The fourth equivalence holds because p -completions can be computed on the Postnikov tower, see Theorem [3.27](#page-30-0) (here we use the assumption that X is locally of finite uniform homotopy dimension). The last equivalence follows because p-completions of connected spaces are connected, see Lemma [3.12.](#page-25-0) \Box

Definition 4.35. Let $E \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})$. We say that E is *classical* if E is in the essential image of ν^* .

Remark 4.36. Note that since ν^* is fully faithful, an $E \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})$ is classical if and only if $E \cong \nu^* \nu_* E$. Indeed, suppose that $E \cong \nu^* F$ for some $F \in \mathrm{Sp}(\mathcal{X})$. But then $\nu^*\nu_*E \cong \nu^*\nu_*\nu^*F \cong \nu^*F \cong E$ using that ν^* is fully faithful.

Lemma 4.37. Suppose that $A \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{p\heartsuit}$ and that A/p is classical. Then $\nu_* A \in \mathrm{Sp}(\mathcal{X})^{p\heartsuit}.$

Proof. Lemma [2.34](#page-20-0) shows that ν_* is left t-exact with respect to the p-adic tstructure, therefore we get $\nu_*A \in \mathrm{Sp}(\mathcal{X})_{\leq 0}^p$. Thus, it suffices to show that $\nu_*A \in$ $\text{Sp}(\mathcal{X})_{\geq 0}^p$. By assumption there is an $X \in \text{Sp}(\mathcal{X})$ such that $\nu^* X \cong A/p$. Note that since $A \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{p\heartsuit}$ we know that $A/p \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})_{\geq 0}$ (see Lemma [2.15\)](#page-13-1). But this implies that $X \in \mathrm{Sp}(\mathcal{X})_{\geq 0}$ $(\nu^* \pi_k X \cong \pi_k \nu^* X \cong \pi_k (A/p) = 0$ for all k < 0 and ν^* is fully faithful). Now we have equivalences $X \cong \nu_* \nu^* X$ ≃ $\nu_*(A/\!\!/p) \cong (\nu_*A)/\!\!/p$, hence $(\nu_*A)/\!\!/p \in \mathrm{Sp}(\mathcal{X})_{\geq 0}$. Now we conclude again by Lemma [2.15](#page-13-1) that $\nu_* A \in \mathrm{Sp}(\mathcal{X})_{\geq 0}^p$. 口 Corollary 4.38. *Suppose that we have a short exact sequence*

$$
0 \to A \to B \to C \to 0
$$

in $\mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{\mathcal{P}^{\bigcirc}}$ such that two out of A/p , B/p and C/p are classical. Then *also the third is classical, and we get a short exact sequence*

$$
0 \to \nu_* A \to \nu_* B \to \nu_* C \to 0
$$

in $\text{Sp}(\mathcal{X})^{p\heartsuit}$.

Proof. First note that we have a morphism of fiber sequences given by the counit of the adjunction ν^* + ν_* :

$$
\begin{array}{ccc}\n\nu^*\nu_*(A/\!\!/p) & \longrightarrow \nu^*\nu_*(B/\!\!/p) & \longrightarrow \nu^*\nu_*(C/\!\!/p) \\
\downarrow & \downarrow & \downarrow & \downarrow \\
A/\!\!/p & \longrightarrow B/\!\!/p & \longrightarrow C/\!\!/p.\n\end{array}
$$

By assumption, two of the vertical morphisms are isomorphisms, hence so is the third. Thus, we conclude that all of A/p , B/p and C/p are classical. The claim now follows immediately from Lemma [4.37.](#page-41-0) П

Lemma 4.39. Let $A \in \text{Sp}(\mathcal{X})^{\heartsuit}$. Suppose that $(\mathbb{L}_1 \nu^* A)/\!/p$ is classical. Then $(\mathbb{L}_i \nu^* A)/\!/\!p$ *is classical, and we have* $\mathbb{L}_i A \cong \nu_* \mathbb{L}_i \nu^* A$ *for all* $i \in \mathbb{Z}$ *.*

Proof. Since $\mathbb{L}_i = 0$ for all $i \neq 0, 1$ (see Proposition [2.26\)](#page-17-0), the claim needs only be checked for $i = 0, 1$. Note that by Lemma [2.27](#page-17-1) we have a fiber sequence

$$
\Sigma \mathbb{L}_1 \nu^* A \to (\nu^* A)_p^{\wedge} \to \mathbb{L}_0 \nu^* A.
$$

Applying $\left(\frac{-}{p}\right)$ we get a fiber sequence

$$
\Sigma(\mathbb{L}_1\nu^*A)/\!\!/p \to (\nu^*A)^{\wedge}_{p}/\!\!/p \to (\mathbb{L}_0\nu^*A)/\!\!/p.
$$

Note that the left term is classical by assumption. For the middle term we have equivalences $(\nu^* A)_n^{\wedge}$ $p_p^{\wedge}/p \cong (\nu^* A)/p \cong \nu^*(A/\!\!/p)$, i.e. it is also classical. Thus, we conclude that $(\mathbb{L}_0 \nu^* A)/\!p$ is also classical by (a proof similar to) Corollary [4.38.](#page-41-1)

Applying $\nu_*(-)$ to the first fiber sequence, and noting that $\nu_*(\nu^* A)_n^{\wedge}$ $\stackrel{\wedge}{p} \cong A_p^{\wedge}$ by Lemma [4.30,](#page-39-0) we arrive at the fiber sequence

$$
\Sigma \nu_* \mathbb{L}_1 \nu^* A \to A_p^{\wedge} \to \nu_* \mathbb{L}_0 \nu^* A.
$$

Now by Lemma [4.37](#page-41-0) and since $(\mathbb{L}_i \nu^* A)/\!/\!p$ is classical, we know that $\nu_* \mathbb{L}_i \nu^* A \in$ $\mathrm{Sp}(\mathcal{X})^{p\heartsuit}$. Note that we also have a fiber sequence

$$
\Sigma \mathbb{L}_1 A \to A_p^{\wedge} \to \mathbb{L}_0 A,
$$

see again Lemma [2.27.](#page-17-1) Now the lemma follows from the uniqueness of fiber sequences

$$
X\to A_p^\wedge\to Y
$$

with $X \in \mathrm{Sp}(\mathcal{X})_{\geq 1}^p$ and $Y \in \mathrm{Sp}(\mathcal{X})_{\leq 0}^p$ by the definition of a t-structure. \Box **Definition 4.40.** Let $G \in \mathcal{G}rp(\text{Disc}(\mathcal{X}))$ be a nilpotent sheaf of groups. We define

 $\mathbb{L}_i G \coloneqq \nu_* \mathbb{L}_i \nu^* G = \nu_* \pi_{i+1} ((B \nu^* G)^\wedge_p)$ $p^{\wedge})\in\mathrm{Sp}(\mathcal{X})$

for $i \geq 1$, using Definition [4.25.](#page-38-0) Similarly, we define

$$
\mathbb{L}_0 G \coloneqq \nu_* \mathbb{L}_0 \nu^* G = \nu_* \pi_1((B \nu^* G)_p^{\wedge}) \in \mathcal{G}rp(\text{Disc}(\mathcal{X})),
$$

where we view ν_* as a functor $Grp(\text{Disc}(\mathcal{P}_{\Sigma}(\mathcal{C}))) \to Grp(\text{Disc}(\mathcal{X}))$.

Remark 4.41. Note that $\mathbb{L}_i G \cong 0$ for all $i \geq 2$ since $(B\nu^* G)^{\wedge}_{p}$ \int_{p}^{∞} is 2-truncated by Proposition [3.21.](#page-28-0)

Remark 4.42. If $A \in \mathrm{Sp}(\mathcal{X})^{\heartsuit} \cong Ab(\mathrm{Disc}(\mathcal{X}))$, then there are two conflicting notions of $\mathbb{L}_i A$: We could use Definition [2.22](#page-16-0) or Definition [4.40](#page-42-0) for the underlying sheaf of groups. Those two definitions are equivalent if $(\mathbb{L}_1 \nu^* A)/\!/\!p$ is classical, see Lemma [4.43](#page-43-0) (where we use Definition [2.22\)](#page-16-0). Otherwise, it is not clear if the two notions agree. In the following, we always try to emphasize which definition we use, and whether the distinction does matter.

Lemma 4.43. *Let* $A \in \mathrm{Sp}(\mathcal{X})^{\heartsuit} \cong Ab(\mathrm{Disc}(\mathcal{X}))$ *be an abelian sheaf of groups. Denote by* G the underlying nilpotent sheaf of groups. Suppose that $(\mathbb{L}_1 \nu^* A)/p$ *is classical. Then* $\mathbb{L}_i G \cong \mathbb{L}_i A$ *for all* $i ≥ 0$ *.*

Proof. Using Lemma [4.39,](#page-42-1) it suffices to show that $\pi_{i+1}((B\nu^*G)^{\wedge}_{p})$ $p_{\!\!\mu}^{\wedge})\,=\,\mathbb{L}_i\nu^*A.$ This was shown in Lemma [4.27.](#page-38-1)

Theorem 4.44. Let $X \in \mathcal{X}_*$ be pointed and nilpotent such that $(\mathbb{L}_1 \nu^* \pi_n X)/\!/\!p$ *is classical for every* $n \geq 2$ *. Suppose further that either*

- $\pi_1 X$ *is abelian and* $(\mathbb{L}_1 \nu^* \pi_1 X)/\!p$ *is classical (where we use Definition [2.22\)](#page-16-0)*, *or*
- *that* $\mathbb{L}_1 \pi_1 X \in \mathrm{Sp}(\mathcal{X})^{p\heartsuit}$ *(where we use Definition [4.40\)](#page-42-0).*

Then for every $n \geq 2$ *there is a short exact sequence in* $\text{Sp}(\mathcal{X})^{p\heartsuit}$ (or a short *exact sequence in* $Grp(Disc(X))$ *if* $n = 1$ *)*

$$
0 \to \mathbb{L}_0 \pi_n X \to \nu_* \pi_n((\nu^* X)_p^{\wedge}) \to \mathbb{L}_1 \pi_{n-1} X \to 0,
$$

where we use Definition [4.40](#page-42-0) for $\mathbb{L}_i \pi_1(X)$ *. Note that this distinction does not matter if* $\pi_1(X)$ *is abelian, see Lemma [4.43.](#page-43-0) Here, we define* $\mathbb{L}_1 \pi_0 X = 0$ *(since* X *is connected by assumption).*

Moreover, we get that $\pi_n((\nu^*X)_{p}^{\wedge})$ $\binom{N}{p}/\!\!/p$ *is classical for all* $n \geq 2$ *.*

Proof. We first prove the case $n \geq 2$. Using Lemma [4.39](#page-42-1) we conclude that also $(\mathbb{L}_i \nu^* \pi_n X)/\!/\!p$ is classical for all $n \geq 2$ and all *i*. Proposition [4.28](#page-38-3) gives us a short exact sequence in $\mathcal{P}_\Sigma(\mathcal{C}, \operatorname{Sp})^{p\bar\heartsuit}$

$$
0 \to \mathbb{L}_0 \pi_n \nu^* X \to \pi_n((\nu^* X)_p^{\wedge}) \to \mathbb{L}_1 \pi_{n-1} \nu^* X \to 0.
$$

This induces a fiber sequence

$$
(\mathbb{L}_0 \pi_n \nu^* X)/\!\!/p \to (\pi_n((\nu^* X)^{\wedge}_p))/\!\!/p \to (\mathbb{L}_1 \pi_{n-1} \nu^* X)/\!\!/p,
$$

where the outer to parts are classical. Thus, the same is true for the middle, which proves the last statement. Using Corollary [4.38](#page-41-1) (using the assumptions on $(\mathbb{L}_i \nu^* \pi_n X)/\!/p$, the above short exact sequence induces a short exact sequence in $\mathrm{Sp}(\mathcal{X})^{p\heartsuit}$

$$
0 \to \nu_* \mathbb{L}_0 \pi_n \nu^* X \to \nu_* \pi_n((\nu^* X)^\wedge_p) \to \nu_* \mathbb{L}_1 \pi_{n-1} \nu^* X \to 0.
$$

We conclude by noting that $\nu_* \mathbb{L}_i \pi_n \nu^* X \cong \nu_* \mathbb{L}_i \nu^* \pi_n X \cong \mathbb{L}_i \pi_n X$ where the last equivalence is supplied by Lemma [4.39.](#page-42-1)

For the case $n = 1$, we get a canonical equivalence in $\mathcal{G}rp(\text{Disc}(\mathcal{P}_{\Sigma}(\mathcal{C})))$ from Proposition [4.28](#page-38-3)

$$
\mathbb{L}_0 \pi_1 \nu^* X \cong \pi_1((\nu^* X)_p^{\wedge}).
$$

Applying ν_* , this induces an equivalence in $\mathcal{G}rp(\text{Disc}(\mathcal{X}))$

$$
\mathbb{L}_0 \pi_1 X = \nu_* \mathbb{L}_0 \pi_1 \nu^* X \cong \nu_* \pi_1((\nu^* X)_p^{\wedge}),
$$

which is what we wanted to show.

4.4 Comparison of the p-adic Hearts

We keep the notation from Section [4.3.](#page-38-4) In this section, we prove a technical result about the functors on the hearts of the p-adic t-structures induced by the functors $\nu^* \dashv \nu_*$.

Definition 4.45. Let $\nu^{*,p\heartsuit}$: $\text{Sp}(\mathcal{X})^{p\heartsuit} \to \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{p\heartsuit}$ be defined as the functor $\pi_0^p \circ \nu^*$ restricted to the heart. Similarly, let $\nu_*^{p\heartsuit} : \mathcal{P}_\Sigma(\mathcal{C}, \text{Sp})^{p\heartsuit} \to \text{Sp}(\mathcal{X})^{p\heartsuit}$ be defined as the functor $\pi_0^p \circ \nu_*$ restricted to the heart.

Lemma 4.46. The functor $\nu^{*,p\heartsuit}$ is left adjoint to $\nu^{p\heartsuit}_*$. Moreover, $\nu^{*,p\heartsuit}$ is *right-exact and* $\nu_*^{p\heartsuit}$ *is left-exact as functors of abelian categories.*

Proof. Note that ν^* is right t-exact and ν_* is left t-exact for the p-adic tstructures, see Lemma [2.34.](#page-20-0) Now the statements are [\[BBD82,](#page-96-2) Proposition 1.3.17 (i) and (iii) . \Box

Lemma 4.47. Let $E \in \mathrm{Sp}(\mathcal{X})^{p^\n\heartsuit}$. Suppose that $\nu^{*,p^\n\heartsuit}E \cong 0$. Then $E \cong 0$.

Proof. By Lemma [2.34](#page-20-0) and the assumption, we see that $\nu^* E \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^p_{\geq 1}$. By Lemma [2.35](#page-20-1) (using that ν^* is conservative, since it is fully faithful), we conclude that $E \in \mathrm{Sp}(\mathcal{X})_{\geq 1}^p$. Since by assumption $E \in \mathrm{Sp}(\mathcal{X})^{p\heartsuit}$, it follows that $E \cong 0.$ □

Lemma 4.48. Let $E \in \mathrm{Sp}(\mathcal{X})^{p\heartsuit}$. Then $(\nu^* E)_p^{\wedge} \in \mathcal{P}_{\Sigma}(\mathcal{C}, \mathrm{Sp})_{\geq 0}^p \cap \mathcal{P}_{\Sigma}(\mathcal{C}, \mathrm{Sp})_{\leq 1}^p$.

□

Proof. Note that $E \in \mathrm{Sp}(\mathcal{X})_{\leq 0}$ by Lemma [2.19.](#page-15-0) Thus, $\nu^* E \in \mathcal{P}_{\Sigma}(\mathcal{C}, \mathrm{Sp})_{\leq 0}$ (since ν^* is t-exact for the standard t-structures, see e.g. Lemma [A.6\)](#page-78-1). On the other hand, $E/\hspace{-3mm}/ p \in \mathrm{Sp}(\mathcal{X})_{\geq 0}$ by Lemma [2.15.](#page-13-1) Thus, also $\nu^* E/\hspace{-3mm}/ p \in \mathcal{P}_\Sigma(\mathcal{C}, \mathrm{Sp})_{\geq 0}$, again by the t-exactness $\overline{\delta f} \nu^*$. The lemma follows immediately from (1) and (3) of Proposition [2.26.](#page-17-0) П

Corollary 4.49. Let $E \in \mathrm{Sp}(\mathcal{X})^{p\heartsuit}$. Then $\pi_1^p(\nu^*E) = 0$ if and only if $(\nu^*E)_p^{\wedge} \in$ $\mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^p_{\leq 0}$. In particular, in this case $\nu^{*,p\heartsuit}E \cong (\nu^*E)^{\wedge}_p$ p *.*

Proof. The first part is immediate from Lemma [4.48.](#page-44-0) For the last statement, note that

$$
\nu^{*,p\heartsuit}E = \pi_0^p(\nu^*E) \cong \pi_0^p((\nu^*E)^\wedge_p) = (\nu^*E)^\wedge_p,
$$

where we used Corollary [2.21.](#page-16-1)

Definition 4.50. Let $A \subset \text{Sp}(\mathcal{X})^{p\heartsuit}$ be the full subcategory spanned by objects E such that $\pi_1^p(\nu^* E) \cong 0$.

Lemma 4.51. Let $0 \to A \to B \to C \to 0$ be a short exact sequence in $\text{Sp}(\mathcal{X})^{p\heartsuit}$ such that $C \in \mathcal{A}$. Then $0 \to \nu^{*,p} \mathcal{A} \to \nu^{*,p} \mathcal{B} \to \nu^{*,p} \mathcal{C} \to 0$ is exact.

Proof. We already know that $\nu^{*,p\heartsuit}$ is right exact, see Lemma [4.46.](#page-44-1) Moreover, $\nu^{*,p\circledcirc} = \pi_0^p \circ \nu^*.$ Thus, the result follows from the long exact sequence and the assumption on C. \Box

Lemma 4.52. Let $E \in \mathcal{A} \subset \text{Sp}(\mathcal{X})^{p^{\n}la}$. Then $\nu_* \nu^{*,p^{\n}la} E \cong E$. *Moreover,* $\nu_*^{p\heartsuit}\nu^{*,p\heartsuit}E \cong E$. In particular, $\nu^{*,p\heartsuit}$ is fully faithful on A.

Proof. We compute

$$
\nu_*\nu^{*,p\heartsuit}E\cong \nu_*(\nu^*E)^\wedge_p\cong (\nu_*\nu^*E)^\wedge_p\cong E^\wedge_p\cong E,
$$

where we used Corollary [4.49](#page-45-0) in the first equivalence, Lemma [4.30](#page-39-0) in the second equivalence and the fully faithfulness of ν^* in the third equivalence. The fourth equivalence holds because $E \in \mathrm{Sp}(\mathcal{X})^{p\heartsuit}$ is *p*-complete, see Lemma [2.19.](#page-15-0)

For the last part, we note that $\nu_*^{p\heartsuit}\nu^{*,p\heartsuit}E = \pi_0^p(\nu_*\nu^{*,p\heartsuit}E) \cong \pi_0^p(E) = E$, which follows from the calculation above. Note that this equivalence is the (inverse of the) unit of the adjunction $\nu^{*,p\heartsuit} \dashv \nu^{p\heartsuit}_*$, therefore it follows that $\nu^{p\heartsuit}_*$ is fully faithful on A. П

Corollary 4.53. Let $A \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{p\heartsuit}$. Suppose that A is in the essential image *of* $v^{*,p\heartsuit} |_{\mathcal{A}},$ *i.e. there is an* $A' \in \mathcal{A}$ *such that* $v^{*,p\heartsuit} A' \cong A$ *.*

Then $\nu_* A \cong A'$, in particular $\nu_* A \in \mathrm{Sp}(\mathcal{X})^{p\heartsuit}$ and $\nu^{*,p\heartsuit} \nu_* A \cong A$.

Proof. This immediately from Lemma [4.52,](#page-45-1) because $\nu_* A \cong \nu_* \nu^{*,p} \otimes A' \cong A' \in \mathcal{A}$, and $\nu^{*,p\heartsuit}\nu_*A \cong \nu^{*,p\heartsuit}A' \cong A.$ \Box

Lemma 4.54. Let $f: A \to B$ be a morphism in $\text{Sp}(\mathcal{X})^{p\heartsuit}$, such that A and B *are in* \mathcal{A} *. Then also* ker $(f) \in \mathcal{A}$ *.*

 \Box

Proof. Note that we have the following two fiber sequences in $Sp(\mathcal{X})$:

$$
A \xrightarrow{f} B \to \text{cofib}(f),
$$

$$
\Sigma \ker(f) \to \text{cofib}(f) \to \text{coker}(f).
$$

Applying the exact functor $(\nu^*(-))^{\wedge}_{p}$ and using the assumptions on A and B (and Corollary [4.49\)](#page-45-0), we conclude by the long exact sequence that $(\nu^* \text{cofib}(f))_p^{\wedge}$ lives in p-adic degrees 0 and 1. We know from Lemma [4.48,](#page-44-0) that also $(\nu^* \operatorname{coker}(f))_p^{\wedge}$ lives in *p*-adic degrees 0 and 1. Therefore, applying $(\nu^*(-))^{\wedge}_{p}$ to the second fiber sequence, the long exact sequence implies that $\pi_1^p(\nu^* \ker(f)) \cong \pi_2^p((\nu^* \Sigma \ker(f))^\wedge_p) =$ 0, i.e. ker $(f) \in \mathcal{A}$.

Lemma 4.55. Let $0 \to A_1 \xrightarrow{f} A_2 \xrightarrow{g} A_3 \to 0$ be a short exact sequence in $\mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{p\heartsuit}$. Suppose that A_3 and one out of A_1 and A_2 satisfy that they are *in the essential image of* $\nu^{*,p\heartsuit} |_{\mathcal{A}}$ *. Then this is also true for the third.*

Proof. We choose $A'_3 \in \mathcal{A}$ such that $v^{*,p\heartsuit} A'_3 \cong A_3$. Note that the short exact sequence in the p-adic heart gives a fiber sequence $A_1 \rightarrow A_2 \rightarrow A_3$ in $\mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})$. Applying the functor ν_* yields the fiber sequence

$$
\nu_* A_1 \to \nu_* A_2 \to A'_3,\tag{1}
$$

where we used Corollary [4.53.](#page-45-2)

We start with the case that the assumptions for A_2 and A_3 imply the statement for A_1 . So choose $A'_2 \in \mathcal{A}$ such that $\nu^{*,p} \varnothing A'_2 \cong A_2$. Since $\nu^{*,p} \varnothing$ is fully faithful on A, we know that $\nu^{*,p\heartsuit}\nu^{p\heartsuit}_*g \cong g$ (note that g is a morphism between objects in the essential image of $\nu^{*,p\heartsuit}(\mathcal{A})$. Thus, again by Corollary [4.53,](#page-45-2) the fiber sequence [1](#page-46-0) is equivalent to the fiber sequence

$$
\nu_* A_1 \to \nu_*^{p\heartsuit} A_2 \xrightarrow{\nu_*^{p\heartsuit} g} \nu_*^{p\heartsuit} A_3.
$$

By Lemma [2.34,](#page-20-0) $\nu_* A_1 \in \mathrm{Sp}(\mathcal{X})_{\leq 0}^p$. Since $\nu_*^{p\heartsuit} A_2$ and $\nu_*^{p\heartsuit} A_3$ are living in $\text{Sp}(\mathcal{X})^{p\heartsuit}$, the long exact sequence show that $\nu_* A_1 \in \text{Sp}(\mathcal{X})_{\geq -1}^p$, and that $\pi_{-1}^p(\nu_* A_1) \cong \text{coker}(\nu_*^{p\heartsuit} g)$. Note that $\nu_*^{*,p\heartsuit} \text{coker}(\nu_*^{p\heartsuit} g) \cong \text{coker}(\nu^{*,p\heartsuit} \nu_*^{p\heartsuit} g) \cong$ $\operatorname{coker}(g) \cong 0$, where we used that $\nu^{*,p\heartsuit}$ is left exact, see Lemma [4.46.](#page-44-1) Using Lemma [4.47,](#page-44-2) we see that $\mathrm{coker}(\nu^{\mathcal{P}^{\heartsuit}}_*)\cong 0$. This implies that $\nu_*A_1\in \mathrm{Sp}(\mathcal{X})^{\mathcal{P}^{\heartsuit}},$ in particular, $\nu_* A_1 \cong \ker(\nu_*^{p\heartsuit} g)$. Since we know by Lemma [4.54](#page-45-3) that A is stable under kernels, we conclude $\nu_* A_1 \in \mathcal{A}$. Therefore, $\nu^{*,p\heartsuit} \nu_* A_1 \cong (\nu^* \nu_* A_1)_p^{\wedge}$ $\frac{\wedge}{p}$ \cong $A_1_p^{\wedge} \cong A_1$, where we used Corollary [4.49,](#page-45-0) and the fact that A_1 is p-complete because it lives in the p -adic heart. This proves that A_1 is in the essential image of $\nu^{*,p\heartsuit} |_{\mathcal{A}}$.

We continue with the case that the assumptions for A_1 and A_3 imply the statement for A_2 . So choose $A'_1 \in \mathcal{A}$ such that $\nu^{*,p\heartsuit} A'_1 \cong A_1$. Then by Corollary [4.53](#page-45-2) the fiber sequence [1](#page-46-0) is equivalent to the fiber sequence

$$
A'_1 \to \nu_* A_2 \to A'_3.
$$

Since the outer parts live in the p-adic heart, this is also true for $\nu_* A_2$. Now define $A'_2 := \nu_* A_2$. We immediately see that $A'_2 \in \mathcal{A}$ because A'_1 and A'_2 are (apply ν^* and use the long exact sequence for π_n^p). But then $\nu^{*,p\heartsuit}A_2' \cong$ $(\nu^*\nu_*\tilde{A_2})_p^{\lambda}$ $p \nvert p \cong A_2 \nvert p \cong A_2$, again by Corollary [4.49](#page-45-0) and the fact that A_2 lives in the p-adic heart and is thus p-complete. This proves the lemma.

The following will be a useful criterion to determine when an object will be in the essential image of $\nu^{*,p\heartsuit} |_{\mathcal{A}}$:

Proposition 4.56. Let $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \xrightarrow{\gamma} D$ be an exact sequence in $\mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{p\heartsuit}$ *. Suppose that there are A'*, C' and D' in $\mathcal{A} \subset \text{Sp}(\mathcal{X})^{p\heartsuit}$ such *that* $\nu^* \cdot P^{\circledcirc} A' \cong A$, $\nu^* \cdot P^{\circledcirc} C' \cong C$ *and* $\nu^* \cdot P^{\circledcirc} D' \cong D$ *. Suppose moreover that* $\operatorname{coker}(\nu^{\mathcal{P}^{\bigotimes}}_{*}\gamma) \in \mathcal{A}.$

Then $\nu_* B \in \mathcal{A} \subset \mathrm{Sp}(\mathcal{X})^{p\heartsuit}$, and $\nu^{*,p\heartsuit}(\nu_* B) \cong B$.

Proof. It suffices to prove that B is in the essential image of $\nu^{*,p\heartsuit} |_{\mathcal{A}}$, the claim then follows from Corollary [4.53.](#page-45-2)

Write $K \coloneqq \ker(\gamma) \cong \text{im}(\beta)$ and $I \coloneqq \text{im}(\gamma)$. We have exact sequences

$$
0 \to A \xrightarrow{\alpha} B \to K \to 0,
$$

$$
0 \to K \to C \to I \to 0,
$$

$$
0 \to I \to D \to \text{coker}(\gamma) \to 0.
$$

By applying Lemma [4.55](#page-46-1) three times, it suffices to show that $coker(\gamma)$ is in the essential image of $\nu^{*,p\heartsuit} |_{\mathcal{A}}$.

Since $\nu^{*,p\heartsuit}$ is fully faithful on A by Lemma [4.52,](#page-45-1) we see that there is a morphism $\gamma' : C' \to D'$ such that $\nu^{*,p\tilde{\heartsuit}}(\gamma') \cong \gamma$. In particular, $\mathrm{coker}(\gamma') \cong$ $\operatorname{coker}(\nu^{\mathcal{P}^{\heartsuit}}_{*}\nu^{*,\mathcal{P}^{\heartsuit}}\gamma') \cong \operatorname{coker}(\nu^{\mathcal{P}^{\heartsuit}}_{*}\gamma)$, which lives in A by assumption. Therefore, we see that $\mathrm{coker}(\gamma) \cong \mathrm{coker}(\nu^{*,p\heartsuit}\gamma') \cong \nu^{*,p\heartsuit}\mathrm{coker}(\gamma')$ is in the essential image of $\nu^{*,p\heartsuit} |_{\mathcal{A}}$. Here we used that $\nu^{*,p\heartsuit}$ is right-exact, see Lemma [4.46.](#page-44-1)

We will also need the following lemma, which helps to determine when the pushforward ν_* of an object is actually in A:

Lemma 4.57. Suppose that $A \in \mathcal{P}_{\Sigma}(\mathcal{C}, \text{Sp})^{\mathcal{P}^{\bigcirc}}$ such that $A/\!\!/p$ is classical, and such that $\nu_* A \in \mathrm{Sp}(\mathcal{X})^{p\heartsuit}$. Then $\nu_* A \in \mathcal{A} \subset \mathrm{Sp}(\mathcal{X})^{p\heartsuit}$.

Proof. Using Corollary [4.49,](#page-45-0) we have to show that $(\nu^*\nu_*A)_p^{\wedge} \in \mathcal{P}_{\Sigma}(\mathcal{C},\text{Sp})_{\leq 0}^p$. Denote by $\varphi: \nu^* \nu_* A \to A$ the counit map. Since A is p-complete (see e.g. Lemma [2.19\)](#page-15-0), φ induces a map $\psi: (\nu^* \nu_* A)_p^{\hat{\wedge}} \to A$. Thus, if ψ is an equivalence, we are done. For this, it suffices to show that φ is a p-equivalence. Thus, we are reduced to show that $\varphi/\!\!/p: (\nu^*\nu_*A)/\!\!/p \to A/\!\!/p$ is an equivalence. By exactness, the left term is equivalent to $\nu^* \nu_*(A/\!\!/ p)$, and under this identification, the map φ //p corresponds to the counit $\nu^*\nu_*(A/\!\!/p) \to A/\!\!/p$. But this is an equivalence since $A/\!\!/p$ is classical. \Box

4.5 A Short Exact Sequence for Zariski Sheaves

Let k be a field and denote by Sm_k the category of quasi-compact smooth kschemes. Let $\text{Shv}_{\text{zar}}(\text{Sm}_k)$ be the ∞ -topos of sheaves on Sm_k with respect to the Zariski topology, i.e. covers are given by fpqc covers $\{U_i \rightarrow U\}_i$ such that each $U_i \to U$ can be written as $\bigcup_j U_{i,j} \to U$ such that each $U_{i,j} \to U$ is an open immersion.

The following result is well-known:

Lemma 4.58. *The topos* Shvzar(Smk) *is Postnikov-complete. In particular, it is hypercomplete.*

Proof. Let $X \in Shv_{zar}(Sm_k)$. We have to show that $\lim_k \tau_{\leq k} X_k \cong X$. For $U \in \text{Sm}_k$, write U_{zar} for the small Zariski site over U (i.e. the poset of open subsets). There is an evident functor f_U : $\text{Shv}_{\text{zar}}(\text{Sm}_k) \to \text{Shv}_{\text{zar}}(U_{\text{zar}})$ given by restriction.

Note that $\text{Shv}_{\text{zar}}(U_{\text{zar}})$ is Postnikov-complete (and thus also hypercomplete): It was proven in [\[Lur09,](#page-96-1) Corollary 7.2.4.17] that it is locally of homotopy dimension \leq dim(U). Thus, the result follows from [\[Lur09,](#page-96-1) Proposition 7.2.1.10].

The functor f_U commutes with limits because limits of sheaves can be computed on sections. Moreover, f_U commutes with truncations: This is clear, since the topos $\text{Shv}_{\text{zar}}(U_{\text{zar}})$ is hypercomplete and f_U commutes with homotopy objects. This fact follows because $\pi_n(f_U(F))$ is the Zariski sheafification of the presheaf $V \mapsto \pi_n(f_U(F)(V)) = \pi_n(F(V))$. But on the other hand, $\pi_n(F)$ is the Zariski sheafification of the presheaf $V \mapsto \pi_n(F(V))$. Thus, the result follows from the Postnikov-completeness of $\text{Shv}_{\text{zar}}(U_{\text{zar}})$ for every U. \Box

We now show, using the theory developed in Section [4.3,](#page-38-4) that for certain nilpotent Zariski sheaves there is a short exact sequence

$$
0 \to \mathbb{L}_0 \pi_n(X) \to \pi_n^p(X) \to \mathbb{L}_1 \pi_{n-1}(X) \to 0,
$$

see Theorem [4.69](#page-52-0) for the precise statement. Note that we have shown in Appendix [B,](#page-86-0) particularly in Theorems [B.23](#page-93-0) and [B.24](#page-94-0) that there is a geometric morphism

$$
\nu^* \colon \operatorname{Shv}_{\operatorname{zar}}(\operatorname{Sm}_k) \rightleftarrows \operatorname{Shv}_{\operatorname{prozar}}(\operatorname{ProZar}(\operatorname{Sm}_k)) \cong \mathcal{P}_{\Sigma}(W) \colon \nu_*,
$$

where $W \subset \text{ProZar}(\text{Sm}_k)$ is the full subcategory of zw-contractible affine schemes, see Definition [B.20](#page-93-1) Hence, we can apply the results from Section [4.3](#page-38-4) to the (big) Zariski ∞-topos.

Remark 4.59*.* At the end, we want to work with motivic spaces, which are in particular Nisnevich sheaves. Note that one could define the pro-Nisnevich topology, and prove that the Nisnevich topos on Sm_k embeds into $\mathcal{P}_\Sigma(W_{\text{nis}})$ for a class W_{nis} of Nisnevich weakly contractible rings. But the pro-Nisnevich topos has too many objects: Write $\mu_{p^{\infty}} \subset \mathbb{G}_m$ for the pro-Nisnevich sheaf of p-power roots of unity (which is the left Kan extension of the Nisnevich sheaf $\mu_{p^{\infty}}|_{\text{Sm}_k^{\text{op}}})$. But then a calculation shows that $(\mathbb{L}_1\mu_{p^{\infty}})/p$ is not classical (in the sense of Definition [4.35\)](#page-41-2). Thus, we cannot apply Theorem [4.44.](#page-43-1) As we will show below, this cannot happen if we work with the pro-Zariski topology.

Definition 4.60. Let $F \in Shv_{zar}(Sm_k, Sp)^\heartsuit$. We say that F satisfies *Gersten injectivity* if for every connected $U \in \text{Sm}_k$ the canonical map $\Gamma^{\heartsuit}(U, F) \to$ $\Gamma^{\heartsuit}(\eta, F)$ is injective where $\eta \in U$ is the generic point, and $\Gamma^{\heartsuit}(\eta, F)$ is the stalk of F at η , i.e. we define $\Gamma^{\heartsuit}(\eta, F) \coloneqq \Gamma^{\heartsuit}(\eta, \nu^* F) \cong \text{colim}_{\eta \to V \to U} \Gamma^{\heartsuit}(V, F)$, where the colimit runs over all Zariski morphisms $V \to U$ that fit into a factorization $\eta \to V \to U$ of the morphism $\eta \to U$ (see Corollary [B.25](#page-95-0) for the equivalence).

Note that since $\eta \in ProZar(Sm_k)$ is zw-contractible (since it represents a local ring of the Zariski topology, see Definition [B.10](#page-91-0) for the definition of zwcontractible), we actually have $\widetilde{\Gamma}^{\circlearrowleft}(\eta, \nu^*F) \cong \Gamma(\eta, \nu^*F)$, see Lemma [4.20.](#page-36-1)

Lemma 4.61. *Let* $n \geq 1$ *be an integer and* $F \in Shv_{\text{zar}}(Sm_k, Sp)^\heartsuit$ *such that* F/p^n *satisfies Gersten injectivity. Let* $U \in \text{Sm}_k$ *a connected smooth scheme,* $\eta \in U$ its generic point and $x \in \Gamma^{\heartsuit}(U,F)$ a section. Suppose that there is $\tilde{y} \in \Gamma^{\heartsuit}(\eta, F)$ such that $p^n \tilde{y} = x|_{\eta}$.

Then there is a Zariski cover $V \to U$ *and a* $y \in \Gamma^{\heartsuit}(V, F)$ *such that* $p^n y =$ $x|_V$.

Proof. By Gersten injectivity, the map $\Gamma^{\heartsuit}(U, F/p^n) \to \Gamma^{\heartsuit}(\eta, F/p^n)$ is injective. Note that $x|_{\eta} = 0$ in $\Gamma^{\heartsuit}(\eta, F/p^n)$. Thus, $x = 0$ in $\Gamma^{\heartsuit}(U, F/p^n)$. This means that there exists a Zariski cover $V \twoheadrightarrow U$ and a $y \in \Gamma^{\heartsuit}(V, F)$ such that $p^n y = x|_V$.

Definition 4.62. Let $A \in Shv_{\text{prozar}}(ProZar(Sm_k), Sp)^{\heartsuit}$ be a sheaf of abelian groups on the pro-Zariski site. We say that an element $x \in \Gamma^{\heartsuit}(U, A)$ is *locally* p^{n} -divisible if there is a pro-Zariski cover $V \twoheadrightarrow U$ and a $y \in \Gamma^{\heartsuit}(V, A)$ such that $p^ny = x|_V$, i.e. if x lies in the sheaf-theoretic image (calculated in the heart, which is an abelian category) of the morphism $p^n: A \to A$.

We say that x is *locally arbitrary* p -divisible if x is locally $pⁿ$ -divisible for all $n \geq 1$.

Lemma 4.63. *Let* $A \in Shv_{\text{prozar}}(ProZar(Sm_k), Sp)^{\heartsuit}$ *be a sheaf of abelian groups on the pro-Zariski site. Define a subsheaf* $B \subset A$ *via*

$$
B = A[p] \cap \bigcap_n \operatorname{im}(A \xrightarrow{p^n} A).
$$

For $U \in ProZar(Sm_k)$ *we have*

 $\Gamma^{\heartsuit}(U, B) = \left\{ x \in \Gamma^{\heartsuit}(U, A) \, \middle| \, px = 0, x \text{ is locally arbitrary } p \text{ divisible } \right\}.$

If A *is classical (i.e.* A *is in the essential image of* ν ∗ *, see Definition [4.35\)](#page-41-2) and* (ν∗A)/pⁿ *satisfies Gersten injectivity for every* n*, then* B *is also classical.*

Proof. The description of the sections of B is clear, since limits of sheaves can be computed on sections, and π_0 : Sp \rightarrow Ab commutes with limits of coconnective spectra.

Let $U_{\infty} \coloneqq \lim_i U_i$ be the cofiltered limit of smooth schemes $U_i \in \text{Sm}_k$ where the transition morphisms $U_i \rightarrow U_j$ are Zariski localizations. We need to show that the canonical map $\varphi: \operatorname{colim}_i \Gamma^{\heartsuit}(U_i, B) \to \Gamma^{\heartsuit}(U_{\infty}, B)$ is an isomorphism (see Corollary [B.25\)](#page-95-0). Note that we have a commuting diagram

$$
\text{colim}_{i} \Gamma^{\heartsuit}(U_{i}, B) \xrightarrow{\varphi} \Gamma^{\heartsuit}(U_{\infty}, B)
$$

$$
\downarrow \qquad \qquad \downarrow
$$

$$
\text{colim}_{i} \Gamma^{\heartsuit}(U_{i}, A) \xrightarrow{\cong} \Gamma^{\heartsuit}(U_{\infty}, A).
$$

The lower horizontal arrow is an isomorphism because A is classical, see Corollary [B.25.](#page-95-0) The left vertical arrow is injective since it is a filtered colimit of injections. This shows that φ is injective. Let $x \in \Gamma^{\heartsuit}(U_{\infty}, B)$. In other words, $x \in \Gamma^{\heartsuit}(U_{\infty}, A), px = 0$ and for every *n* there is a pro-Zariski cover $V_n \to U_{\infty}$ and a $y_n \in \Gamma^{\heartsuit}(V_n, A)$ such that $p^n y_n = x|_{V_n}$. Since A is classical, we have $\Gamma^{\heartsuit}(U_{\infty}, A) \cong \operatorname{colim}_i \Gamma^{\heartsuit}(U_i, A)$. We conclude that there exists an $i \in I$ and an $x_i \in \Gamma^{\heartsuit}(U_i, A)$ such that $x_i|_{U_{\infty}} = x$. U_i is of finite type over $\text{Spec}(k)$, hence we can write $U_i = \bigcup_j U_{i,j}$ as a finite coproduct, with $U_{i,j}$ the connected components of U_i . Moreover, since U_i is smooth, we conclude that each $U_{i,j}$ is irreducible. For every j write $\eta_j \in U_{i,j}$ for the generic point. Since $\sqcup_j U_{i,j} \to U_i$ is a Zariski cover, we conclude that $\tilde{\Gamma}^{\heartsuit}(\sqcup_j U_{i,j}, A) \cong \prod_j \Gamma^{\heartsuit}(U_{i,j}, A)$. Thus, x_i corresponds to a tuple $(x_{i,j})_j$. Consider the canonical morphism $f: U_\infty \to U_i$. Let j_0 be an index. If f does not hit U_{i,j_0} , i.e. $\text{im}(f) \cap U_{i,j_0} = \emptyset$, we can replace x_i by the tuple $(\tilde{x}_{i,j})_j$ with $\tilde{x}_{i,j} = x_{i,j}$ if $j \neq j_0$ and $\tilde{x}_{i,j_0} = 0$, this still yields the same element $x \in \text{colim}_{i} \Gamma^{\heartsuit}(U_{i}, A)$. Note that $0 \in \Gamma^{\heartsuit}(U_{i,j_0}, B)$. Thus, we may assume that f hits U_{i,j_0} . Pro-Zariski morphisms are flat (see [\[Sta23,](#page-97-1) [Tag 05UT\]](https://stacks.math.columbia.edu/tag/05UT) together with [\[Sta23,](#page-97-1) [Tag 00HT \(1\)\]](https://stacks.math.columbia.edu/tag/00HT))and hence lift generalizations ([\[Sta23,](#page-97-1) [Tag 03HV\]](https://stacks.math.columbia.edu/tag/03HV)). Hence, there exists a point $\eta_{\infty} \in U_{\infty}$ such that $f(\eta_{\infty}) = \eta_{j_0}$. Since pro-Zariski morphisms identify local rings (see [\[Sta23,](#page-97-1) [Tag 096T\]](https://stacks.math.columbia.edu/tag/096T)), we conclude that η_{∞} is a generic point, and that $k(\eta_{j_0}) \cong k(\eta_{\infty})$. Now let $n \in \mathbb{N}$. The same reasoning applies to the pro-Zariski cover $V_n \to U_\infty$, i.e. we find a generic point $\eta_n \in V_n$ mapping to η_{∞} such that $k(\eta_n) \cong k(\eta_{\infty}) \cong k(\eta_{j_0})$. By assumption, there is $y_n \in \Gamma^{\heartsuit}(V_n, A)$ with $p^n y_n = x_i|_{V_n}$. Thus, $p^n y_n|_{\eta_n} = x_{i,j_0}|_{\eta_n}$. Using the isomorphism $k(\eta_n) \cong k(\eta_{j_0})$ we thus find an element $\tilde{y}_n \in k(\eta_{j_0})$ with $p^n \tilde{y}_n = x_{i,j_0}|_{\eta_{j_0}}$. Since $(\nu_*A)/p^n$ satisfies Gersten injectivity, we conclude by Lemma [4.61](#page-49-0) that there is a Zariski cover $\tilde{V}_{n,j_0} \twoheadrightarrow U_{i,j_0}$ such that $x_{i,j_0}|_{\tilde{V}_{n,j_0}}$ is p^n -divisible. Thus, we proved that $(x_{i,j})_j$ is locally arbitrarily *p*-divisible, hence $x_i \in \Gamma^{\heartsuit}(U_i, B)$. This shows that φ is surjective. \Box

Lemma 4.64. *Let* $A \in Shv_{\text{prozar}}(\text{ProZar}(Sm_k), Sp)^\heartsuit$. *There is an equivalence* $(\mathbb{L}_1 A)/\!/\!p \cong B$, where $B \in \text{Shv}_{\text{prozar}}(\text{ProZar}(\text{Sm}_k), \text{Sp})^{\heartsuit}$ is defined as in *Lemma [4.63.](#page-49-1)*

Proof. Consider the short exact sequence

$$
0 \to (\mathbb{L}_1 A)/\!\!/p \to A[p] \to \pi_1((\mathbb{L}_0 A)/\!\!/p) \to 0
$$

from Lemma [2.28.](#page-17-2) In particular, $(\mathbb{L}_1 A)/\!/p$ is inside the heart. Note that since $\mathbb{L}_1 A \in \text{Shv}_{\text{proxar}}(\text{ProZar}(\text{Sm}_k), \text{Sp})^{p^{\n}(\mathbb{C})} \subset \text{Shv}_{\text{prozar}}(\text{ProZar}(\text{Sm}_k), \text{Sp})^{\n}(\mathbb{C})$ Lemma [4.24](#page-37-3) for the inclusion), we see that $(\mathbb{L}_1 A)/p \cong (\mathbb{L}_1 A)/p$, where $(-)/p$ is the endofunctor coker($-\frac{p}{2}$) on the standard heart. We see that

$$
(\mathbb{L}_1 A)/p \cong (\pi_1(\lim_k A/\!\!/p^k))/p \cong (\lim_k \mathcal{A}[p^k])/p \cong B.
$$

For the first equivalence, note that $\mathbb{L}_1 A \cong \pi_n^p(A) \cong \pi_n^p(A_p^{\wedge}) \cong \pi_n(A_p^{\wedge})$, where the first equivalence is the definition, the second is Corollary [2.21,](#page-16-1) and the third is Lemma [4.24.](#page-37-3)

For the last equivalence we used that an element $x \in \Gamma^{\heartsuit}(U, A)$ is locally arbitrary p-divisible if and only if it is locally ∞ -p-divisible, in the sense that there exists a (pro-Zariski) cover $V \to U$ such that for every n there is a $y_n \in$ $\Gamma^{\heartsuit}(V, A)$ such that $p^n y_n = x|_V$. To show this, suppose that x is locally arbitrary p-divisible, and choose covers $V_n \to U$ and $\tilde{y}_n \in \Gamma^{\heartsuit}(V_n, A)$ such that $p^n \tilde{y}_n =$ $x|_{V_n}$. Then define $V := \lim_n V_1 \times_U \cdots \times_U V_n$, this is a pro-Zariski cover of U. Then define $y_n := \tilde{y}_n|_V$, they satisfy $p^n y_n = x|_V$. This shows that x is locally ∞ -*p*-divisible.

Now note that $(\lim_{k}^{\infty} A[p^k])/p$ consists exactly of the *p*-torsion elements of A that are locally ∞ -p-divisible: By the above equivalences and short exact sequence, $(\lim_{k} \mathbb{Z} A[p^k])/p$ can be identified with a subsheaf of $A[p]$, via the map induced by the projection $\lim_{k}^{\infty} A[p^{k}] \to A[p]$ (note that $pA[p] = 0$). Now, an element of $x \in \Gamma^{\heartsuit}(U, A[p])$ lies in the image of this map, if and only if there is a cover $V \to U$ and a compatible sequence $(y_n)_n \in \lim_{k \to \infty} \Gamma^{\heartsuit}(V, A[p^k])$ such that $x|_V = y_0$. But such a compatible sequence in particular implies that $x|_V = y_0 = p^k y_k$ for all k, i.e. x is locally ∞ -p-divisible. This concludes the proof. 口

Corollary 4.65. Let $A \in Shv_{zar}(Sm_k, Sp)^{\heartsuit}$, such that A/p^n satisfies Gersten *injectivity for every* $n \geq 1$ *. Then* $(\mathbb{L}_1 \nu^* A)/\!/\!p$ *is classical.*

 \Box

Proof. Combine Lemmas [4.63](#page-49-1) and [4.64.](#page-50-0)

Definition 4.66. Let $X \text{ ∈ } \text{Shv}_{\text{zar}}(\text{Sm}_k)_*$ be a pointed sheaf. We define for $n \geq 2$ the *p*-completed homotopy groups via

$$
\pi_n^p(X) \coloneqq \nu_* \pi_n((\nu^* X)_p^{\wedge}) \in \text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp}),
$$

and for $n = 1$ via

$$
\pi_1^p(X) \coloneqq \nu_* \pi_1((\nu^* X)_p^{\wedge}) \in \mathcal{G}rp(\text{Disc}(\text{Shv}_{\text{zar}}(\text{Sm}_k))),
$$

where we view ν_* as a functor

$$
\nu_*\colon \mathcal{G}rp(\text{Disc}(\text{Shv}_{\text{prozar}}(\text{ProZar}(k)))) \to \mathcal{G}rp(\text{Disc}(\text{Shv}_{\text{zar}}(\text{Sm}_k))).
$$

Remark 4.67*.* The name "p-completed homotopy *group*" instead of something like "p-completed homotopy *spectrum*" is justified: We will show in Theo-rem [4.69](#page-52-0) that at least in good cases $\pi_n^p(X)$ actually lives in the abelian category $\text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$ for all $n \geq 2$.

Lemma 4.68. Let $f: X \to Y$ be a morphism of pointed Zariski sheaves. Suppose that f is a p-equivalence. Then $\pi_n^p(f)$: $\pi_n^p(X) \to \pi_n^p(Y)$ is an equivalence *for all* $n \geq 1$ *. In particular,* $\pi_n^p(X) \cong \pi_n^p(X_p^{\wedge})$ *.*

Proof. Since ν^* preserves p-equivalences (see Lemma [3.11\)](#page-24-0), and $(-)_{n}^{\wedge}$ \int_{p}^{∞} transforms p-equivalences to equivalences, the result follows. □

Theorem 4.69. *Let* $X \text{ ∈ } \text{Shv}_{\text{zar}}(\text{Sm}_k)_*$ *be a pointed nilpotent sheaf, such that* $\pi_n(X)/p^k$ satisfies Gersten injectivity for every $k \geq 1$ and $n \geq 2$. Suppose *moreover that either*

- $\pi_1(X)$ *is abelian and* $\pi_1(X)/p^k$ *satisfies Gersten injectivity for every* $k \geq$ 1*, or*
- $\mathbb{L}_1 \pi_1(X) \in \text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$, where we use Definition [4.40.](#page-42-0)

Then for $n \geq 2$ *there is a canonical short exact sequence in* $\text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$ *(or a canonical short exact sequence in* $Grp(\text{Disc}(Shv_{zar}(Sm_k)))$ *if* $n = 1$ *)*

$$
0 \to \mathbb{L}_0 \pi_n(X) \to \pi_n^p(X) \to \mathbb{L}_1 \pi_{n-1}(X) \to 0,
$$

where we use Definition [4.40](#page-42-0) for $\mathbb{L}_i \pi_1(X)$ *. This distinction does not matter if* $\pi_1(X)$ *is abelian, see Lemma [4.43.](#page-43-0) Here we use* $\mathbb{L}_1\pi_0(X) = 0$ *, since* X *is connected. In particular,* $\pi_n^p(X) \in \text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$ for $n \geq 2$.

Proof. This follows immediately from Theorem [4.44](#page-43-1) and Corollary [4.65.](#page-51-0) \Box

Corollary 4.70. *Let* $X \text{ ∈ } \text{Shv}_{\text{zar}}(\text{Sm}_k)_*$ *be a pointed nilpotent sheaf, satisfying the assumptions of Theorem [4.69.](#page-52-0) Fix* $n \geq 2$. *We have equivalences* $\pi_n^p(X) \cong$ $\pi_n^p(\tau_{\geq k}X) \cong \pi_n^p(\tau_{\leq l}X)$ *for all* $0 \leq k \leq n-1$ *and all* $l \geq n$ *.*

Proof. This follows immediately from Theorem [4.69.](#page-52-0)

$$
\Box
$$

We can establish a partial converse to Lemma [4.68:](#page-51-1)

Proposition 4.71. *Let* $f: X \to Y \in Shv_{zar}(Sm_k)_*$ *be a morphism of nilpotent pointed sheaves with abelian fundamental group, and suppose that* X *and* Y satisfy the assumptions of Theorem [4.69.](#page-52-0) Suppose moreover that $\pi_n^p(f)$ is an *equivalence for all* $n \geq 1$ *. Then f is a p*-*equivalence.*

Proof. Note that we have a commutative square

$$
\tau_{\geq 1} \nu_*((\nu^* X)_p^{\wedge}) \xrightarrow{\tau_{\geq 1} \nu_*((\nu^* f)_p^{\wedge})} \tau_{\geq 1} \nu_*((\nu^* Y)_p^{\wedge})
$$

$$
\downarrow \cong \qquad \qquad \downarrow \cong
$$

$$
X_p^{\wedge} \xrightarrow{f_p^{\wedge}} Y_p^{\wedge},
$$

where the downward arrows are the equivalences from Lemma [4.34](#page-40-1) (a proof that $\text{Shv}_{\text{zar}}(\text{Sm}_k)$ is locally of finite uniform homotopy dimension can be found in Lemma [5.20\)](#page-61-0), and the horizontal arrows are induced by f . Thus, the upper horizontal arrow is an equivalence if and only if the lower horizontal arrow is an equivalence. But f_p^{\wedge} is an equivalence if and only if f is a p-equivalence, see Lemma [3.8.](#page-24-1) Hence, in order to prove the lemma, it suffices to show that $(\nu^* f)_{n=0}^{\lambda}$ p is an equivalence. By hypercompleteness of $\mathcal{P}_{\Sigma}(W)$, it suffices to show that $\pi_n((\nu^*f)^\wedge_p)$ p_{p}^{\wedge}) is an equivalence for all $n \geq 1$ (note that $\nu^* X$ and $\nu^* Y$ are simply connected). By assumption, we know that $\nu_* \pi_n((\nu^* f)_p^{\wedge})$ $\binom{n}{p}$ is an equivalence for all $n \geq 1$. Note that we know from Theorem [4.44](#page-43-1) and Corollary [4.65](#page-51-0) that $\pi_n(\overline{(\nu^*X)}_p^\wedge)$ $\binom{p}{p}$ // p and $\pi_n(\left(\nu^*Y\right)^{p}_{p})$ $\binom{n}{p}/p$ are classical for $n \geq 2$. We have also seen in Theorem [4.69](#page-52-0) that $\nu_* \pi_n ((\nu^* X)^{\wedge}_p)$ $\binom{\wedge}{p}$ and $\nu_* \pi_n((\nu^* X)_{p}^{\wedge})$ $\binom{\wedge}{p}$ live in Shv_{zar} $(\text{Sm}_k, \text{Sp})^{p\heartsuit}$ for $n \geq 2$. Thus, (the proof of) Lemma [4.57](#page-47-0) gives us a commuting square for all $n \geq 2$

$$
\left(\nu^* \nu_* \pi_n((\nu^* X)_p^{\wedge})\right)_p^{\wedge} \xrightarrow{\qquad} \left(\nu^* \nu_* \pi_n((\nu^* Y)_p^{\wedge})\right)_p^{\wedge}
$$

$$
\downarrow \cong \qquad \qquad \downarrow \cong
$$

$$
\pi_n((\nu^* X)_p^{\wedge}) \xrightarrow{\qquad} \pi_n((\nu^* Y)_p^{\wedge}),
$$

where the vertical arrows are equivalences and the horizontal arrows are induced by f . By assumption, the upper arrow is an equivalence, therefore the same holds for the lower arrow. Since $\pi_1(X)$ and $\pi_1(Y)$ are abelian, the same proof works for $n = 1$. This proves the proposition. \Box

Remark 4.72. The assumption that π_1 should be abelian in Proposition [4.71](#page-52-1) is probably unnecessary, but a proof of this fact is unclear to the author. One would have to analyze how far $\mathbb{L}_0\pi_1(\nu^*X) \in \mathcal{G}rp(\text{Disc}(\mathcal{P}_\Sigma(\mathcal{C})))$ is from being classical (i.e. in the image of the functor $\nu^* \colon \mathcal{G}rp(\text{Disc}(Shv_{zar}(Sm_k))) \to$ $Grp(\text{Disc}(\mathcal{P}_{\Sigma}(\mathcal{C})))$. Note that we cannot use the "classical mod p"TODO" CHECK-techniques employed in the above proof because of the nonabelian nature of the involved groups.

5 Completions of Motivic Spaces

Let k be a perfect field and denote by Sm_k the category of smooth k-schemes. Let $\text{Shv}_{\text{nis}}(\text{Sm}_k)$ be the ∞ -topos of sheaves on Sm_k with respect to the Nisnevich topology (see e.g. [\[MV99,](#page-97-2) Definition 3.1.2]). Note that a family of points of this ∞ -topos is given by evaluation on henselian local rings S_s^h , i.e. if $\mathcal{F} \in$ Shv_{nis}(Sm_k), $S \in \text{Sm}_k$ and $s \in S$, then $s^* \mathcal{F} := \mathcal{F}(S_s^h) := \text{colim}_{s \to U \xrightarrow{et} S} \mathcal{F}(U)$ is the stalk of $\mathcal F$ at S_s^h , see e.g. [\[BH17,](#page-96-3) Proposition A.3]. For a point S_s^h , write $\mathcal I_s$ for the filtered category of objects $s \to U \stackrel{et}{\to} S$. Without loss of generality we may assume that the scheme S defining a point S_s^h is connected. These points form a conservative family of points (again [\[BH17,](#page-96-3) Proposition A.3]), hence it

follows from [\[Lur09,](#page-96-1) Remark 6.5.4.7] that $\text{Shv}_{\text{nis}}(\text{Sm}_k)$ is hypercomplete. In fact, the Nisnevich topos is moreover Postnikov-complete. As in the Zariski case, this is essentially well-known.

Lemma 5.1. Shv_{nis} (Sm_k) *is Postnikov-complete.*

Proof. One argues exactly as in Lemma [4.58.](#page-48-0) As geometric input, we use that for every $U \in \text{Sm}_k$ there is a functor $f_U: \text{Shv}_{\text{nis}}(\text{Sm}_k) \to \text{Shv}_{\text{nis}}(U_{et})$ given by restriction, where U_{et} is the category of étale U-schemes, with coverings given by Nisnevich coverings. As in the Zariski case, one argues that this functor commutes with limits and truncations. Then we use that $\text{Shv}_{\text{nis}}(U_{et})$ has homotopy dimension $\leq \dim(U)$, which was proven in [\[Lur18a,](#page-96-4) Theorem 3.7.7.1]. □

5.1 Generalities on Motivic Spaces

Recall the following definitions from [\[Mor12,](#page-97-3) Definition 0.7]:

- Definition 5.2 (\mathbb{A}^1) 1. Let $X \in Shv_{\text{nis}}(Sm_k)$ be a Nisnevich sheaf. We say that X is \mathbb{A}^1 -invariant if $X(S) \xrightarrow{\text{pr}_S^*} X(S \times \mathbb{A}^1)$ is an equivalence of anima for all $S \in \text{Sm}_k$.
	- 2. Similarly, we say that $E \in Shv_{\text{nis}}(Sm_k, Sp)$ is \mathbb{A}^1 -*invariant* if $E(S) \xrightarrow{\text{pr}_{S}^*}$ $E(S \times \mathbb{A}^1)$ is an equivalence of spectra for all S.
	- 3. If $G \in \mathcal{G}rp(\text{Disc}(Shv_{\text{nis}}(Sm_k)))$ is a Nisnevich sheaf of groups, we say that G is *strongly* \mathbb{A}^1 -*invariant* if $H^n_{\text{nis}}(X, A) \xrightarrow{\text{pr}_{S}^*} H^n_{\text{nis}}(X \times \mathbb{A}^1, A)$ is an isomorphism for all A and $n = 0, 1$. Write $\mathcal{G}rp_{str}(k)$ for the full subcategory of strongly A 1 -invariant Nisnevich sheaves of groups.

Definition 5.3. We write $\text{Spc}(k)$ ⊂ $\text{Shv}_{\text{nis}}(\text{Sm}_k)$ for the full subcategory of A 1 -invariant Nisnevich sheaves, and call this category the *category of motivic spaces* (over k).

We denote by $SH^{S^1}(k) := Sp(Spc(k))$ the stabilization of the category of motivic spaces, and call this category the *category of motivic* S^1 -spectra (over k).

Lemma 5.4. *The inclusion functor* $\iota_{\mathbb{A}^1}$: $\text{Spc}(k) \hookrightarrow \text{Shv}_{\text{nis}}(\text{Sm}_k)$ *has a left adjoint* $L_{\mathbb{A}^1}$ *, and* $\text{Spc}(k)$ *is presentable.*

We have an induced adjunction

$$
L_{\mathbb{A}^1} \colon \operatorname{Shv}_{\rm nis}(\mathrm{Sm}_k, \mathrm{Sp}) \rightleftarrows \operatorname{SH}^{S^1}(k) \colon \iota_{\mathbb{A}^1},
$$

induced by the adjunction $L_{\mathbb{A}^1}$ \vdash $L_{\mathbb{A}^1}$. The right adjoint $L_{\mathbb{A}^1}$ is fully faithful, with *essential image those sheaves of spectra which are* A 1 *-invariant.*

Proof. The first statement is an application of [\[Lur09,](#page-96-1) Proposition 5.5.4.15], noting that the \mathbb{A}^1 -invariant sheaves are the local objects for the (small) set of morphisms $\{pr_X: \mathbb{A}^1_X \to X \mid X \in \text{Sm}_k \}.$

There is an induced adjunction on stabilizations with fully faithful right adjoint, see Lemmas [A.1](#page-77-0) and [A.2.](#page-77-1) For the statement about the essential image, see [\[Mor04,](#page-97-4) Chapter 4.2]. \square

Lemma 5.5. *There is a t-structure on* $SH^{S^1}(k)$ *(called the* standard (or homotopy) t-structure*). This t-structure is uniquely characterized by the requirement that* $\iota_{\mathbb{A}^1}$: $SH^{S^1}(k) \to Shv_{\text{nis}}(Sm_k, Sp)$ *is t-exact (for the standard t-structure on the second category).*

In particular, ι_{A1}^{\heartsuit} : $SH^{S^1}(k)^{\heartsuit} \rightarrow Shv_{\text{nis}}(Sm_k, Sp)^{\heartsuit}$ *is an exact fully faithful functor of abelian categories given by restriction of* $\iota_{\mathbb{A}^1}$ *. Its essential image is the intersection of* $SH^{S^1}(k)$ *with* $Shv_{\text{nis}}(Sm_k, Sp)^{\heartsuit}$ *. We will say that an element of* $\text{Shv}_{\text{nis}}(\text{Sm}_k, \text{Sp})^{\heartsuit}$ *which lies in the essential image of* $\iota_{\mathbb{A}^1}$ *is* strictly \mathbb{A}^1 -invariant.

Proof. Since $\iota_{\mathbb{A}^1}$ is fully faithful, it is clear that t-exactness of this functor uniquely determines the t-structure (i.e. the t-structure must be given by the intersection of $SH^{S^1}(k)$ with the standard t-structure on $Shv_{nis}(Sm_k, Sp)$). That this actually defines a t-structure is [\[Mor04,](#page-97-4) Theorem 4.3.4 (2)].

Since ι_{A^1} is fully faithful, exact and t-exact, it induces an exact embedding of the hearts [\[BBD82,](#page-96-2) Proposition 1.3.17(i)]. The description of the essential image is clear from the t-exactness of $\iota_{\mathbb{A}^1}$. 口

Remark 5.6. Let $A \in \text{Shv}_{\text{nis}}(\text{Sm}_k, \text{Sp})^{\heartsuit}$. Then A is strictly \mathbb{A}^1 -invariant, if and only if the underlying sheaf of abelian groups $\Gamma^{\heartsuit}(-, A)$ is strictly \mathbb{A}^1 invariant in the sense of [\[Mor12,](#page-97-3) Definition 0.7], i.e. the cohomology sheaves $H_{\text{nis}}^i(-, \Gamma^{\heartsuit}(-, A)) \cong \pi_{-i}(\Gamma(-, A))$ are \mathbb{A}^1 -invariant. Note that $\pi_{-i}(\Gamma(-, A))$ is clearly \mathbb{A}^1 -invariant because A is.

Remark 5.7. Let $n \geq 2$. By [\[Mor12,](#page-97-3) Corollary 5.2] and Remark [5.6,](#page-55-0) the functor $\pi_n \circ \iota_{\mathbb{A}^1} \colon \operatorname{Spc}(k)_* \to \operatorname{Shv}_{\text{nis}}(\operatorname{Sm}_k, \operatorname{Sp})^\heartsuit$ factors over the full subcategory of A 1 -invariant sheaves of spectra. Thus, by Lemma [5.5](#page-55-1) it induces a functor π_n : Spc(k) \rightarrow SH^{S¹}(k)^{\heartsuit}.

Remark 5.8. We can also look at the case $n = 1$: By [\[Mor12,](#page-97-3) Corollary 5.2], the functor $\pi_1 \circ \iota_{\mathbb{A}^1}$: Spc $(k)_* \to \mathcal{G}rp(\text{Disc}(\text{Shv}_{\text{nis}}(\text{Sm}_k)))$ factors through the category $\mathcal{G}rp_{str}(k)$. If X is a motivic space with abelian $\pi_1(\iota_{\mathbb{A}^1}X)$, then this group is moreover strictly \mathbb{A}^1 -invariant (see [\[Mor12,](#page-97-3) Theorem 4.46]). Therefore, we get a well-defined functor π_1 : $\text{Spc}(k)^{\text{ab}} \to \text{SH}^{S^1}(k)^\heartsuit$, where $\text{Spc}(k)^{ab}$ is the category of motivic spaces with abelian fundamental group.

Definition 5.9. We also define the adjunctions

$$
L_{\text{nis}}\colon \operatorname{Shv}_{\operatorname{zar}}(\operatorname{Sm}_k) \rightleftarrows \operatorname{Shv}_{\text{nis}}(\operatorname{Sm}_k)\colon \iota_{\text{nis}},
$$

given by sheafification and inclusion (i.e. induced by the canonical morphism of sites), and

$$
L_{\text{nis},\mathbb{A}^1} \colon \operatorname{Shv}_{\text{zar}}(\operatorname{Sm}_k) \rightleftarrows \operatorname{Spc}(k) \colon \iota_{\text{nis},\mathbb{A}^1},
$$

given by $L_{\text{nis},\mathbb{A}^1} := L_{\mathbb{A}^1} \circ L_{\text{nis}}$ and the fully faithful functor $\iota_{\text{nis},\mathbb{A}^1} := \iota_{\text{nis}} \circ \iota_{\mathbb{A}^1}$. Note that there are induced adjunctions (see Lemma [A.1\)](#page-77-0)

$$
L_{\text{nis}}\colon \operatorname{Shv}_{\operatorname{zar}}(\operatorname{Sm}_k, \operatorname{Sp}) \rightleftarrows \operatorname{Shv}_{\text{nis}}(\operatorname{Sm}_k, \operatorname{Sp})\colon \iota_{\text{nis}},
$$

$$
L_{\text{nis},\mathbb{A}^1}\colon \operatorname{Shv}_{\text{zar}}(\operatorname{Sm}_k, \operatorname{Sp}) \rightleftarrows \operatorname{SH}^{S^1}(k)\colon \iota_{\text{nis},\mathbb{A}^1},
$$

where the right adjoints are again fully faithful (see Lemma [A.2\)](#page-77-1).

We want to show now that $\iota_{\text{nis},\mathbb{A}^1}$ is t-exact for the standard t-structures. Note that this is rather surprising, as $\iota_{\text{nis},\mathbb{A}^1}$ is defined as the composition of ι_{nis} and $\iota_{\mathbb{A}^1}$, and the former is not t-exact! For this, we need the following general proposition:

Proposition 5.10. *Let* D *and* E *be stable categories equipped with t-structures* $(\mathcal{D}_{\geq 0}, \mathcal{D}_{\leq 0})$ and $(\mathcal{E}_{\geq 0}, \mathcal{E}_{\leq 0})$, and let $F: \mathcal{D} \to \mathcal{E}$ be an exact functor. Assume *moreover that*

- *(1)* F *preserves limits,*
- *(2)* for all $X \in \mathcal{D}^{\heartsuit}$ *we have that* $FX \in \mathcal{E}^{\heartsuit}$ *,*
- *(3) the t-structure on* D *is left-complete, and*
- *(4) the t-structure on* $\mathcal E$ *is left-complete.*

Then F *is right t-exact.*

Proof. We first show that F is t-exact on bounded objects, i.e. we show that for all $m, n \in \mathbb{Z}$ and all $X \in \mathcal{D}_{\geq m} \cap \mathcal{D}_{\leq n}$ we have $FX \in \mathcal{E}_{\geq m} \cap \mathcal{E}_{\leq n}$. Note that by shifting, it suffices to consider the case $m = 0$ (and thus $n \geq 0$, for $n < 0$ the statement is vacuous).

We proceed by induction on n, the case $n = 0$ follows from [assumption \(2\).](#page-56-0) So suppose the statement is true for $n \geq 0$, and let $X \in \mathcal{D}_{\geq 0} \cap \mathcal{D}_{\leq n+1}$. Consider the fiber sequence $\Sigma^{n+1}\pi_{n+1}X \to X \to \tau_{\leq n}X$. Applying F yields the fiber sequence $\Sigma^{n+1}F\pi_{n+1}X \to FX \to F\tau_{\leq n}X$. By induction, we see that $F\tau_{\leq n}X \in$ $\mathcal{E}_{\geq 0} \cap \mathcal{E}_{\leq n} \subset \mathcal{E}_{\geq 0} \cap \mathcal{E}_{\leq n+1}$, and $\Sigma^{n+1}F\pi_{n+1}X \in \Sigma^{n+1}\mathcal{E}^{\heartsuit} \subset \mathcal{E}_{\geq 0} \cap \mathcal{E}_{\leq n+1}$ by [assumption \(2\).](#page-56-0) Thus, since $\mathcal{E}_{\geq 0}$ and $\mathcal{E}_{\leq n+1}$ are stable under extensions, we get that $FX \in \mathcal{E}_{\geq 0} \cap \mathcal{E}_{\leq n+1}$.

Now, let $X \in \mathcal{D}_{\geq 0}$ be a general connective object. Then, since the t-structure on D is left-complete by [assumption \(3\),](#page-56-1) we can write $X \cong \lim_{n \to \infty} T_{\leq n}X$. Since F commutes with limits [\(assumption \(1\)\)](#page-56-2), we can thus write $FX \cong \lim_{n} F_{\tau \lt n} X$.

Using [\[Lur17,](#page-96-5) Proposition 1.2.1.17 (2)] and the left-completeness of \mathcal{E} [\(assumption \(4\)\)](#page-56-3), it suffices to show that $F_{\tau \leq n} X$ is connective for every n, and that $\tau \leq_n F_{\tau \leq n+1} X \cong Y$ $F_{\tau \leq n}X$; this then implies that $\lim_{n} F_{\tau \leq n}X$ is connective. We have seen above that $F_{\tau \leq n} X$ is connective for every *n*.

So suppose that $n \geq 0$. Consider the fiber sequence

$$
\Sigma^{n+1}\pi_{n+1}F\tau_{\leq n+1}X \to F\tau_{\leq n+1}X \to \tau_{\leq n}F\tau_{\leq n+1}F.
$$

Note that there is also a fiber sequence

$$
\Sigma^{n+1}\pi_{n+1}X \to \tau_{\leq n+1}X \to \tau_{\leq n}X,
$$

which after applying F yields

$$
F\Sigma^{n+1}\pi_{n+1}X \to F\tau_{\leq n+1}X \to F\tau_{\leq n}X.
$$

Thus, in order to show that $\tau_{\leq n}F\tau_{\leq n+1}X \cong F\tau_{\leq n}X$, it suffices to show that $F\pi_{n+1}X \cong \pi_{n+1}F\tau_{\leq n+1}X$. This follows immediately from t-exactness on bounded objects, i.e. we get (since $\tau_{\leq n+1}X$ is bounded) $\pi_{n+1}F\tau_{\leq n+1}X \cong$ $\pi_{n+1}\tau_{\leq n+1}FX \cong \pi_{n+1}FX.$ \Box

Lemma 5.11. *The functor* $\iota_{\text{nis},\mathbb{A}^1}$ *is t-exact for the standard t-structures.*

 $In particular, \iota_{\text{nis},\mathbb{A}^1}^{\heartsuit} : \operatorname{SH}^{S^1}(k)^{\heartsuit} \to \operatorname{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{\heartsuit}$ is an exact fully faithful *functor of abelian categories and given by restriction of* $\iota_{\text{nis, }A^1}$.

Proof. We see that $\iota_{\text{nis},\mathbb{A}^1}$ is left t-exact as the composition of a t-exact functor (Lemma [5.5\)](#page-55-1) and a left t-exact functor (note that $\iota_{\rm nis}$ is right adjoint to the t-exact functor L_{nis} (see Lemma [A.6](#page-78-1) for the t-exactness), and use [\[BBD82,](#page-96-2) Proposition 1.3.17 (iii)]). Thus, it suffices to see that the functor is right texact. We first prove the following: If $A \in SH^{S^1}(k)^\heartsuit$, then also $\iota_{\text{nis},\mathbb{A}^1}A \in$ $\text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{\heartsuit}$. Write $H: \mathcal{A}b(\text{Disc}(\text{Shv}_{\text{nis}}(\text{Sm}_k))) \cong \text{Shv}_{\text{nis}}(\text{Sm}_k, \text{Sp})^{\heartsuit}$ (and similar for Zariski sheaves). Since this is an equivalence, we know that there is an $A' \in \mathcal{A}b(\text{Disc}(\text{Shv}_{\text{nis}}(\text{Sm}_k)))$ with $HA' \cong \iota_{\mathbb{A}^1}A$. Note that since $\iota_{\mathbb{A}^1}A$ is \mathbb{A}^1 invariant, we know that A' is strictly A^1 -invariant, see Remark [5.6.](#page-55-0) It suffices to show that $\iota_{\text{nis}} H A' \cong H \iota_{\text{nis}} A'$, where $\iota_{\text{nis}} A' \in Ab(\text{Disc}(\text{Shv}_{\text{nis}}(\text{Sm}_k)))$ is the application of the *underived* functor ι_{nis} : $\text{Shv}_{\text{nis}}(\text{Sm}_k) \to \text{Shv}_{\text{zar}}(\text{Sm}_k)$ with the induced structure of an abelian group object. In order to prove this equivalence, by Whitehead's theorem it suffices to prove that for all n and all $U \in \text{Sm}_k$ the canonical map $\pi_n((\iota_{\text{nis}}H A')(U)) \to \pi_n((H \iota_{\text{nis}} A')(U))$ is an equivalence. But note that we have equivalences

$$
\pi_n((\iota_{\text{nis}} H A')(U)) = \pi_n((H A')(U)) \cong H^{-n}_{\text{nis}}(U, A')
$$

and

$$
\pi_n((H\iota_{\mathrm{nis}}A')(U)) \cong H_{\mathrm{zar}}^{-n}(U,\iota_{\mathrm{nis}}A').
$$

But the right-hand sides agree by [\[AD09,](#page-96-6) Theorem 4.5] (The reference uses that k is an infinite field. If k is a finite field, we can argue as in the above reference, using the Gabber presentation lemma for finite fields, see [\[HK20,](#page-96-7) Theorem 1.1]).

Thus, we can apply Proposition [5.10](#page-56-4) with $\iota_{\text{nis},\mathbb{A}^1}$: Note that $\iota_{\text{nis},\mathbb{A}^1}$ preserves limits because it is a right adjoint, and that the standard t-structure on $\text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})$ is left-complete because $\text{Shv}_{\text{zar}}(\text{Sm}_k)$ is Postnikov-complete, see Lemma [4.58](#page-48-0) and the proof of [\[Lur18a,](#page-96-4) Corollary 1.3.3.11]. Note that also $\text{Shv}_{\text{nis}}(\text{Sm}_k, \text{Sp})$ is left-complete with respect to the standard t-structure, because $\text{Shv}_{\text{nis}}(\text{Sm}_k)$ is Postnikov-complete, see Lemma [5.1.](#page-54-0) Thus, it follows that also $SH^{S^1}(k) \subset Shv_{\text{nis}}(Sm_k, Sp)$ is left-complete, since the functor $\iota_{\mathbb{A}^1}$ is an exact and t-exact fully faithful functor which commutes with limits (as a rightadjoint): Indeed, if $X \in \text{SH}^{S^1}(k)$, then we have

$$
\iota_{\mathbb{A}^1} X \cong \lim\nolimits_k \tau_{\leq k} \iota_{\mathbb{A}^1} X \cong \iota_{\mathbb{A}^1} \lim\nolimits_k \tau_{\leq k} X.
$$

Since $\iota_{\mathbb{A}^1}$ is fully faithful, it is in particular conservative, i.e. $X \cong \lim_{k} \tau_{\leq k} X$, which is what we wanted to show. Hence, Proposition [5.10](#page-56-4) implies that $\iota_{\text{nis},\mathbb{A}^1}$ is right t-exact. □

Lemma 5.12. Let $A \in \text{SH}^S(k)^\heartsuit$ and $n \geq 0$. Then $\iota_{\mathbb{A}^1} K(A, n) \cong K(\iota_{\mathbb{A}^1}^\heartsuit A, n)$ *and* $\iota_{\text{nis},\mathbb{A}^1} K(A,n) \cong K(\iota_{\text{nis},\mathbb{A}^1}^{\heartsuit} A,n)$

Proof. We calculate

$$
K(\iota_{\mathbb{A}^1}^{\heartsuit} A, n) = \Omega_*^{\infty} \Sigma^n \iota_{\mathbb{A}^1}^{\heartsuit} A \cong \Omega_*^{\infty} \Sigma^n \iota_{\mathbb{A}^1} A \cong \iota_{\mathbb{A}^1} \Omega_*^{\infty} \Sigma^n A = \iota_{\mathbb{A}^1} K(A, n),
$$

where we used that $\iota_{A_1}^{\heartsuit} A \cong \iota_{A_1} A$ (because ι_{A_1} is t-exact for the standard tstructures, see Lemma [5.5\)](#page-55-1), and Lemma [A.1.](#page-77-0)

The same proof works for the second statement, using t-exactness of $\iota_{\text{nis},\mathbb{A}^1}$ for the standard t-structures, see Lemma [5.11.](#page-57-0)

Lemma 5.13. *For every* $n \geq 0$ *the functor* $\tau_{\geq n}$: $\text{Shv}_{\text{nis}}(\text{Sm}_k)_* \to \text{Shv}_{\text{nis}}(\text{Sm}_k)_*$ *restricts to a functor* $\tau_{\geq n}$: $\text{Spc}(k)_{*} \to \text{Spc}(k)_{*}$.

In other words, there is a functor $\tau_{\geq n}$ *such that the following square commutes:*

$$
\operatorname{Spc}(k)_{*} \xrightarrow{\tau_{\geq n}} \operatorname{Spc}(k)_{*}
$$

$$
\downarrow^{\iota_{\mathbb{A}^1}} \qquad \qquad \downarrow^{\iota_{\mathbb{A}^1}}
$$

$$
\operatorname{Shv}_{\operatorname{nis}}(\operatorname{Sm}_k)_{*} \xrightarrow{\tau_{\geq n}} \operatorname{Shv}_{\operatorname{nis}}(\operatorname{Sm}_k)_{*}.
$$

Proof. Let $n \geq 0$, and fix a pointed motivic space $X \in \text{Spc}(k)_*$. It suffices to show that $\tau_{\geq n} \iota_{\mathbb{A}^1} X$ is again \mathbb{A}^1 -invariant.

If $n = 0$ there is nothing to prove, so we can assume $n \geq 1$. Using [\[Mor12,](#page-97-3) Corollary 5.3, it suffices to prove that $\pi_1(\tau_{\geq n} \iota_{\mathbb{A}^1} X)$ is strongly \mathbb{A}^1 -invariant and $\pi_k(\tau_{\geq n} \iota_{\mathbb{A}^1} X)$ is strictly \mathbb{A}^1 -invariant for all $k \geq 2$. This is clear if $n > k$, since 0 is strictly \mathbb{A}^1 -invariant. If $n \leq k$, we use [\[Mor12,](#page-97-3) Corollary 5.2] to conclude that $\pi_k(\tau_{\geq n} \iota_{\mathbb{A}^1} X) \cong \pi_k(\iota_{\mathbb{A}^1} X)$ is strictly \mathbb{A}^1 -invariant. The same proof works for π_1 if $n = 1$, again using [\[Mor12,](#page-97-3) Corollary 5.2]. \Box

Lemma 5.14. *Let* $X \text{ ∈ } \text{Spc}(k)_*$ *be a pointed connected motivic space, i.e. it is in the image of* $\tau_{\geq 1}$: $\text{Spc}(k)_{*} \to \text{Spc}(k)_{*}$ *from Lemma [5.13.](#page-58-0) For all* $n \geq 1$ *there are equivalences*

$$
\tau_{\leq n} \iota_{\text{nis}, \mathbb{A}^1} X \cong \iota_{\text{nis}} \tau_{\leq n} \iota_{\mathbb{A}^1} X.
$$

Proof. Let $k \geq 1$. Then there is a fiber sequence

$$
K(\pi_k(\iota_{\mathbb{A}^1}X),k) \to \tau_{\leq k}\iota_{\mathbb{A}^1}X \to \tau_{\leq k-1}\iota_{\mathbb{A}^1}X.
$$

Thus, since ι_{nis} preserves limits (it is a right adjoint), we get a fiber sequence

$$
\iota_{\mathrm{nis}} K(\pi_k(\iota_{{\mathbb A}^1}X),k) \to \iota_{\mathrm{nis}}\tau_{\leq k}\iota_{{\mathbb A}^1}X \to \iota_{\mathrm{nis}}\tau_{\leq k-1}\iota_{{\mathbb A}^1}X.
$$

By definition, we have $\iota_{\mathbb{A}^1} \pi_k(X) = \pi_k(\iota_{\mathbb{A}^1} X)$. Lemma [5.12](#page-58-1) now gives us equivalences

$$
\iota_{\text{nis}} K(\pi_k(\iota_{\mathbb{A}^1} X), k) \cong \iota_{\text{nis},\mathbb{A}^1} K(\pi_k(X), k) \cong K(\iota_{\text{nis},\mathbb{A}^1}^\heartsuit \pi_k(X), k).
$$

Moreover, $\lim_{k \to \infty} \tau_{\leq k} \iota_{\mathbb{A}^1} X \cong \iota_{\text{nis}} \lim_{k \to \infty} \tau_{\leq k} \iota_{\mathbb{A}^1} X \cong \iota_{\text{nis}} \mathbb{A}^1} X$, since ι_{nis} preserves limits and $\text{Shv}_{\text{nis}}(\text{Sm}_k)$ is Postnikov-complete (Lemma [5.1\)](#page-54-0). Since $\iota_{\text{nis}}\tau_{\leq k}\iota_{\mathbb{A}^1}X$ is still k-truncated (as the right adjoint of a geometric morphism preserves trun-cated objects, see [\[Lur09,](#page-96-1) Proposition 6.3.1.9]), and the fibers of $\iota_{\text{nis}} \tau_{\leq k} \iota_{\mathbb{A}^1} X \to$ $\iota_{\text{nis}}\tau_{\leq k-1}\iota_{\mathbb{A}^1}X$ are Eilenberg-MacLane objects in degree k, we conclude by induction on k that actually $(\iota_{\text{nis}}\tau_{\leq k}\iota_{\mathbb{A}^1}X)_k$ is the Postnikov tower of $\iota_{\text{nis},\mathbb{A}^1}X$, i.e. $\iota_{\text{nis}} \tau_{\leq k} \iota_{\mathbb{A}^1} X \cong \tau_{\leq k} \iota_{\text{nis}, \mathbb{A}^1} X.$ \Box

Lemma 5.15. *Let* $X \in \text{Spc}(k)$ ^{*} *be a pointed motivic space. Then* $\tau_{\geq n} \iota_{\text{nis},\mathbb{A}^1} X \cong$ $\iota_{\text{nis}}\tau_{\geq n}\iota_{\mathbb{A}^1}X$ *for all* $n\geq 0$ *.*

Proof. If $n = 0$ then there is nothing to prove. So suppose that $n \geq 1$. Write $\text{Shv}_{\text{zar}}(\text{Sm}_k)_{\geq n,*} \subset \text{Shv}_{\text{zar}}(\text{Sm}_k)_{*}$ for the full subcategory of *n*-connective pointed Zariski sheaves. We begin by showing that for every $Y \in Shv_{\text{nis}}(Sm_k)$, the canonical map $\tau_{\geq n} \ell_{\text{nis}} \tau_{\geq n} Y \to \tau_{\geq n} \ell_{\text{nis}} Y$ is an equivalence. Note that there is a fiber sequence

$$
\tau_{\geq n} Y \to Y \to \tau_{\leq n-1} Y.
$$

Applying the right adjoint ι_{nis} yields the fiber sequence

$$
\iota_{\text{nis}} \tau_{\geq n} Y \to \iota_{\text{nis}} Y \to \iota_{\text{nis}} \tau_{\leq n-1} Y.
$$

Note that if we view $\tau_{\geq n}$ as a functor $\text{Shv}_{\text{zar}}(\text{Sm}_k)_* \to \text{Shv}_{\text{zar}}(\text{Sm}_k)_{\geq n,*}$, then it preserves limits because it is right adjoint to the inclusion. Therefore, applying $\tau_{\geq n}$ yields a fiber sequence (in Shv_{zar}(Sm_k)_{≥n,*})

$$
\tau_{\geq n} \iota_{\text{nis}} \tau_{\geq n} Y \to \tau_{\geq n} \iota_{\text{nis}} Y \to \tau_{\geq n} \iota_{\text{nis}} \tau_{\leq n-1} Y.
$$

Since ι_{nis} preserves $(n-1)$ -truncated objects (this is proven in [\[Lur09,](#page-96-1) Proposition 6.3.1.9], since ι_{nis} is the right adjoint of a geometric morphism), the right term vanishes. Therefore we have an equivalence $\tau_{\geq n}t_{\text{nis}}\tau_{\geq n}Y \cong \tau_{\geq n}t_{\text{nis}}Y$ in $\text{Shv}_{\text{zar}}(\text{Sm}_k)_{\geq n,*}$, and therefore also in $\text{Shv}_{\text{zar}}(\text{Sm}_k)_{*}$.

Therefore, it suffices to show that $\iota_{\text{nis}} \tau_{\geq n} \iota_{\mathbb{A}^1} X$ is already *n*-connective for every $X \in \text{Spc}(k)_*$. Note first that by Lemma [5.13,](#page-58-0) there is a pointed motivic space $Y := \tau_{\geq n} X$ with $\tau_{\geq n} \iota_{\mathbb{A}^1} X \cong \iota_{\mathbb{A}^1} Y$, and Y is a pointed, *n*-connective motivic space. Note that $\iota_{\text{nis},\mathbb{A}^1} Y$ is *n*-connective if and only if $\tau_{\leq n} \iota_{\text{nis},\mathbb{A}^1} Y$ is *n*-connective. We know from Lemma [5.14,](#page-58-2) that $\tau_{\leq n} \iota_{\text{nis,A}} Y \cong \iota_{\text{nis}} \tau_{\leq n} \iota_{\mathbb{A}^1} Y$. Therefore, we may assume that $\iota_{\mathbb{A}^1} Y$ is *n*-connective and *n*-truncated, i.e. $\iota_{\mathbb{A}^1} Y \cong \iota_{\mathbb{A}^1} K(A, n)$ for some $A \in {\rm SH}^{S^1}(k)^\heartsuit$. But now we have that $\iota_{\text{nis},\mathbb{A}^1} Y \cong$ $\iota_{\text{nis},\mathbb{A}^1} K(A,n) \cong K(\iota_{\text{nis},\mathbb{A}^1}^\heartsuit,n)$ by Lemma [5.12,](#page-58-1) which is in particular *n*-connective. This proves the lemma.

Corollary 5.16. *Let* $X \text{ ∈ } Spc(k)_*$ *be a pointed motivic space, i.e. If* $n ≥ 2$ *, there are equivalences*

$$
\pi_n(\iota_{\mathrm{nis},\mathbb{A}^1}X)\cong \iota_{\mathrm{nis}}^\heartsuit \pi_n(\iota_{\mathbb{A}^1}X)\cong \iota_{\mathrm{nis},\mathbb{A}^1}^\heartsuit \pi_n(X),
$$

and if $n = 1$ *, we have an isomorphism*

$$
\pi_1(\iota_{\mathrm{nis},\mathbb{A}^1}X) \cong \iota_{\mathrm{nis}}\pi_1(\iota_{\mathbb{A}^1}X),
$$

where we view ιnis *as a functor*

 $\mathcal{G}rp(\text{Disc}(\text{Shv}_{\text{nis}}(\text{Sm}_k))) \to \mathcal{G}rp(\text{Disc}(\text{Shv}_{\text{zar}}(\text{Sm}_k))).$

Proof. From Lemmas [5.14](#page-58-2) and [5.15](#page-59-0) we are immediately able to conclude that $\pi_n(\iota_{\text{nis},\mathbb{A}^1}X) \cong \iota_{\text{nis}}\pi_n(\iota_{\mathbb{A}^1}X)$. Moreover, by definition $\iota_{\mathbb{A}^1}\pi_n(X) = \pi_n(\iota_{\mathbb{A}^1}X)$, therefore we also get an equivalence $\pi_n(\iota_{\text{nis,A}}\times) \cong \iota_{\text{nis,A}}\times(\mathcal{X})$. Since everything is in the heart of the standard t-structure, we get the desired equivalences. If $n = 1$, then the same proof works, but we ignore the hearts and view $\iota_{\rm nis}$ as a functor $Grp(\text{Disc}(Shv_{nis}(Sm_k))) \to Grp(\text{Disc}(Shv_{zar}(Sm_k))).$ П

Lemma 5.17. *The functor* $\iota_{\text{nis},\mathbb{A}^1}$: $\text{SH}^{S^1}(k) \rightarrow \text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})$ *is t-exact for the* p*-adic t-structures.*

In particular, it induces a fully faithful exact functor

$$
\iota_{\mathrm{nis},\mathbb{A}^1}^{p\heartsuit} \colon \operatorname{SH}^{S^1}(k)^{p\heartsuit} \to \operatorname{Shv}_{\mathrm{zar}}(\mathrm{Sm}_k,\mathrm{Sp})^{p\heartsuit}.
$$

Proof. By Lemma [5.11,](#page-57-0) $\iota_{\text{nis,A}}$ is t-exact for the standard t-structures. Therefore $L_{\text{nis,} \mathbb{A}^1}$ is right t-exact for the standard t-structures by [\[BBD82,](#page-96-2) Proposition 1.3.17(iii)]. Now Lemma [2.34](#page-20-0) applied to $L = \iota_{\text{nis},\mathbb{A}^1}$ implies that $\iota_{\text{nis},\mathbb{A}^1}$ is right t-exact, whereas the same lemma applied to $L = L_{\text{nis}, \mathbb{A}^1}$ and $R = \iota_{\text{nis}, \mathbb{A}^1}$ implies that $\iota_{\text{nis},\mathbb{A}^1}$ is left t-exact. This proves the first part of the lemma.

The last part is [\[BBD82,](#page-96-2) Proposition 1.3.17(i)].

$$
\Box
$$

5.2 ¹-Invariance of the *p*-Completion

The category of motivic spaces is not an ∞ -topos. Nonetheless, it is presentable (see Lemma [5.4\)](#page-54-1). Therefore, Section [3.1](#page-21-0) applies and gives us a notion of p equivalence, and a p-completion functor $(-)_{n}^{\wedge}$ $p'_{p}: \text{Spc}(k) \to \text{Spc}(k)$. In this section we prove that at least for nilpotent motivic spaces, the p-completion of the underlying Nisnevich sheaf is still \mathbb{A}^1 -invariant, and agrees with the *p*-completion of X in the category of pointed connected motivic spaces, see Theorem [5.31.](#page-63-0)

Remark 5.18*.* We will also show in Theorem [5.34](#page-67-0) that the p-completion of a nilpotent motivic space agrees with the p-completion of the underlying Zariski sheaf. This is unclear for arbitrary Nisnevich sheaves, even if we assume nilpotence.

Recall that Asok-Fasel-Hopkins defined in [\[AFH22,](#page-96-8) Definition 3.3.1] what a nilpotent motivic space is.

Lemma 5.19. *A pointed motivic space* $X ∈ Spc(k)_{*}$ *is nilpotent if and only if* $\iota_{\mathbb{A}^1}X$ *is nilpotent as a Nisnevich sheaf in the sense of Definition [A.10.](#page-79-0)*

Proof. One direction is clear from the definitions, since the homotopy groups (and the action of π_1) of a motivic space are the same as the homotopy groups (and the action of π_1) of the underlying Nisnevich sheaf of anima. For the other direction one uses [\[AFH22,](#page-96-8) Proposition 3.2.3] (and its variant for actions of π_1 on π_n) to conclude that every nilpotent Nisnevich sheaf of groups which is strictly \mathbb{A}^1 -invariant is already \mathbb{A}^1 -nilpotent. \Box

Lemma 5.20. Shv_{nis} (Sm_k) and $Shv_{zar}(Sm_k)$ are locally of finite uniform ho*motopy dimension.*

Proof. Let S be the collection of all points of $\text{Shv}_{\text{nis}}(\text{Sm}_k)$, and htpydim: $S \to \mathbb{N}$ be the function $S_s^h \mapsto \dim(S)$.

Let $F \in \text{Shv}_{\text{nis}}(\text{Sm}_k)$ be k-connective, S_s^h be a point and $U \in \mathcal{I}_s$. Then $U \rightarrow S$ is an étale neighborhood of s, and thus $\dim(U) = \dim(S)$ (by the assumption on the connectedness of S). Denote by \mathcal{X}_U the category of sheaves on the site of étale morphisms over U with Nisnevich covers. There is a functor f_U : Shv_{nis}(Sm_k) → \mathcal{X}_U given by restriction. Note that $F(U) \cong (f_U F)(U)$. Since by [\[Lur18a,](#page-96-4) Theorem 3.7.7.1] \mathcal{X}_U has homotopy dimension $\leq \dim(S)$, we conclude that $F(U)$ is $k - \text{htpydim}(s)$ -connective (note that $f_U F$ is still kconnective, as f_U commutes with homotopy objects, to prove this, one argues exactly as in the Zariski case, see the proof of Lemma [4.58\)](#page-48-0).

For the Zariski ∞ -topos one argues similar, noting that the points of the Zariski ∞ -topos are given by the local schemes S_s . To see that the small Zariski ∞ -topos over a smooth scheme U has homotopy dimension $\leq \dim(U)$, one uses [\[Lur09,](#page-96-1) Corollary 7.2.4.17]. \Box

Corollary 5.21. *Let* $X \text{ } \in \text{Shv}_{\text{nis}}(\text{Sm}_k)_*$ *or* $X \text{ } \in \text{ Shv}_{\text{zar}}(\text{Sm}_k)_*$ *be nilpotent. Then* $X_p^{\wedge} = \lim_n (\tau_{\leq n} X)_p^{\wedge}$ p *.*

Proof. This is Theorem [3.27,](#page-30-0) together with Lemma [5.20.](#page-61-0) Here we use that the Zariski and Nisnevich topoi are Postnikov-complete, see Lemma [4.58](#page-48-0) and Lemma [5.1.](#page-54-0) \Box

Proposition 5.22. *Let* $X \in \text{Spc}(k)_{*}$ *be nilpotent. Then the p-completion* $(\iota_{\mathbb{A}^1}\overline{X})_n^{\wedge}$ \int_{p}^{\wedge} *is an* \mathbb{A}^1 -*invariant sheaf.*

Proof. By Corollary [5.21](#page-61-1) there are equivalences $(\iota_{\mathbb{A}^1} X)^{\wedge}_n$ $\hat{\gamma}_p \cong (\lim_n \tau_{\leq n} \iota_{\mathbb{A}^1} X)^{\wedge}_p$ $\frac{\wedge}{p} \cong$ $\lim_{n} (\tau_{\leq n} \iota_{\mathbb{A}^1} X)^{\wedge}_n$ \int_{p}^{\wedge} . Since the limit of \mathbb{A}^1 -invariant sheaves is \mathbb{A}^1 -invariant (as the inclusion ι_{A^1} is a right adjoint, i.e. commutes with limits), we can assume that X is n-truncated (i.e. $\iota_{\mathbb{A}^1} X$ is n-truncated). We proceed by induction on n, the case $n = 0$ being trivial. Using [\[AFH22,](#page-96-8) Theorem 3.3.13] the Postnikov tower of X has a principal refinement consisting of (nilpotent) motivic spaces $X_{n,k}$, and sheaves of spectra $A_{n,k+1} \in \text{SH}^{S^1}(k)^\heartsuit$, such that there are fiber sequences

$$
X_{n,k+1} \to X_{n,k} \to K(A_{n,k+1}, n+1)
$$

and equivalences $X_{n,0} \cong \tau_{\leq n} X$. Applying $\iota_{\mathbb{A}^1}$ to the fiber sequences gives the fiber sequence

$$
\iota_{\mathbb{A}^1} X_{n,k+1} \to \iota_{\mathbb{A}^1} X_{n,k} \to K(\iota_{\mathbb{A}^1}^\heartsuit A_{n,k+1}, n+1),
$$

where we used Lemma [5.12.](#page-58-1) Note that by Lemma [5.19,](#page-60-0) all of those sheaves are nilpotent.

We can thus proceed by induction on $0 \leq k \leq m_n$. We know that $(\iota_{\mathbb{A}^1} X_{n,0})_n^{\wedge}$ $\frac{\wedge}{p}$ \cong $(\tau_{\leq n} \iota_{\mathbb{A}^1} X)_{n}^{\wedge}$ \int_{p}^{λ} is \mathbb{A}^{1} -invariant by induction (on *n*). Thus suppose we have shown that $(\iota_{\mathbb{A}^1}\overrightarrow{X}_{n,k})_p^{\wedge}$ $\sum_{p=1}^{\infty}$ is \mathbb{A}^1 -invariant, $k < m_n$. Using the above fiber sequence, we can compute the p-completion using Proposition [3.20:](#page-27-1)

$$
(\iota_{\mathbb{A}^1} X_{n,k+1})_p^\wedge = \tau_{\geq 1} \text{fib}\bigg((\iota_{\mathbb{A}^1} X_{n,k})_p^\wedge \to \left(K(\iota_{\mathbb{A}^1}^\heartsuit A_{n,k}, n+1) \right)_p^\wedge \bigg).
$$

Since fibers and connected covers (Lemma [5.13\)](#page-58-0) of \mathbb{A}^1 -invariant sheaves are \mathbb{A}^1 invariant, we can reduce to the case $X = K(\iota_{\mathbb{A}^1}^{\mathcal{O}} A, n)$ for some $A \in SH^{S^1}(k)^\mathcal{O}$ and $n \geq 2$.

But then $X_p^{\wedge} \cong \tau_{\geq 1} \Omega_*^{\infty} \left(\left(\Sigma^n \iota_{\mathbb{A}^1}^{\heartsuit} A \right)^{\wedge} \right)$). Since connected covers of \mathbb{A}^1 p invariant sheaves are \mathbb{A}^1 -invaraint (again by Lemma [5.13\)](#page-58-0), it suffices to show that $\left(\iota_{\mathbb{A}^1}^\heartsuit A\right)^\wedge$ is \mathbb{A}^1 -invariant. But this is just a limit of \mathbb{A}^1 -invariant sheaves of spectra, and therefore \mathbb{A}^1 -invariant (as $\iota_{\mathbb{A}^1}$ is a right adjoint). \Box

Remark 5.23*.* We now want to show that the p-completion of a nilpotent motivic space is the same as the p-completion of the underlying Nisnevich sheaf. In order to do this, one needs to show that the motivic space $L_{\mathbb{A}^1}((\iota_{\mathbb{A}^1 X})_p^{\wedge}$ $_{p}^{\wedge})$ is again p -complete. We would like to argue again using the principal refinement of the Postnikov tower, and write this motivic space as a repeated limit of p-completions of Eilenberg Mac-Lane spaces. Unfortunately, this approach has a major drawback: By calculating *p*-completions on the Postnikov tower, connective covers will appear. This introduces a problem: Since the category of motivic spaces is not an ∞ -topos, we cannot use the arguments from Section [3.2](#page-25-1) to conclude that the connective cover of a p -complete space is again p -complete, since it is not at all clear that the p-completion of motivic spaces respects π_0 . We can correct this error by working in the category of connected motivic spaces (in particular, every nilpotent motivic space is connected). This also leads to the following conjecture:

Conjecture 5.24. *Let* $X \text{ ∈ } Spc(k)_*$ *be a pointed motivic space.* If X *is* p*complete, then also* $\tau_{\geq 1}X$ *is p-complete.*

We now introduce the category of pointed connected motivic spaces:

Definition 5.25. Write Spc(k)[≥]1,[∗] for the category of *pointed connected motivic spaces*, i.e. the full subcategory of $\text{Spc}(k)_*$ spanned by objects X such that the underlying Nisnevich sheaf $\iota_{\mathbb{A}^1} X$ is connected (i.e. $\pi_0(\iota_{\mathbb{A}^1} X) = *$).

Remark 5.26. Note that we have homotopy sheaves π_n : Spc $(k)_{\geq 1,*} \to \text{SH}^{S^1}(k)^\heartsuit$ for $n \geq 2$, and π_1 : Spc $(k)_{\geq 1,*} \to \mathcal{G}rp_{\text{str}}(k)$.

Remark 5.27. Note that $\text{Spc}(k)_{\geq 1,*}$ is presentable: It is stable under all colimits in $Spec(k)_*$, and is the preimage of the terminal category $*$ under the accessible functor $\pi_0 \circ \iota_{\mathbb{A}^1}$: Spc $(k)_* \to \text{Disc}(\text{Shv}_{\text{nis}}(\text{Sm}_k))$, thus also accessible by [\[Lur09,](#page-96-1) Proposition 5.4.6.6]. Hence, we can apply Section [3.1](#page-21-0) and get a p-completion functor on this category.

Using the presentability of $\text{Spc}(k)_{\geq 1,*}$ and the observation that the inclusion $\text{Spc}(k)_{\geq 1,*} \to \text{Spc}(k)_{*}$ preserves colimits (this follows from the fact that $L_{\mathbb{A}^1}$ preserves connected objects), the adjoint functor theorem gives us a right adjoint.

Definition 5.28. Write $\iota_{\geq 1}$: Spc $(k)_{\geq 1,*} \rightleftarrows \text{Spc}(k)_*$: $\tau_{\geq 1}$ for the canonical adjunction. We define as shorthand the following notations:

$$
\iota_{\mathbb{A}^1, \ge 1} := \iota_{\mathbb{A}^1} \iota_{\ge 1} : \operatorname{Spc}(k)_{\ge 1,*} \to \operatorname{Shv}_{\operatorname{nis}}(\operatorname{Sm}_k)_*, \text{ and}
$$

$$
\iota_{\operatorname{nis}, \mathbb{A}^1, \ge 1} := \iota_{\operatorname{nis}} \iota_{\mathbb{A}^1} \iota_{\ge 1} : \operatorname{Spc}(k)_{\ge 1,*} \to \operatorname{Shv}_{\operatorname{zar}}(\operatorname{Sm}_k)_*.
$$

Lemma 5.29. We have an equivalence of categories $SH^{S^1}(k) \cong Sp(Spc(k)_{\geq 1,*}).$ *In particular, we have a commuting diagram*

Thus, if $f: X \rightarrow Y$ *is a morphism of connected pointed motivic spaces, then it is a* p*-equivalence if and only if the underlying morphism of pointed motivic spaces* $\iota_{\geq 1} f$ *is a p-equivalence.*

Proof. Recall from [\[Lur17,](#page-96-5) Remark 1.4.2.25] that there are equivalences of ∞ categories

$$
\mathsf{SH}^{S^1}(k) \cong \lim \dots \xrightarrow{\Omega} \mathsf{Spc}(k)_* \xrightarrow{\Omega} \mathsf{Spc}(k)_*
$$

and

$$
\mathrm{Sp}(\mathrm{Spc}(k)_{\geq 1,*})\cong \lim\left(\ldots\stackrel{\Omega}{\longrightarrow} \mathrm{Spc}(k)_{\geq 1,*}\stackrel{\Omega}{\longrightarrow} \mathrm{Spc}(k)_{\geq 1,*}\right).
$$

The result follows by a cofinality argument, using that we have equivalences $\Omega \tau_{\geq 1} X \cong \Omega X$ for every pointed motivic space X. 口

Using the last lemma, from now on we will identify the stabilization of $\mathrm{Spc}(k)_{\geq 1,*}$ with $\mathrm{SH}^{S^1}(k)$.

Definition 5.30. Let $X \in \text{Spc}(k)_{\geq 1,*}$. We say that X is *nilpotent* if the underlying motivic space is nilpotent.

Theorem 5.31. *Let* X ∈ Spc $(k)_{\geq 1,*}$ *be a nilpotent pointed motivic space (note that every nilpotent space is connected). We have a canonical equiva* $lence \iota_{\mathbb{A}^1, \geq 1}(X_p^{\wedge}) \cong (\iota_{\mathbb{A}^1, \geq 1} X)_p^{\wedge}$. In other words, the p-completion of a nilpotent *pointed connected motivic space can be computed on the underlying Nisnevich sheaf.*

Proof. Let $\iota_{\mathbb{A}^1, \geq 1} X \to (\iota_{\mathbb{A}^1, \geq 1} X)^{\wedge}_{p}$ be the canonical p-equivalence. Applying $L_{\mathbb{A}^1}$ yields the *p*-equivalence (in $Spc(k)_*$)

$$
\iota_{\geq 1} X \cong L_{\mathbb{A}^1} \iota_{\mathbb{A}^1, \geq 1} X \to L_{\mathbb{A}^1} \left(\left(\iota_{\mathbb{A}^1, \geq 1} X \right)_p^{\wedge} \right).
$$

Note that $i>1$ is connected by assumption, and that the right-hand side is connected because the p-completion in an ∞ -topos preserves connected ob-jects (see Lemma [3.12\)](#page-25-0), and the same is true for $L_{\mathbb{A}^1}$, see [\[Mor04,](#page-97-4) Corollary 3.2.5]. Thus, this is a morphism in $\text{Spc}(k)_{\geq 1,*}$, and hence we have a pequivalence $X \to \tau_{\geq 1} L_{\mathbb{A}^1}(\left(\iota_{\mathbb{A}^1, \geq 1} X)^{\wedge}_{p}$, see Lemma [5.29.](#page-63-1) It suffices to show that the right object is p -complete: Then p -completion induces an equivalence $X_p^{\wedge} \cong \tau_{\geq 1} L_{\mathbb{A}^1}((\iota_{\mathbb{A}^1, \geq 1} X)_p^{\wedge}).$ Applying $\iota_{\mathbb{A}^1, \geq 1}$ then induces an equivalence

$$
\iota_{\mathbb{A}^1, \geq 1}(X_p^{\wedge}) \cong \iota_{\mathbb{A}^1, \geq 1} \tau_{\geq 1} L_{\mathbb{A}^1} \left(\left(\iota_{\mathbb{A}^1, \geq 1} X \right)_p^{\wedge} \right) \cong \left(\iota_{\mathbb{A}^1, \geq 1} X \right)_p^{\wedge},
$$

where we used in the last equivalence that $(\iota_{\mathbb{A}^1} X)^{\wedge}_{n}$ \int_{p}^{∞} is already connected (by the above discussion) and \mathbb{A}^1 -invariant (see Proposition [5.22\)](#page-61-2).

In order to see that $\tau_{\geq 1} L_{\mathbb{A}^1}(\iota_{\mathbb{A}^1,\geq 1} X)_{p}^{\wedge}$ is *p*-complete, we first reduce to the case that X is truncated: For this, we calculate

$$
\tau_{\geq 1} L_{\mathbb{A}^1}((\iota_{\mathbb{A}^1, \geq 1} X)^{\wedge}_{p}) \cong \tau_{\geq 1} L_{\mathbb{A}^1} \lim_{n} (\tau_{\leq n} \iota_{\mathbb{A}^1, \geq 1} X)^{\wedge}_{p}
$$

\n
$$
\cong \tau_{\geq 1} L_{\mathbb{A}^1} \lim_{n} \iota_{\mathbb{A}^1} L_{\mathbb{A}^1}((\tau_{\leq n} \iota_{\mathbb{A}^1, \geq 1} X)^{\wedge}_{p})
$$

\n
$$
\cong \tau_{\geq 1} L_{\mathbb{A}^1} \iota_{\mathbb{A}^1} \lim_{n} L_{\mathbb{A}^1}((\tau_{\leq n} \iota_{\mathbb{A}^1, \geq 1} X)^{\wedge}_{p})
$$

\n
$$
\cong \tau_{\geq 1} \lim_{n} L_{\mathbb{A}^1}((\tau_{\leq n} \iota_{\mathbb{A}^1, \geq 1} X)^{\wedge}_{p})
$$

\n
$$
\cong \lim_{n} \tau_{\geq 1} L_{\mathbb{A}^1}((\tau_{\leq n} \iota_{\mathbb{A}^1, \geq 1} X)^{\wedge}_{p}),
$$

where we used Corollary [5.21](#page-61-1) for the first equivalence, and that $(\tau_{\leq n^l\mathbb{A}^1,\geq 1}X)_{p}^{\wedge}$ is \mathbb{A}^1 -invariant in the second equivalence (see Proposition [5.22,](#page-61-2) using that $\tau_{\leq n} \iota_{\mathbb{A}^1, \geq 1} X$ is nilpotent). The third equivalence holds because $\iota_{\mathbb{A}^1}$ commutes with limits, the fourth equivalence is fully faithfulness of $\iota_{\mathbb{A}^1}$, and the last equivalence uses that $\tau_{\geq 1}$ is a right adjoint. Since limits of p-complete objects are p-complete, it suffices to prove the statement for truncated nilpotent connected motivic spaces.

Proceeding as in the proof of the last proposition, we choose a principal refinement of the Postnikov tower (note that all the $X_{n,k}$ are automatically connected since they are nilpotent), and do double induction on n and k (with notation as in the proof of Proposition [5.22\)](#page-61-2). Therefore, we assume that the

statement is true for $X_{n,k}$ (i.e. $\tau_{\geq 1} L_{\mathbb{A}^1}(\left(\iota_{\mathbb{A}^1,\geq 1} X\right)_p^{\wedge})$ is p-complete), and that there is a fiber sequence

$$
\iota_{\mathbb{A}^1,\geq 1} X_{n,k+1} \to \iota_{\mathbb{A}^1,\geq 1} X_{n,k} \to K(\iota_{\mathbb{A}^1}^\heartsuit A_{n,k+1}, n+1).
$$

Using the above fiber sequence, we can compute the p-completion using Propo-sition [3.20.](#page-27-1) Applying $\tau_{\geq 1}L_{\mathbb{A}^1}$, we calculate

$$
\tau_{\geq 1} L_{\mathbb{A}^1} \left((\iota_{\mathbb{A}^1, \geq 1} X_{n,k+1})_p^{\wedge} \right)
$$
\n
$$
\cong \tau_{\geq 1} L_{\mathbb{A}^1} \tau_{\geq 1} \text{fib} \left((\iota_{\mathbb{A}^1, \geq 1} X_{n,k})_p^{\wedge} \to \left(K(\iota_{\mathbb{A}^1}^{\heartsuit} A_{n,k}, n+1) \right)_p^{\wedge} \right)
$$
\n
$$
\cong \tau_{\geq 1} L_{\mathbb{A}^1} \tau_{\geq 1} \text{fib} \left(\iota_{\mathbb{A}^1} L_{\mathbb{A}^1} \left((\iota_{\mathbb{A}^1, \geq 1} X_{n,k})_p^{\wedge} \right) \to \iota_{\mathbb{A}^1} L_{\mathbb{A}^1} \left(\left(K(\iota_{\mathbb{A}^1}^{\heartsuit} A_{n,k}, n+1) \right)_p^{\wedge} \right) \right)
$$
\n
$$
\cong \tau_{\geq 1} L_{\mathbb{A}^1} \tau_{\geq 1} \text{fib} \left(L_{\mathbb{A}^1} \left((\iota_{\mathbb{A}^1, \geq 1} X_{n,k})_p^{\wedge} \right) \to L_{\mathbb{A}^1} \left(\left(K(\iota_{\mathbb{A}^1}^{\heartsuit} A_{n,k}, n+1) \right)_p^{\wedge} \right) \right)
$$
\n
$$
\cong \tau_{\geq 1} L_{\mathbb{A}^1} \iota_{\mathbb{A}^1, \geq 1} \tau_{\geq 1} \text{fib} \left(L_{\mathbb{A}^1} \left((\iota_{\mathbb{A}^1} X_{n,k})_p^{\wedge} \right) \to L_{\mathbb{A}^1} \left(\left(K(\iota_{\mathbb{A}^1}^{\heartsuit} A_{n,k}, n+1) \right)_p^{\wedge} \right) \right)
$$
\n
$$
\cong \tau_{\geq 1} \text{fib} \left(L_{\mathbb{A}^1} \left((\iota_{\mathbb{A}^1} X_{n,k})
$$

Here, the second equivalence holds because both p -completions on the right are actually A 1 -invariant, see again Proposition [5.22.](#page-61-2) The third, fourth and fifth equivalences hold because ι_{A^1} commutes with limits and the connective cover (Lemma [5.13\)](#page-58-0), and is fully faithful. The sixth equivalence is fully faithfulness of $\iota_{\geq 1}$, and the last equivalence holds because $\tau_{\geq 1}$ commutes with limits. By induction, $\tau_{\geq 1} L_{\mathbb{A}^1} \left((\iota_{\mathbb{A}^1, \geq 1} X_{n,k}) \right)_p^{\wedge}$ is p-complete. Since fibers of p-complete objects are p-complete, we have reduced to the case of an Eilenberg-MacLane space.

So suppose that $n \geq 2$ and $A \in SH^{S^1}(k)^\heartsuit$ is strictly \mathbb{A}^1 -invariant. We need to show that $\tau_{\geq 1} L_{\mathbb{A}^1} \left(\left(K(\iota_{\mathbb{A}^1}^{\heartsuit} A, n) \right)^\wedge \right)$ p $\bigg\}$ is *p*-complete (in connected motivic spaces). We compute

$$
\tau_{\geq 1} L_{\mathbb{A}^1} \left(\left(K(\iota_{\mathbb{A}^1}^{\heartsuit} A, n) \right)_p^{\wedge} \right) \cong \tau_{\geq 1} L_{\mathbb{A}^1} \tau_{\geq 1} \Omega_*^{\infty} \left(\left(\Sigma^n \iota_{\mathbb{A}^1}^{\heartsuit} A \right)_p^{\wedge} \right)
$$

$$
\cong \tau_{\geq 1} L_{\mathbb{A}^1} \tau_{\geq 1} \Omega_*^{\infty} \left((\Sigma^n \iota_{\mathbb{A}^1} A)_p^{\wedge} \right)
$$

$$
\cong \tau_{\geq 1} L_{\mathbb{A}^1} \tau_{\geq 1} \Omega_*^{\infty} \iota_{\mathbb{A}^1} \left((\Sigma^n A)_p^{\wedge} \right)
$$

$$
\cong \tau_{\geq 1} L_{\mathbb{A}^1} \tau_{\geq 1} \iota_{\mathbb{A}^1} \Omega_*^{\infty} \left((\Sigma^n A)_p^{\wedge} \right)
$$

$$
\cong \tau_{\geq 1} L_{\mathbb{A}^1} \iota_{\mathbb{A}^1, \geq 1} \tau_{\geq 1} \Omega_*^{\infty} \left((\Sigma^n A)_p^{\wedge} \right)
$$

$$
\cong \tau_{\geq 1} \iota_{\geq 1} \tau_{\geq 1} \Omega_*^{\infty} \left((\Sigma^n A)_p^{\wedge} \right)
$$

$$
\cong \tau_{\geq 1} \Omega_*^{\infty} \left((\Sigma^n A)_p^{\wedge} \right),
$$

where we used Corollary [3.18](#page-27-0) in the first equivalence, and t-exactness of $\iota_{\mathbb{A}^1}$ (Lemma [5.5\)](#page-55-1) in the second equivalence. The third equivalence holds because ι_{A1} commutes with limits, the fourth equivalence is Lemma [A.1,](#page-77-0) and the fifth is Lemma [5.13.](#page-58-0) The last two equivalences use fully faithfulness of $\iota_{\mathbb{A}^1}$ and $\iota_{\geq 1}$. The theorem follows because $\tau_{\geq 1}\Omega_*^{\infty}$ preserves p-complete objects (as its left adjoint Σ^{∞} : Spc $(k)_{\geq 1,*} \to \text{SH}^{S^1}(k)$ preserves *p*-equivalences by definition). \Box

Remark 5.32*.* Note that if Conjecture [5.24](#page-62-0) is true, then the same reasoning allows us to prove the following result: If $X \in \text{Spc}(k)_*$ is a pointed nilpotent space, then $(\iota_{\mathbb{A}^1} X)^{\wedge}_n$ $\frac{\wedge}{p} \cong \iota_{\mathbb{A}^1} X_p^{\wedge}.$

The same technique allows us to prove a related result: The p -completion of the underlying Nisnevich sheaf of a nilpotent motivic space is also the p completion of the underlying Zariski sheaf. For this, we need the following lemma:

Lemma 5.33. *Let* $A \in \text{SH}^{S^1}(k)^\heartsuit$ *and* $n \geq 2$ *. There is an equivalence* $\iota_{\text{nis}}(K(\iota_{\mathbb{A}^1}^{\heartsuit}A,n)_p^{\wedge}) \cong K(\iota_{\text{nis},\mathbb{A}^1}^{\heartsuit}A,n)_p^{\wedge}.$

Proof. Note that since ι_{A^1} and ι_{nis,A^1} are t-exact for the standard t-structures (see Lemmas [5.5](#page-55-1) and [5.11\)](#page-57-0), we see that $\iota_{\mathbb{A}^1}^{\heartsuit} A \cong \iota_{\mathbb{A}^1} A$, and similarly, $\iota_{\text{nis},\mathbb{A}^1}^{\heartsuit} A \cong$ $\iota_{\text{nis},\mathbb{A}^1}A$. Therefore, we see that $K(\iota_{\mathbb{A}^1}^{\heartsuit}A,n) \cong \Omega_*^{\infty} \Sigma^n \iota_{\mathbb{A}^1}A$, and $K(\iota_{\text{nis},\mathbb{A}^1}^{\heartsuit}A,n) \cong$ $\Omega_*^{\infty} \Sigma^n \iota_{\text{nis},\mathbb{A}^1} A$. Thus, it suffices to show that there is an equivalence

$$
\iota_{\rm nis}((\Omega^\infty_*)^T \iota_{{\mathbb A}^1} A)^{\wedge}_p) \cong (\Omega^\infty_* \Sigma^n \iota_{{\rm nis}, {\mathbb A}^1} A)^{\wedge}_p.
$$

We now calculate

$$
\iota_{\text{nis}}\left(\left(\Omega_{*}^{\infty}\Sigma^{n}\iota_{\mathbb{A}^{1}}A\right)_{p}^{\wedge}\right) \cong \iota_{\text{nis}}\Omega_{*}^{\infty}\tau_{\geq 1}\left(\left(\Sigma^{n}\iota_{\mathbb{A}^{1}}A\right)_{p}^{\wedge}\right)
$$

$$
\cong \Omega_{*}^{\infty}\iota_{\text{nis}}\tau_{\geq 1}\left(\left(\Sigma^{n}\iota_{\mathbb{A}^{1}}A\right)_{p}^{\wedge}\right)
$$

$$
\cong \Omega_{*}^{\infty}\iota_{\text{nis}}\tau_{\geq 1}\iota_{\mathbb{A}^{1}}\left(\left(\Sigma^{n}A\right)_{p}^{\wedge}\right)
$$

$$
\cong \Omega_{*}^{\infty}\tau_{\geq 1}\iota_{\text{nis},\mathbb{A}^{1}}\left(\left(\Sigma^{n}A\right)_{p}^{\wedge}\right)
$$

$$
\cong \Omega_{*}^{\infty}\tau_{\geq 1}\left(\left(\Sigma^{n}\iota_{\text{nis},\mathbb{A}^{1}}A\right)_{p}^{\wedge}\right)
$$

$$
\cong \left(\Omega_{*}^{\infty}\Sigma^{n}\iota_{\text{nis},\mathbb{A}^{1}}A\right)_{p}^{\wedge}.
$$

Here, the first and last equivalences are Corollary [3.18,](#page-27-0) the second equivalence is Lemma [A.1,](#page-77-0) the third and fifth equivalences follow from Lemma [2.32](#page-19-0) and the exactness of $\iota_{\mathbb{A}^1}$ and $\iota_{\text{nis},\mathbb{A}^1}$, and the fourth equivalence is Lemma [5.15.](#page-59-0) \Box

Theorem 5.34. Let $X \in \text{Spc}(k)_*$ be nilpotent. Then $\iota_{\text{nis}}((\iota_{\mathbb{A}^1}X)^{\wedge}_{p})$ $\binom{\wedge}{p} \cong \left(\iota_{\text{nis},\mathbb{A}^1} X\right)^{\wedge}_p.$ *In particular, if we regard* X *as an object of* Spc(k)[≥]1,[∗] *we get an equivalence* $\iota_{\text{nis},\mathbb{A}^1,\geq 1}(X_p^{\wedge}) \cong (\iota_{\text{nis},\mathbb{A}^1,\geq 1}X)_p^{\wedge}$ by combining this result with Theorem [5.31.](#page-63-0)

Proof. First, assume that X is *n*-truncated for some n . As above, we choose a principal refinement of the Postnikov tower of X, with $X_{n,k} \in \text{Spc}(k)_*$ and $A_{n,k} \in \text{SH}^{S^1}(k)^\heartsuit$. We proceed by double induction on n and k, the case $n = 0$ being trivial. As above, we have a fiber sequence

$$
\iota_{\mathbb{A}^1} X_{n,k+1} \to \iota_{\mathbb{A}^1} X_{n,k} \to K(\iota_{\mathbb{A}^1}^\heartsuit A_{n,k+1}, n+1).
$$

Applying ι_{nis} , we get a fiber sequence

$$
\iota_{\mathrm{nis}} \iota_{\mathbb{A}^1} X_{n,k+1} \to \iota_{\mathrm{nis}} \iota_{\mathbb{A}^1} X_{n,k} \to K(\iota_{\mathrm{nis}}^{\heartsuit} \iota_{\mathbb{A}^1}^{\heartsuit} A_{n,k+1}, n+1),
$$

where we used Lemma [5.12.](#page-58-1) We now compute

$$
\begin{split}\n(\iota_{\mathrm{nis}}\iota_{\mathbb{A}^1} X_{n,k+1})_p^{\wedge} &\cong \tau_{\geq 1} \mathrm{fib}\Big((\iota_{\mathrm{nis}}\iota_{\mathbb{A}^1} X_{n,k})_p^{\wedge} \to K(\iota_{\mathrm{nis}}^{\heartsuit}\iota_{\mathbb{A}^1}^{\heartsuit} A_{n,k+1}, n+1)_p^{\wedge} \Big) \\
&\cong \tau_{\geq 1} \mathrm{fib}\Big(\iota_{\mathrm{nis}}((\iota_{\mathbb{A}^1} X_{n,k})_p^{\wedge}) \to \iota_{\mathrm{nis}}(K(\iota_{\mathbb{A}^1}^{\heartsuit} A_{n,k+1}, n+1)_p^{\wedge}) \Big) \\
&\cong \tau_{\geq 1} \iota_{\mathrm{nis}} \mathrm{fib}\Big((\iota_{\mathbb{A}^1} X_{n,k})_p^{\wedge} \to K(\iota_{\mathbb{A}^1}^{\heartsuit} A_{n,k+1}, n+1)_p^{\wedge} \Big) \\
&\cong \iota_{\mathrm{nis}} \tau_{\geq 1} \mathrm{fib}\Big((\iota_{\mathbb{A}^1} X_{n,k})_p^{\wedge} \to K(\iota_{\mathbb{A}^1}^{\heartsuit} A_{n,k+1}, n+1)_p^{\wedge} \Big) \\
&\cong \iota_{\mathrm{nis}}((\iota_{\mathbb{A}^1} X_{n,k+1})_p^{\wedge}).\n\end{split}
$$

Here, the first and last equivalences are Proposition [3.20,](#page-27-1) the second equivalence follows from induction and Lemma [5.33,](#page-66-0) the third equivalence exists because $t_{\rm nis}$ commutes with limits (as a right adjoint), and the fourth equivalence is

Lemma [5.15](#page-59-0) (noting that the fiber is \mathbb{A}^1 -invariant as a limit of \mathbb{A}^1 -invariant sheaves). This proves the claim.

We will now deduce the general case. We have the following chain of equivalences:

$$
\iota_{\rm nis}\left(\left(\iota_{\mathbb{A}^1}X\right)_p^{\wedge}\right) \cong \iota_{\rm nis}\lim_n \left(\tau_{\leq n}\iota_{\mathbb{A}^1}X\right)_p^{\wedge}
$$

$$
\cong \lim_n \iota_{\rm nis}\left(\left(\tau_{\leq n}\iota_{\mathbb{A}^1}X\right)_p^{\wedge}\right)
$$

$$
\cong \lim_n \left(\iota_{\rm nis}\tau_{\leq n}\iota_{\mathbb{A}^1}X\right)_p^{\wedge}
$$

$$
\cong \lim_n \left(\tau_{\leq n}\iota_{\rm nis,\mathbb{A}^1}X\right)_p^{\wedge}
$$

$$
\cong \left(\iota_{\rm nis,\mathbb{A}^1}X\right)_p^{\wedge}.
$$

The first and last equivalences are Corollary [5.21.](#page-61-1) The second equivalence holds because ι commutes with limits (as a right adjoint). The third equivalence was proven above, since $\tau_{\leq n}X$ is *n*-truncated. The fourth equivalence is Lemma [5.14](#page-58-2) (note that X is connected because it is nilpotent). This proves the theorem. \Box

Remark 5.35*.* Again, if Conjecture [5.24](#page-62-0) is true, then we get the following: If $X \in \text{Spc}(k)_*$ is a pointed nilpotent space, then $(\iota_{\text{nis},\mathbb{A}^1} X)_p^{\wedge} \cong \iota_{\text{nis},\mathbb{A}^1} X_p^{\wedge}$.

5.3 A Short Exact Sequence for Motivic Spaces

We want to establish a short exact sequence for the homotopy objects of the p-completion of motivic spaces, similar to the one for Zariski sheaves from Theorem [4.69.](#page-52-0)

Lemma 5.36. Let $A \in \text{SH}^{S^1}(k)^\heartsuit$. Then $\iota_{\text{nis},\mathbb{A}^1}^{\heartsuit}A$ satisfies Gersten injectivity *(Definition [4.60\)](#page-49-2).*

Proof. This is proven in [\[AD09,](#page-96-6) Lemma 4.6], if k is an infinite field. If k is a finite field, we can argue as in the above reference, using the Gabber presentation lemma for finite fields, see [\[HK20,](#page-96-7) Theorem 1.1]. \Box

Lemma 5.37. Let $A \in \text{SH}^{S^1}(k)^\heartsuit$. Then $\iota_{\text{nis},\mathbb{A}^1}\mathbb{L}_i A \cong \mathbb{L}_i \iota_{\text{nis},\mathbb{A}^1}^\heartsuit A$.

Proof. Since $\iota_{\text{nis},\mathbb{A}^1}$ is t-exact for the standard t-structures (Lemma [5.11\)](#page-57-0), we see that $\iota_{\text{nis},\mathbb{A}^1}^{\heartsuit} A \cong \iota_{\text{nis},\mathbb{A}^1} A$. Moreover, the same functor is also t-exact for the p-adic t-structures (Lemma [5.17\)](#page-60-1). Therefore, we compute

$$
\iota_{\operatorname{nis},\mathbb{A}^1}\mathbb{L}_i A=\iota_{\operatorname{nis},\mathbb{A}^1}\pi_i^pA\cong \pi_i^p\iota_{\operatorname{nis},\mathbb{A}^1}A=\mathbb{L}_i\iota_{\operatorname{nis},\mathbb{A}^1}^\heartsuit A.
$$

Note that \mathbb{L}_i is just given by the functor π_i^p restricted to the standard heart.

Corollary 5.38. *Let* $X \text{ ∈ } \text{Spc}(k)_*$ *be a pointed motivic space. We have canonical equivalences* $\mathbb{L}_i \pi_n(\iota_{\text{nis},\mathbb{A}^1} X) \cong \iota_{\text{nis},\mathbb{A}^1} \mathbb{L}_i \pi_n(X)$ *and* $L_{\text{nis},\mathbb{A}^1} \mathbb{L}_i \pi_n(\iota_{\text{nis},\mathbb{A}^1} X) \cong$ $\mathbb{L}_i\pi_n(X)$ *for all i and* $n \geq 2$ *. If* $\pi_1(X)$ *is abelian, then the same is true for* $n = 1$.

Proof. We have the following sequence of equivalences:

$$
\mathbb{L}_i \pi_n(\iota_{\text{nis},\mathbb{A}^1} X) \cong \mathbb{L}_i \iota_{\text{nis},\mathbb{A}^1}^\heartsuit \pi_n(X) \cong \iota_{\text{nis},\mathbb{A}^1} \mathbb{L}_i \pi_n(X),
$$

where the first equivalence is given by Corollary [5.16,](#page-59-1) and the second equivalence by Lemma [5.37.](#page-68-0) Applying $L_{\text{nis},\mathbb{A}^1}$ we arrive at the equivalence

$$
L_{\text{nis},\mathbb{A}^1} \mathbb{L}_i \pi_n(\iota_{\text{nis},\mathbb{A}^1} X) \cong L_{\text{nis},\mathbb{A}^1} \iota_{\text{nis},\mathbb{A}^1} \mathbb{L}_i \pi_n(X) \cong \mathbb{L}_i \pi_n(X),
$$

where the second equivalence used the fully faithfulness of $\iota_{\text{nis,A}}$. If $\pi_1(X)$ is abelian, then we can regard it as an object of $SH^{S^1}(k)^\heartsuit$ (see Remark [5.8\)](#page-55-2). In \Box this case, the same proof works.

Lemma 5.39. *Let* $X \in \text{Spc}(k)_*$ *be a pointed motivic space. Then* $\pi_n(\iota_{\text{nis,A}} X)/p^k$ *satisfies Gersten injectivity for all* $k \geq 1$ *and* $n \geq 2$ *. If* $\pi_1(X)$ *is abelian, then the result also holds for* $n = 1$ *.*

Proof. Fix $n \geq 2$ and $k \geq 1$. We have equivalences

$$
\pi_n(\iota_{\mathrm{nis},\mathbb{A}^1}X)/p^k \cong (\iota_{\mathrm{nis},\mathbb{A}^1}^{\heartsuit}\pi_n(X))/p^k \cong \iota_{\mathrm{nis},\mathbb{A}^1}^{\heartsuit}(\pi_n(X)/p^k),
$$

where we used Corollary [5.16](#page-59-1) in the first equivalence and exactness of $\iota_{\text{nis},\mathbb{A}^1}^{\heartsuit}$ in the second equivalence, see Lemma [5.11.](#page-57-0) Thus, we conclude by Lemma [5.36](#page-68-1) that $\pi_n(\iota_{\text{nis},\mathbb{A}^1} X)/p^k$ satisfies Gersten injectivity.

If $\pi_1(X)$ is abelian, then we can regard it as an object of $SH^{S^1}(k)^\heartsuit$ (see Remark [5.8\)](#page-55-2). In this case, the same proof works.

Lemma 5.40. Let $A \in \text{SH}^{S^1}(k)^\heartsuit$. Then $\nu_* \mathbb{L}_i \nu^* \iota_{\text{nis}, \mathbb{A}^1}^\heartsuit A \cong \mathbb{L}_i \iota_{\text{nis}, \mathbb{A}^1}^\heartsuit A$ for all i.

In particular, $\nu_* \mathbb{L}_i \nu^* \iota_{\text{nis},\mathbb{A}^1}^{\heartsuit} A \in \text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$ *for all i. Moreover, we have that* $\nu_* \mathbb{L}_i \nu^* \iota_{\text{nis},\mathbb{A}^1}^{\mathcal{O}} A \in \mathcal{A}$ *, where* \mathcal{A} *is the subcategory of* $\text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{p\mathcal{O}}$ *from Definition [4.50.](#page-45-4)*

Proof. By exactness of $\iota_{\text{nis},\mathbb{A}^1}^{\heartsuit}$ (see Lemma [5.11\)](#page-57-0), for every $k \geq 1$ there are equivalences $(\iota_{\text{nis},\mathbb{A}^1}^{\heartsuit}A)/p^k \cong \iota_{\text{nis},\mathbb{A}^1}^{\heartsuit}(A/p^k)$. Thus, by Lemma [5.36,](#page-68-1) $(\iota_{\text{nis},\mathbb{A}^1}^{\heartsuit}A)/p^k$ satisfies Gersten injectivity for all k. This implies that $(\mathbb{L}_1 \nu^* \iota_{\text{nis}, \mathbb{A}^1}^{\heartsuit} A)/\!/p$ is classical, see Corollary [4.65.](#page-51-0) Thus, the equivalence is provided by Lemma [4.39.](#page-42-1) Note that the same lemma shows that also $(\mathbb{L}_1 \nu^* \iota_{\text{nis}, \mathbb{A}^1}^{\heartsuit} A) / \! / p$ is classical for all i. Thus, the statement about A follows immediately from Lemma [4.57.](#page-47-0)

We will need a non-abelian variant of Lemma [5.12:](#page-58-1)

Lemma 5.41. Suppose $G \in \mathcal{G}rp(\text{Disc}(\text{Shv}_{\text{nis}}(\text{Sm}_k)))$ is strongly \mathbb{A}^1 -invariant. *Then* $B\iota_{\text{nis}}G \cong \iota_{\text{nis}}BG$.

Proof. Since both objects are Zariski sheaves, it suffices to prove that for all $T = \text{Spec}(\mathcal{O}_{U,u})$ the spectra of the local rings of a scheme $U \in \text{Sm}_k$ with point $u \in U$, the canonical map $(B\iota_{\text{nis}}G)(T) \to (\iota_{\text{nis}}BG)(T)$ is an equivalence. Here, for a Zariski sheaf F we define $F(T) := (\nu^* F)(T) \cong \text{colim}_{T \to V \subset U} F(V)$, where the colimit runs over all open neighborhoods of T in U . By Whitehead's theorem and the fact that both anima are 1-truncated, we can reduce to showing that the canonical map induces an equivalence $\pi_k((B_{\text{L}}(G)(T)) \cong \pi_k((\iota_{\text{mis}}BG)(T))$ for $k = 0, 1$ and all choices of basepoints. Note that both sheaves have a canonical basepoint $*$, and that we have $\pi_k((B\iota_{\text{nis}}G)(U), *) \cong H^{1-k}(U, \iota_{\text{nis}}G)$ and $\pi_k((\iota_{\text{nis}}BG)(U),*) = \pi_k((BG)(U)) \cong H^{1-k}(U,G)$ for all $U \in \text{Sm}_k$, see [\[MV99,](#page-97-2) Proposition 4.1.16]. Note that we have isomorphisms of cohomology groups $H^{1-\tilde{k}}(U,\iota_{\text{nis}}G) \cong H^{1-k}(U,G)$ for all k and U by [\[AD09,](#page-96-6) Theorem 4.5] (The reference uses that k is an infinite field. If k is a finite field, we can argue as in the above reference, using the Gabber presentation lemma for finite fields, see $[HK20, Theorem 1.1].$

In particular, since homotopy groups and cohomology are compatible with filtered colimits, we get $\pi_0((B_{\ell nis}G)(T)) \cong H^1(T, \iota_{ns}G) = 0$, since Zariski cohomology is Zariski-locally trivial.

Thus, we immediately see that both anima in question are connected, and we have to prove the equivalence on π_1 only over the canonical basepoint, which we have seen above. \Box

Recall the category A from Definition [4.50.](#page-45-4)

Lemma 5.42. *Let* $C \in \text{SH}^{S^1}(k)^{p\heartsuit}$. *Then* $\iota_{\text{nis},\mathbb{A}^1}^{p\heartsuit} \in \mathcal{A} \subset \text{Shv}_{\text{nis}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$.

Proof. Write $C' \coloneqq \iota_{\text{nis},\mathbb{A}^1}^{\mathcal{P} \heartsuit} C \cong \iota_{\text{nis},\mathbb{A}^1} C$ (see Lemma [5.17](#page-60-1) for the equivalence). We have to show that $\pi_1^p(\nu^*C') \cong 0$. Note that by Lemma [2.29](#page-18-0) there is a short exact sequence

$$
0 \to \mathbb{L}_0 \pi_1(\nu^* C') \to \pi_1^p(\nu^* C') \to \mathbb{L}_1 \pi_0(\nu^* C') \to 0.
$$

By Lemma [2.19,](#page-15-0) we know that $C' \in Shv_{zar}(Sm_k, Sp)_{\leq 0}$. Thus, $\pi_1(\nu^*C') \cong$ $\nu^*\pi_1(C') \cong 0$. Hence, it suffices to prove that $\mathbb{L}_1\pi_0(\nu^*\widetilde{C}') \cong \mathbb{L}_1\nu^*\pi_0(C') = 0$. But note that $\pi_0(C') = \pi_0(\iota_{\text{nis},\mathbb{A}^1}C) \cong \iota_{\text{nis},\mathbb{A}^1} \pi_0(C)$ by Lemma [5.11.](#page-57-0) Since $\mathbb{L}_1\nu^*\iota_{\text{nis},\mathbb{A}^1}\pi_0(C)$ is p-complete (e.g. by Lemma [2.19\)](#page-15-0), it suffices to show that $(\mathbb{L}_1 \nu^* \iota_{\text{nis}, \mathbb{A}^1} \pi_0(C)) / \! \! / p = 0$. Note that this sheaf is classical by Corollary [4.65,](#page-51-0) where we used that $(\iota_{\text{nis},\mathbb{A}^1} \pi_0(C))/p^n \cong \iota_{\text{nis},\mathbb{A}^1}(\pi_0(C)/p^n)$ satisfies Gersten injectivity (see Lemma [5.11](#page-57-0) for the first equivalence, and Lemma [5.36](#page-68-1) for the claim about the Gersten injectivity). Thus, we calculate

$$
(\mathbb{L}_1 \nu^* \iota_{\text{nis},\mathbb{A}^1} \pi_0(C)) / \! / p \cong \nu^* \nu_*((\mathbb{L}_1 \nu^* \iota_{\text{nis},\mathbb{A}^1} \pi_0(C)) / \! / p) \cong \nu^* ((\nu_* \mathbb{L}_1 \nu^* \iota_{\text{nis},\mathbb{A}^1} \pi_0(C)) / \! / p) \cong \nu^* ((\mathbb{L}_1 \iota_{\text{nis},\mathbb{A}^1} \pi_0(C)) / \! / p) \cong \nu^* ((\mathbb{L}_1 \pi_0(\iota_{\text{nis},\mathbb{A}^1} C)) / \! / p),
$$

where we used that the sheaf is classical in the first equivalence, exactness of ν_* in the second equivalence, Lemma [4.39](#page-42-1) in the third equivalence, and Lemma [5.11](#page-57-0) in the last equivalence. Therefore, it suffices to prove that $\mathbb{L}_1\pi_0(\iota_{\text{nis},\mathbb{A}^1}C) = 0$. Again, Lemma [2.29](#page-18-0) supplies us with a short exact sequence

$$
0\rightarrow \mathbb{L}_0\pi_1(\iota_{\mathrm{nis},\mathbb{A}^1}C)\rightarrow \pi_1^p(\iota_{\mathrm{nis},\mathbb{A}^1}C)\rightarrow \mathbb{L}_1\pi_0(\iota_{\mathrm{nis},\mathbb{A}^1}C)\rightarrow 0.
$$

But we have $\pi_1^p(\iota_{\text{nis},\mathbb{A}^1}C) \cong \iota_{\text{nis},\mathbb{A}^1} \pi_1^p(C) \cong 0$, where we used Lemma [5.17](#page-60-1) in the first equivalence and the assumption that $C \in SH^{S^1}(k)^{p\heartsuit}$ in the second equivalence. This proves the lemma. \Box

Lemma 5.43. *Let* $G \in \mathcal{G}rp(\text{Disc}(Shv_{\text{nis}}(Sm_k)))$ *be a nilpotent sheaf of groups,* which is strongly \mathbb{A}^1 -invariant. Then $\mathbb{L}_1 \iota_{\text{nis}} G \in \text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$, where we *use Definition [4.40.](#page-42-0)*

Proof. Using [\[AFH22,](#page-96-8) Proposition 3.2.3], we see that G is in particular \mathbb{A}^1 nilpotent, in the sense of [\[AFH22,](#page-96-8) Definition 3.2.1 (3)]. Thus, there is a Gcentral series $G = G_0 \supset G_1 \supset \cdots \supset G_n = 1$ (i.e. the G_i are sheaves of normal subgroups and the quotients $A_i \coloneqq G_i/G_{i+1}$ have trivial G action (via conjugation)), such that the A_i are again strongly \mathbb{A}^1 -invariant. Moreover, the G_i are strongly \mathbb{A}^1 -invariant ([\[AFH22,](#page-96-8) Remark 3.2.2 (1)]). Since the A_i are abelian($[AFH22, Remark 3.2.2 (3)]$ $[AFH22, Remark 3.2.2 (3)]$) and strongly \mathbb{A}^1 -invariant, they are strictly A 1 -invariant by [\[Mor12,](#page-97-3) Theorem 4.46]. Note that we have central extensions of groups

$$
1 \to A_i \to G/G_{i+1} \to G/G_i \to 1,
$$

see [\[AFH22,](#page-96-8) Remark 3.2.2 (3)]. This extension is classified by a fiber sequence

$$
B(G/G_{i+1}) \to B(G/G_i) \to K(\iota_{\mathbb{A}^1}^{\heartsuit} \tilde{A}_i, 2),
$$

where $\tilde{A}_i \in \text{SH}^{S^1}(k)^\heartsuit$ corresponds to the strictly \mathbb{A}^1 -invariant sheaf of abelian groups A_i . Thus, we can proceed by induction. Recall the definition of the full subcategory $A \subset Shv_{zar}(Sm_k, Sp)^{p\heartsuit}$ from Definition [4.50.](#page-45-4) We will inductively prove that $\mathbb{L}_1 \iota_{\text{nis}}(G/G_i) \in \mathcal{A} \subset \text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$, and that $\mathbb{L}_1 \iota_{\text{nis}}(G/G_i)$ is actually an \mathbb{A}^1 -invariant Nisnevich sheaf of spectra living in the p-adic heart, i.e. there is a $B \in SH^{S^1}(k)^{p\heartsuit}$ with $\iota_{\text{nis},\mathbb{A}^1}B \cong \mathbb{L}_1 \iota_{\text{nis}}(G/G_i)$. The base case $G/G_0 = G/G = 1$ is trivial.

So suppose the statement holds for G/G_i . Since ι_{nis} preserves limits (as a right adjoint) and ν^* preserves finite limits (as the left adjoint of a geometric morphism), we get a fiber sequence

$$
\nu^* \iota_{\text{nis}} B(G/G_{i+1}) \to \nu^* \iota_{\text{nis}} B(G/G_i) \to \nu^* \iota_{\text{nis}} K(\iota_{\mathbb{A}^1}^{\heartsuit} \tilde{A}_i, 2).
$$

Since all involved groups are strongly \mathbb{A}^1 -invariant and nilpotent, this fiber sequence is equivalent to the fiber sequence

$$
\nu^* B(\iota_{\mathrm{nis}}(G/G_{i+1})) \to \nu^* B(\iota_{\mathrm{nis}}(G/G_i)) \to \nu^* K(\iota_{\mathrm{nis},\mathbb{A}^1}^\heartsuit \tilde{A}_i, 2),
$$

see Lemmas [5.12](#page-58-1) and [5.41.](#page-69-0) Now Proposition [3.19](#page-27-2) implies that we have a fiber sequence

$$
\tau_{\geq 1}(\nu^*B(\iota_{\mathrm{nis}}(G/G_{i+1})))_p^\wedge \to (\nu^*B(\iota_{\mathrm{nis}}(G/G_i)))_p^\wedge \to \left(\nu^*K(\iota_{\mathrm{nis},\mathbb{A}^1}^\heartsuit \tilde{A}_i,2)\right)_p^\wedge.
$$
But $(\nu^*B(\iota_{\text{nis}}(G/G_{i+1})))_p^{\wedge}$ is already connected, see Lemma [4.19.](#page-36-0) Thus, we arrive at the fiber sequence

$$
(\nu^* B \iota_{\mathrm{nis}}(G/G_{i+1}))_p^\wedge \to (\nu^* B \iota_{\mathrm{nis}}(G/G_i))_p^\wedge \to (\nu^* K(\iota_{\mathrm{nis}, \mathbb{A}^1}^\heartsuit, \tilde{A}_i, 2))_p^\wedge.
$$

Thus, using the long exact sequence and the fact that the p-completion of a k-truncated object is $(k + 1)$ -truncated (see Proposition [3.21\)](#page-28-0), we get an exact sequence in $\mathcal{P}_{\Sigma}(W, \text{Sp})^{\heartsuit}$

$$
0 \to \pi_3 \Big(\nu^* K(\iota_{\mathrm{nis},\mathbb{A}^1}^{\heartsuit} \tilde{A}_i,2)\Big)_p^{\wedge} \to \mathbb{L}_1 \nu^* \iota_{\mathrm{nis}}(G/G_{i+1}) \to \mathbb{L}_1 \nu^* \iota_{\mathrm{nis}}(G/G_i) \to \pi_2 \Big(\nu^* K(\iota_{\mathrm{nis},\mathbb{A}^1}^{\heartsuit} \tilde{A}_i,2)\Big)_p^{\wedge},
$$

where we use Definition [4.25](#page-38-0) for \mathbb{L}_1 . Using Proposition [4.28,](#page-38-1) we can identify

$$
\pi_k\left(\left(\nu^*K(\iota_{\mathrm{nis},\mathbb{A}^1}^\heartsuit,\tilde{A}_i,2)\right)_p^\wedge\right)\cong \mathbb{L}_{k-2}\nu^*\iota_{\mathrm{nis},\mathbb{A}^1}^\heartsuit,\tilde{A}_i
$$

for $k = 2, 3$. Thus, we arrive at the exact sequence in $\mathcal{P}_{\Sigma}(W, \text{Sp})^{\mathcal{P}^{\heartsuit}}$:

$$
0 \to \mathbb{L}_1 \nu^* \iota_{\mathrm{nis}, \mathbb{A}^1}^\nabla \tilde{A}_i \to \mathbb{L}_1 \nu^* \iota_{\mathrm{nis}}(G/G_{i+1}) \to \mathbb{L}_1 \nu^* \iota_{\mathrm{nis}}(G/G_i) \to \mathbb{L}_0 \nu^* \iota_{\mathrm{nis}, \mathbb{A}^1}^\nabla \tilde{A}_i.
$$

We want to apply Proposition [4.56](#page-47-0) to this exact sequence. We first check the assumptions on the outer two terms involving \tilde{A}_i . We know that $\nu_* \mathbb{L}_k \nu^* \iota_{\text{nis}, \mathbb{A}^1}^\heartsuit \tilde{A}_i \cong$ $\mathbb{L}_k \iota_{\text{nis},\mathbb{A}^1}^{\heartsuit} \tilde{A}_i$ for all k, and that it lives in A, see Lemma [5.40](#page-69-0) Therefore, we also $\text{get } \nu^{*,p\heartsuit}\mathbb{L}_k \iota_{\text{nis},\mathbb{A}^1}^{\heartsuit}\tilde{A}_i \cong \nu^{*,p\heartsuit}\nu_*\mathbb{L}_k\nu^*\iota_{\text{nis},\mathbb{A}^1}^{\heartsuit}\tilde{A}_i \cong \mathbb{L}_k\nu^*\iota_{\text{nis},\mathbb{A}^1}^{\heartsuit}\tilde{A}_i$ for all k , see Corollary [4.53](#page-45-0) for the second equivalence.

By induction, $\mathbb{L}_1 \iota_{\text{nis}}(G/G_i) \cong \nu_* \mathbb{L}_1 \nu^* \iota_{\text{nis}}(G/G_i) \in \mathcal{A} \subset \text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$. In particular, $\nu^{*,p\heartsuit}\mathbb{L}_1\iota_{\text{nis}}(G/G_i) \cong \nu^{*,p\heartsuit}\nu_{*}\mathbb{L}_1\nu^{*}\iota_{\text{nis}}(G/G_i) \cong \mathbb{L}_1\nu^{*}\iota_{\text{nis}}(G/G_i),$ where we also used Corollary [4.53](#page-45-0) for the second equivalence.

Thus, we are left to show that $\mathrm{coker}(\mathbb{L}_1\iota_{\mathrm{nis}}(G/G_i) \to \mathbb{L}_0\iota_{\mathrm{nis},\mathbb{A}^1}^\heartsuit \tilde{A}_i) \in \mathcal{A}$: First note that $\mathbb{L}_0 \iota_{\text{nis},\mathbb{A}^1}^\circ \tilde{A}_i \cong \pi_0^p(\iota_{\text{nis},\mathbb{A}^1} \tilde{A}_i) \cong \iota_{\text{nis},\mathbb{A}^1} \pi_0^p(\tilde{A}_i) \cong \iota_{\text{nis},\mathbb{A}^1}^\circ \pi_0^p(\tilde{A}_i)$ by t-exactness for the standard and p-adic t-structures of $\iota_{\text{nis},\mathbb{A}^1}$, see Lemmas [5.11](#page-57-0) and [5.17.](#page-60-0) By induction, there is a $B \in SH^{S^1}(k)^{p\heartsuit}$ with $\iota_{\text{nis},\mathbb{A}^1}^{p\heartsuit}B \cong \mathbb{L}_1 \iota_{\text{nis}}(G/G_i)$. Therefore, again by exactness and fully faithfulness of $\iota_{\text{nis},\mathbb{A}^1}^{\mathcal{P}^\bigcirc}$, the cokernel is also of the form $\iota_{\text{nis},\mathbb{A}^1}^{p\heartsuit}C$ for some $C \in \text{SH}^{S^1}(k)^{p\heartsuit}$. Thus, we immediately get that the cokernel is in \mathcal{A} , see Lemma [5.42.](#page-70-0)

We can now apply Proposition [4.56,](#page-47-0) which allows us to deduce that also $\mathbb{L}_1 \iota_{\text{nis}}(G/G_{i+1}) = \nu_* \mathbb{L}_1 \nu^* \iota_{\text{nis}}(G/G_{i+1}) \in \mathcal{A} \subset \text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{\heartsuit}.$

Moreover, there is now an exact sequence

$$
0 \to \mathbb{L}_1 \iota_{\mathrm{nis}, \mathbb{A}^1}^{\heartsuit} \tilde{A}_i \to \mathbb{L}_1 \iota_{\mathrm{nis}}(G/G_{i+1}) \to K \to 0,
$$

where $K \coloneqq \ker(\mathbb{L}_1 t_{\text{nis}}(G/G_i) \to \mathbb{L}_0 t_{\text{nis}, \mathbb{A}^1}^{\heartsuit} \tilde{A}_i)$. We have seen above that $\mathbb{L}_k t_{\text{nis}, \mathbb{A}^1}^{\heartsuit} \tilde{A}_i$ is in fact an \mathbb{A}^1 -invariant Nisnevich sheaf of spectra, living in the p-adic heart (for $k = 0, 1$). By induction, the same is true for $\mathbb{L}_1 \iota_{\text{nis}}(G/G_i)$. Exactness of

 $u_{\text{nis},\mathbb{A}^1}^{\text{p}\heartsuit}$ implies that this also holds for the kernel K. Thus, $\mathbb{L}_1 \iota_{\text{nis}}(G/G_{i+1})$ sits in a short exact sequence where the outer terms are A 1 -invariant Nisnevich sheaves of spectra, living in the p-adic heart. From this we deduce immediately that the same is true for $\mathbb{L}_1 \iota_{\text{nis}}(G/G_{i+1})$. This concludes the induction. \Box

Definition 5.44. Let $X \in \text{Spc}(k)_*$ be a pointed motivic space. For every $n \geq 2$ we define the p*-completed homotopy groups* of X via

$$
\pi_n^p(X) \coloneqq L_{\mathrm{nis},\mathbb{A}^1} \pi_n^p(\iota_{\mathrm{nis},\mathbb{A}^1} X) \in \mathrm{SH}^{S^1}(k),
$$

and for $n = 1$ via

$$
\pi_1^p(X):=L_{\mathrm{nis}}\pi_1^p(\iota_{\mathrm{nis},\mathbb{A}^1}X)\in \mathcal{G}rp(\mathrm{Disc}(\mathrm{Shv}_{\mathrm{nis}}(\mathrm{Sm}_k))).
$$

(Recall Definition [4.66](#page-51-0) for the p-completed homotopy groups of $\iota_{\text{nis},\mathbb{A}^1}X$.)

Remark 5.45*.* Let $X \in \text{Spc}(k)_{*}$ be a pointed space. We will show in Theo-rem [5.49](#page-74-0) that if X is nilpotent, then actually $\pi_n^p(X) \in SH^{S^1}(k)$ if $n \geq 2$. Thus, the name p-completed homotopy *group* is justified.

Lemma 5.46. *Let* $X \in \text{Spc}(k)_*$ *be nilpotent. Then the canonical map induces an equivalence* $\pi_n^p(X) \to \pi_n^p(\iota_{\geq 1}((\tau_{\geq 1}X)_p^{\wedge})$ $_{p}^{\prime\prime})$ *for all* $n \geq 1$ *.*

Proof. We know $\iota_{\text{nis},\mathbb{A}^1,\geq 1}((\tau_{\geq 1}X)^{\wedge}_{p})$ $\binom{\wedge}{p} \cong (\iota_{\text{nis},\mathbb{A}^1,\geq 1} \tau_{\geq 1} X)_{p}^{\wedge} \cong (\iota_{\text{nis},\mathbb{A}^1} X)_{p}^{\wedge} \text{ from}$ Theorem [5.34](#page-67-0) and the fact that X is connected because it is nilpotent. Therefore, the map $\iota_{\text{nis},\mathbb{A}^1}X \to \iota_{\text{nis},\mathbb{A}^1, \geq 1}((\tau_{\geq 1}X)^{\wedge}_{p})$ p) is a *p*-equivalence. Thus, we con-clude from Lemma [4.68](#page-51-1) that $\pi_n^p(X) \to \pi_n^p(\iota_{\geq 1}((\tau_{\geq 1}X)^{\wedge}_p)$ $\binom{n}{p}$) is an equivalence (note that by definition $\pi_n^p(X) = L_{\text{nis},\mathbb{A}^1} \pi_n^p(\iota_{\text{nis},\mathbb{A}^1} X)$ and $\pi_n^p(\iota_{\geq 1}((\tau_{\geq 1}X)_p^{\wedge})$ $\binom{n}{p}$) = $L_{\text{nis},\mathbb{A}^1} \pi_n^p(\iota_{\text{nis},\mathbb{A}^1,\geq 1}((\tau_{\geq 1}X)_p^{\wedge})$ $\binom{n}{p}$ if $n \geq 2$, and similarly for $n = 1$. \Box

Proposition 5.47. *Let* $f: X \to Y$ *be a morphism in* $\text{Spc}(k)_*$ *of pointed nilpotent spaces, and* $n \geq 1$ *. If f is a p-equivalence, then* $\pi_n^p(f)$ *is an equivalence.*

Proof. Note that we can regard f as a morphism in $\text{Spc}(k)_{\geq 1,*}$ since nilpotent spaces are connected. In particular, it is also a p-equivalence in this category, see Lemma [5.29.](#page-63-0) Thus, we can assume that f is a p-equivalence in $\text{Spc}(k)_{\geq 1,*}$, and we want to prove that $\pi_n^p(\iota_{\geq 1}(f))$ is an equivalence.

By p-completing, we get a commutative square

$$
\begin{array}{ccc}\nX & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
X_p^{\wedge} & \xrightarrow{f_p^{\wedge}} & Y_p^{\wedge}\n\end{array}
$$

where the downwards arrows are the canonical p-equivalences. Applying the functor $\pi_n^p(\iota_{\geq 1}(-))$ for $n \geq 1$, we arrive at the square

$$
\pi_n^p(\iota_{\geq 1}(X))^{\pi_n^p(\iota_{\geq 1}(f))} \downarrow \qquad \downarrow
$$

\n
$$
\downarrow \qquad \qquad \downarrow
$$

\n
$$
\pi_n^p(\iota_{\geq 1}(X_p^{\wedge})^{\pi_n^p(\iota_{\geq 1}(f_p^{\wedge}))} \downarrow
$$

\n
$$
\pi_n^p(\iota_{\geq 1}(X_p^{\wedge}))^{\pi_n^p(\iota_{\geq 1}(f_p^{\wedge}))}.
$$

Since f is a p-equivalence, we know that f_p^{\wedge} is an equivalence. In particular, $\pi_n^p(\iota_{\geq 1}(f_p^{\wedge}))$ is an equivalence. The two vertical maps are equivalences by Lemma [5.46.](#page-73-0) From this we conclude that also $\pi_n^p(\iota_{\geq 1}(f))$ is an equivalence.

Definition 5.48. Let $G \in \mathcal{G}rp_{str}(\text{Disc}(Shv_{nis}(Sm_k)))$ be a strictly \mathbb{A}^1 -invariant nilpotent sheaf of groups. We define

$$
\mathbb{L}_1 G \coloneqq L_{\text{nis}} \mathbb{L}_1 \iota_{\text{nis}} G \in \text{Shv}_{\text{nis}}(\text{Sm}_k, \text{Sp}),
$$

where we use Definition [4.40,](#page-42-0) and

$$
\mathbb{L}_0 G \coloneqq L_{\text{nis}} \mathbb{L}_0 \iota_{\text{nis}} G \in \mathcal{G}rp(\text{Shv}_{\text{nis}}(\text{Sm}_k)).
$$

Theorem 5.49. *Let* $X \text{ ∈ } \text{Spc}(k)_*$ *be a pointed nilpotent motivic space. Then for every* $n \geq 2$, there is a canonical short exact sequence in $\text{SH}^{S^1}(k)^{p\heartsuit}$ (or a *short exact sequence in* $\mathcal{G}r p_{str}(\text{Disc}(Shv_{ns}(k)))$ *if* $n = 1$ *)*

$$
0 \to \mathbb{L}_0 \pi_n(X) \to \pi_n^p(X) \to \mathbb{L}_1 \pi_{n-1}(X) \to 0,
$$

where we use Definition [5.48](#page-74-1) *for* $\mathbb{L}_i \pi_1(X)$ *. In particular,* $\pi_n^p(X) \in \text{SH}^{S^1}(k)^{p\heartsuit}$ *. Here we set* $\mathbb{L}_1\pi_0(X) = 0$ *since* X *is connected.*

Moreover, for $n \geq 2$ *the unit map induces an equivalence*

$$
\iota_{\mathrm{nis},\mathbb{A}^1}\pi_n^p(X)=\iota_{\mathrm{nis},\mathbb{A}^1}L_{\mathrm{nis},\mathbb{A}^1}\pi_n^p(\iota_{\mathrm{nis},\mathbb{A}^1}X)\cong \pi_n^p(\iota_{\mathrm{nis},\mathbb{A}^1}X),
$$

i.e. $\pi_n^p(\iota_{\text{nis},A^1} X)$ *is already an* A^1 -*invariant Nisnevich sheaf of spectra.* If $\pi_1(X)$ *is abelian, the same is true for* $\pi_1^p(\iota_{\text{nis},A^1}X)$.

Proof. Note that $\pi_n(\iota_{\text{nis},\mathbb{A}^1}X)/p^k$ satisfies Gersten injectivity for all $n \geq 2$ and all $k \geq 1$, see Lemma [5.39.](#page-69-1) By this lemma, the same is true if $\pi_1(X)$ is abelian. If not, then we can still conclude by Lemma [5.43](#page-71-0) that $\mathbb{L}_1\pi_1(\iota_{\text{nis,A}}\cdot X) \in$ $\text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$ (note that $\pi_1(\iota_{\mathbb{A}^1}X)$ is strongly \mathbb{A}^1 -invariant by [\[Mor12,](#page-97-0) Corollary 5.2], and that $\pi_1(\iota_{\text{nis,A}}\chi) = \iota_{\text{nis}}\pi_1(\iota_{\mathbb{A}}\chi)$ by Corollary [5.16\)](#page-59-0).

Thus, for $n \geq 2$ we have a short exact sequence

$$
0\rightarrow\mathbb{L}_0\pi_n(\iota_{\mathrm{nis},\mathbb{A}^1}X)\rightarrow \pi_n^p(\iota_{\mathrm{nis},\mathbb{A}^1}X)\rightarrow \mathbb{L}_1\pi_{n-1}(\iota_{\mathrm{nis},\mathbb{A}^1}X)\rightarrow 0
$$

in $\text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$ by Theorem [4.69.](#page-52-0) Applying $L_{\text{nis}, \mathbb{A}^1}$ we get a fiber sequence

$$
L_{\mathrm{nis},\mathbb{A}^1}\mathbb{L}_0\pi_n(\iota_{\mathrm{nis},\mathbb{A}^1}X)\rightarrow L_{\mathrm{nis},\mathbb{A}^1}\pi_n^p(\iota_{\mathrm{nis},\mathbb{A}^1}X)\rightarrow L_{\mathrm{nis},\mathbb{A}^1}\mathbb{L}_1\pi_{n-1}(\iota_{\mathrm{nis},\mathbb{A}^1}X).
$$

Using Corollary [5.38,](#page-68-0) we compute that $L_{\text{nis},\mathbb{A}^1}\mathbb{L}_i\pi_k(\iota_{\text{nis},\mathbb{A}^1}X) \cong \mathbb{L}_i\pi_k(X)$ (if $k = 1$, then this is just the definition). Moreover, $L_{\text{nis},\mathbb{A}^1} \pi_n^p(\iota_{\text{nis},\mathbb{A}^1} X) = \pi_n^p(X)$ by Definition [5.44.](#page-73-1) Thus, we get a fiber sequence

$$
\mathbb{L}_0\pi_n(X) \to \pi_n^p(X) \to \mathbb{L}_1\pi_{n-1}(X).
$$

Note that the outer terms are in $\text{Shv}_{\text{nis}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$ by definition. Thus, using the long exact sequence, we conclude that also $\pi_n^p(X) \in \text{Shv}_{\text{nis}}(\text{Sm}_k, \text{Sp})^{p\heartsuit}$ and the fiber sequence yields an exact sequence

$$
0 \to \mathbb{L}_0 \pi_n(X) \to \pi_n^p(X) \to \mathbb{L}_1 \pi_{n-1}(X) \to 0.
$$

The last statement follows since we have (again by Corollary [5.38\)](#page-68-0)

$$
\mathbb{L}_i \pi_k(\iota_{\mathrm{nis},\mathbb{A}^1} X) \cong \iota_{\mathrm{nis},\mathbb{A}^1} \mathbb{L}_i \pi_k(X),
$$

i.e. the $\mathbb{L}_i \pi_k(\iota_{\text{nis},\mathbb{A}^1} X)$ are \mathbb{A}^1 -invariant Nisnevich sheaves (of spectra), and thus $\pi_n^p(\iota_{\text{nis},\mathbb{A}^1}X)$ sits in the middle of an exact sequence, where the outer terms are in $\text{SH}^{S^1}(k)^{p\heartsuit} \subset \text{SH}^{S^1}(k) \hookrightarrow \text{Shv}_{\text{zar}}(\text{Sm}_k, \text{Sp})$. Thus, since stable subcategories are stable under extensions, the result follows. If $\pi_1(X)$ is abelian, the same proof works.

If $n = 1$, Theorem [4.69](#page-52-0) instead supplies us with a short exact sequence

$$
0\rightarrow \mathbb{L}_0\pi_1(\iota_{\mathrm{nis},\mathbb{A}^1}X)\rightarrow \pi_1^p(\iota_{\mathrm{nis},\mathbb{A}^1}X)\rightarrow \mathbb{L}_1\pi_0(\iota_{\mathrm{nis},\mathbb{A}^1}X)\rightarrow 0
$$

in $Grp(\text{Disc}(Shv_{zar}(Sm_k)))$, where $\mathbb{L}_1\pi_0(\iota_{\text{nis},\mathbb{A}^1}X) = 0$, i.e. this is an equivalence

$$
\mathbb{L}_0\pi_1(\iota_{\mathrm{nis},\mathbb{A}^1}X)\cong \pi_1^p(\iota_{\mathrm{nis},\mathbb{A}^1}X).
$$

Applying L_{nis} , we get an equivalence

$$
L_{\text{nis}} \mathbb{L}_0 \pi_1(\iota_{\text{nis},\mathbb{A}^1} X) \cong L_{\text{nis}} \pi_1^p(\iota_{\text{nis},\mathbb{A}^1} X)
$$

in $Grp(\text{Disc}(Shv_{\text{nis}}(Sm_k)))$. Note that by definition, the right-hand side is $\pi_1^p(X)$, and the left-hand side is $\mathbb{L}_0\pi_1(X)$. We thus get the required short exact sequence. \Box

Corollary 5.50. *Let* $X \text{ ∈ } Spc(k)_*$ *be nilpotent. Then for* $n ≥ 2$ *there is a canonical short exact sequence in* $SH^{S^1}(k)^{p\heartsuit}$ *(or in Grp*($Shv_{\text{nis}}(Sm_k)$ *) if* $n = 1$ *)*

$$
0 \to \mathbb{L}_0 \pi_n(X) \to \pi_n^p(\iota_{\geq 1}((\tau_{\geq 1}X)_p^{\wedge})) \to \mathbb{L}_1 \pi_{n-1}(X) \to 0.
$$

 \Box *Proof.* This follows immediately from Theorem [5.49](#page-74-0) and Lemma [5.46.](#page-73-0)

Remark 5.51*.* Let $X \in \text{Spc}(k)_{*}$ be nilpotent and $n \geq 1$. If Conjecture [5.24](#page-62-0) is true, then we get moreover a short exact sequence

$$
0 \to \mathbb{L}_0 \pi_n(X) \to \pi_n^p(X_p^{\wedge}) \to \mathbb{L}_1 \pi_{n-1}(X) \to 0.
$$

We can now also establish a (partial) converse to Proposition [5.47:](#page-73-2)

Proposition 5.52. Let $f: X \to Y \in \text{Spc}(k)_*$ be a morphism of pointed nilpo*tent spaces with abelian fundamental groups. Assume that* $\pi_n^p(f)$ *is an isomorphism for all* $n \geq 1$ *. Then f is a p-equivalence.*

Proof. It follows from Theorem [4.69](#page-52-0) that $\pi_n^p(\iota_{\text{nis},A}^1 X)$ and $\pi_n^p(\iota_{\text{nis},A}^1 Y)$ are already \mathbb{A}^1 -invariant Nisnevich sheaves for all $n \geq 1$. Therefore, we conclude that $\pi_n^p(\ell_{\text{nis},\mathbb{A}^1}f)$ is an isomorphism for all $n\geq 1$ (note that $L_{\text{nis},\mathbb{A}^1}\pi_n^p(\ell_{\text{nis},\mathbb{A}^1}f)$ $\pi_n^p(f)$ are isomorphisms by assumption).

Note that by the proof of Theorem [5.49](#page-74-0) we conclude that $\iota_{\text{nis},\mathbb{A}^1} X$ and $\iota_{\text{nis},\mathbb{A}^1} Y$ satisfy the conditions of Theorem [4.69.](#page-52-0) Therefore, Proposition [4.71](#page-52-1) implies that $\iota_{\text{nis},\mathbb{A}^1} f$ is a p-equivalence. Hence, also $f \cong L_{\text{nis},\mathbb{A}^1} \iota_{\text{nis},\mathbb{A}^1} f$ is a pequivalence. Here, we used that $\iota_{\text{nis},\mathbb{A}^1}$ is fully faithful and Lemma [3.11.](#page-24-0) This proves the proposition. \Box

Remark 5.53. As in the case of Proposition [4.71,](#page-52-1) the assumptions that $\pi_1(X)$ and $\pi_1(Y)$ are abelian can probably be relaxed, but a proof of this statement is unclear to the author, see also Remark [4.72](#page-53-0)

A Background Material

A.1 Stabilization

We prove some basic results about the stabilization of adjoint functors of presentable ∞ -categories. All the results are well-known, but hard to track down in the literature.

Lemma A.1. Let $f^*: \mathcal{X} \rightleftarrows \mathcal{Y}: f_*$ be an adjunction of presentable ∞ -categories. *Then* f [∗] *and* f[∗] *induce an adjunction*

$$
f^* \colon \mathrm{Sp}(\mathcal{X}) \rightleftarrows \mathrm{Sp}(\mathcal{Y}) \colon f_*
$$

of exact functors such that the following diagrams of functors commute (up to homotopy):

$$
\text{Sp}(\mathcal{X}) \xrightarrow{f^*} \text{Sp}(\mathcal{Y}) \quad \text{Sp}(\mathcal{X}) \xleftarrow{f_*} \text{Sp}(\mathcal{Y})
$$
\n
$$
\sum_{\Sigma}^{\infty} \uparrow \qquad \qquad \downarrow \Omega_*^{\infty} \qquad \qquad \downarrow \Omega_*^{\infty}
$$
\n
$$
\mathcal{X}_* \xrightarrow{f^*} \mathcal{Y}_* \qquad \mathcal{X}_* \xleftarrow{f_*} \mathcal{Y}_*.
$$

Proof. [\[Lur17,](#page-96-0) Propositions 1.4.2.22 and 1.4.4.4] imply the existence of a limitpreserving exact functor $f_* : Sp(\mathcal{Y}) \to Sp(\mathcal{X})$ that fits into the right diagram (see also the proof of [\[Lur17,](#page-96-0) Corollary 1.4.4.5]). Using [\[Lur17,](#page-96-0) Proposition 1.4.4.4 (3)], we see that this functor admits a left adjoint f^* . By uniqueness of adjoints, we conclude that the left diagram is commutative. \Box

Lemma A.2. In the situation of Lemma [A.1,](#page-77-0) assume moreover that $f_* \colon \mathcal{Y} \to \mathcal{X}$ *is fully faithful. Then also* $f_* : Sp(\mathcal{Y}) \to Sp(\mathcal{X})$ *is fully faithful.*

Proof. The category $Sp(\mathcal{X})$ can be defined as the category of excisive functors from finite anima to X, see [\[Lur17,](#page-96-0) Definition 1.4.2.8]. Note that the functor f_* is given by postcomposing with the functor $f_* : \mathcal{Y} \to \mathcal{X}$. Thus, the result follows, since postcomposition with a fully faithful functor is already fully faithful on functor categories. 口

Lemma A.3. *In the situation of Lemma [A.1,](#page-77-0) assume moreover that* f ∗ *is left exact. Then we have canonical equivalences*

$$
f^*\Omega^{\infty}(-) \cong \Omega^{\infty} f^*(-)
$$

and

$$
f^*\Omega^\infty_*(-) \cong \Omega^\infty_* f^*(-).
$$

Moreover, if $f^*: \mathcal{X} \to \mathcal{Y}$ is conservative, so is $f^*: \text{Sp}(\mathcal{X}) \to \text{Sp}(\mathcal{Y})$.

Proof. The category $Sp(\mathcal{X})$ can be defined as the category of excisive functors from finite anima to \mathcal{X} , see [\[Lur17,](#page-96-0) Definition 1.4.2.8]. Note that the functor Ω^{∞} is given by evaluating at the finite anima S^0 , see [\[Lur17,](#page-96-0) Notation 1.4.2.20]. In contrast, the functor f^* is given by postcomposing excisive functors with $f^* \colon \mathcal{X} \to \mathcal{Y}$. It is therefore clear that $f^* \Omega^{\infty}(-) \cong \Omega^{\infty} f^*(-)$.

Suppose now that $f^* \colon \mathcal{X} \to \mathcal{Y}$ is conservative. Let $g \colon E \to F$ be a morphism in $\text{Sp}(\mathcal{X})$ such that f^*g is an equivalence. In order to show that g is an equivalence, it suffices to show that $\Omega_*^{\infty} \Sigma^n g$ is an equivalence for all n. Since $f^* \colon \mathcal{X} \to \mathcal{Y}$ is conservative, it thus suffices to show that $f^* \Omega^\infty_* \Sigma^n g$ is an equivalence. But we have

$$
f^*\Omega^\infty_* \Sigma^n g \cong \Omega^\infty_* f^* \Sigma^n g \cong \Omega^\infty_* \Sigma^n f^* g,
$$

which is an equivalence by assumption.

Lemma A.4. In the situation of Lemma [A.1,](#page-77-0) assume moreover that f^* : $\mathcal{X} \to \mathcal{Y}$ *is fully faithful and left exact. Then* f^* : $Sp(\mathcal{X}) \to Sp(\mathcal{Y})$ *is fully faithful.*

Proof. We need to show that $f_* f^* \cong id_{\text{Sp}(\mathcal{X})}$. So let $E \in \text{Sp}(\mathcal{X})$. In order to show that $f_* f^*E \cong E$, it suffices to show that for all $n, \Omega^\infty \Sigma^n \tilde{f}_* f^*E \cong \Omega^\infty \Sigma^n E$. But we have

$$
\Omega^{\infty} \Sigma^n f_* f^* E \cong \Omega^{\infty} f_* f^* \Sigma^n E
$$

$$
\cong f_* f^* \Omega^{\infty} \Sigma^n E
$$

$$
\cong \Omega^{\infty} \Sigma^n E.
$$

The first equivalence is clear because f_* and f^* are exact. The second equiva-lence uses Lemma [A.3.](#page-77-1) The last equivalence follows because $f^* : \mathcal{X} \to \mathcal{Y}$ is fully faithful. \Box

The stabilization of a presentable ∞ -category X has a canonical t-structure, which we call the *standard t-structure*:

Lemma A.5. *The category* $Sp(X)$ *has an accessible t-structure (the standard* (or homotopy) t-structure*), given by* $\text{Sp}(\mathcal{X})_{\leq -1} = \{ E \in \text{Sp}(\mathcal{X}) | \Omega^{\infty} E \cong * \}.$ *This t-structure is right-separated (i.e.* $\bigcap_{n} \text{Sp}(\mathcal{X})_{\leq n} = 0$).

Proof. The existence of the t-structure is [\[Lur17,](#page-96-0) Proposition 1.4.3.4].

For the other statement, we essentially copy the proof of [\[Lur18a,](#page-96-1) Proposition 1.3.2.7 (3)]. Let $F \in \bigcap_n \text{Sp}(\mathcal{X})_{\leq n}$. By definition, this says that $\Omega_*^{\infty} \Sigma^n F \cong *$ for every *n*. Since the functors $\Omega_*^{\infty} \Sigma^n$ are jointly conservative and preserve final objects (as they commute with limits), it follows that $F = 0$, i.e. the t-structure is right-separated. \Box

Lemma A.6. In the situation of Lemma [A.1,](#page-77-0) assume moreover that X and Y $are \infty$ -topoi, and that f^* is left exact (i.e. (f^*, f_*) is a geometric morphism). Let $A \in \mathrm{Sp}(\mathcal{X})^{\heartsuit}$ be in the heart of the standard t-structure. Then $f^*A \cong f^{*,\heartsuit}A$. *Similarly, if* $E \in Sp(\mathcal{X})$ *, then* $\pi_n(f^*E) \cong f^*\pi_n(E)$ *.*

Proof. [\[Lur18a,](#page-96-1) Remark 1.3.2.8] shows that f^* is t-exact with respect to the standard t-structures. П

 \Box

Lemma A.7. *Let* (C, τ) *be a site. Write* $\text{Shv}_{\tau}(\mathcal{C}, \mathcal{V})$ *for the category of sheaves on* C *(in the* τ*-topology) with values in a presentable* ∞*-category* V*. Then there is an equivalence*

$$
Sp(\operatorname{Shv}_{\tau}(\mathcal{C},\mathcal{A}n)) \cong \operatorname{Shv}_{\tau}(\mathcal{C},\operatorname{Sp}).
$$

Proof. This is [\[Lur18a,](#page-96-1) Remark 1.3.2.2], together with [\[Lur18a,](#page-96-1) Proposition 1.3.1.7]. □

A.2 Nilpotent Objects

Let $\mathcal X$ be a hypercomplete ∞ -topos. Recall the following definition:

Definition A.8. Let G and H be group objects in $Disc(X)$, with an action of G on H. A *G-central series* is a finite decreasing filtration $H = H_0 \supset \cdots \supset H_n = 1$ such that H_i is normal and G-stable, H_i/H_{i+1} is abelian and the induced action of G on H_i/H_{i+1} is trivial.

The action of G on H is called *nilpotent* if there exists a G-central series of H.

We say that G is *nilpotent* if the action of G on itself via conjugation is nilpotent.

Lemma A.9. Let G be a group object in $Disc(X)$. If G is abelian then G is *nilpotent.*

Proof. One can choose the G-central series $G \supset 1$, since the conjugation action is trivial. 口

Definition A.10. Let $X \in \mathcal{X}_*$ be a pointed object. We say that X is *nilpotent* if X is connected, $\pi_1(X)$ is a nilpotent group object and the action of $\pi_1(X)$ on $\pi_n(X)$ is nilpotent for all $n \geq 2$.

Lemma A.11. *Let* $X \in \mathcal{X}_*$ *be a pointed object. Then* $\tau_{>1}\Omega X$ *is nilpotent.*

Proof. Note that $\tau_{\geq 1}\Omega X \cong \Omega \tau_{\geq 2}X$. Since $\tau_{\geq 2}X$ is simply connected, it is in particular nilpotent. Now note that $\Omega \tau_{\geq 2} X = \text{fib}(* \to \tau_{\geq 2} X)$. Thus, we conclude by [\[AFH22,](#page-96-2) Proposition 2.2.4] that $\tau_{>1}\Omega X$ is nilpotent. □

Lemma A.12. Let $f: X \to Y$ be a morphism of pointed nilpotent objects in \mathcal{X}_* *. Then* $\tau_{>1} \text{fib}(f)$ *is nilpotent.*

Proof. Following the proof in [\[AFH22,](#page-96-2) Proposition 2.2.4], we see that $\pi_1(fib(f))$ is a nilpotent group, with a nilpotent action on $\pi_n(\text{fib}(f))$ for all $n \geq 2$. Thus, $\tau_{\geq 1}$ fib (f) is nilpotent. □

Lemma A.13. Let $X \in \mathcal{X}_*$ be a pointed object. Suppose that $\tau_{\leq n} X$ is nilpotent *for every* n*. Then* X *is nilpotent.*

Proof. Since $\tau_{\leq 1}X$ is connected, also X is connected. Since the action of $\pi_1(X)$ on $\pi_n(X)$ is the same as the action of $\pi_1(\tau_{\leq n}X)$ on $\pi_n(\tau_{\leq n}X)$, the lemma follows. \Box **Definition A.14.** Let $X \in \mathcal{X}_*$ be a connected space. Consider the Postnikov tower of X given by

$$
\cdots \to \tau_{\leq n} X \xrightarrow{p_n} \tau_{\leq n-1} X \to \cdots \to \tau_{\leq 0} X = *.
$$

We say that the Postnikov tower of X admits a *principal refinement* if for each $n \geq 1$ there exists a factorization of p_n as

$$
\tau_{\leq n}X = X_{n,m_n} \xrightarrow{p_{n,m_n}} X_{n,m_n-1} \to \cdots \to X_{n,1} \xrightarrow{p_{n,1}} X_{n,0} = \tau_{\leq n-1}X,
$$

with $m_n \geq 1$, such that each $p_{n,k}$ fits into a fiber sequence

$$
X_{n,k} \xrightarrow{p_{n,k}} X_{n,k-1} \to K(A_{n,k}, n+1)
$$

with $A_{n,k}$ an abelian group object in $Disc(X)$.

Lemma A.15. *Let* $X \in \mathcal{X}_*$ *be a pointed object. Then* X *is nilpotent if and only if the Postnikov tower of* X *admits a principal refinement.*

Proof. The proof is analogous to the proof of [\[AFH22,](#page-96-2) Theorem 3.3.13], applied to the morphism $f: X \to *$. 囗

A.3 Completions of Anima

In this section, we collect some results about the *p*-completion of anima. Essentially everything in this section already appeared in [\[BK72\]](#page-96-3).

Definition A.16. Let $f: X \to Y$ be a morphism of anima. We say that f is an \mathbb{F}_p -equivalence if f induces an isomorphism of homology $f_*: H_*(X, \mathbb{F}_p) \xrightarrow{\simeq}$ $H_*(Y,\mathbb{F}_p).$

Lemma A.17. Let $f: X \rightarrow Y$ be a morphism of anima. Then f is a p*equivalence if and only if* f *is an* \mathbb{F}_p -equivalence.

Proof. See e.g. [\[BB19,](#page-96-4) Theorem 2.6]. Note that $\Sigma^{\infty}_{+}f$ is a morphism of connective spectra. \Box

The following results are from [\[MP11\]](#page-97-1). We will use without comment that a p-equivalence is the same as an \mathbb{F}_p -equivalence, see Lemma [A.17.](#page-80-0)

Lemma A.18. Let X be an *n*-connective pointed anima for some $n \geq 0$. Then X_p^{\wedge} is *n*-connective.

Proof. For $n = 0$ the result is vacuous, and for $n = 1$ the result directly follows from Lemma [3.12.](#page-25-0) If $n > 1$ then X is simply connected and thus nilpotent. We conclude by using the short exact sequence from [\[MP11,](#page-97-1) Theorem 11.1.2 \square (iii) .

Lemma A.19. *Let* $F \to X \to Y$ *be a fiber sequence of pointed anima, with* X *and Y nilpotent.* Then $(\tau_{\geq 1}F)_{p}^{\wedge} = \tau_{\geq 1} \text{fib}(X_{p}^{\wedge} \rightarrow Y_{p}^{\wedge}).$

Proof. This was proven in [\[MP11,](#page-97-1) Proposition 11.2.5], under the additional assumption that the involved spaces have finitely generated homotopy groups. The original reference, without the finiteness assumptions, is [\[BK72,](#page-96-3) Lemma 4.8]. □

Lemma A.20. *Suppose that there is a commutative diagram of fiber sequences of pointed anima*

$$
\begin{array}{ccc}\nF & \longrightarrow & X & \longrightarrow & Y \\
\downarrow & & \downarrow & & \downarrow & \\
F' & \longrightarrow & X' & \longrightarrow & Y', \\
\end{array}
$$

 $such that X, Y, X'$ and Y' are nilpotent and f_X and f_Y are p-equivalences. Then $\tau_{\geq 1} F \xrightarrow{\tau_{\geq 1} f_F} \tau_{\geq 1} F'$ is a p-equivalence.

Proof. By Lemma [A.19,](#page-80-1) we conclude that $(\tau_{\geq 1}F)^{\wedge}_n$ $p_p^{\wedge} \cong \tau_{\geq 1} \text{fib}\left(X_p^{\wedge} \to Y_p^{\wedge}\right)$, and similarly $(\tau_{\geq 1} F')_p^{\wedge}$ $p_p^{\wedge} \cong \tau_{\geq 1} \text{fib}(X'_{p}^{\wedge} \to Y'_{p}^{\wedge}).$ Since f_X and f_Y are p-equivalences, it follows that $X_p^{\wedge} \cong X_{p}^{\prime} \wedge$ and $Y_p^{\wedge} \cong Y_{p}^{\prime}$. Thus, we have $(\tau_{\geq 1}F)_{p}^{\wedge}$ $\frac{\wedge}{p} \cong (\tau_{\geq 1} F')^\wedge_p$ $_{p}^{\prime \prime },$ i.e. $\tau_{\geq 1} f_F$ is a *p*-equivalence.

Definition A.21. For each i write

$$
L_i\colon \mathcal{A}b\xrightarrow{(-)[0]} \mathcal{D}(\mathbb{Z})\xrightarrow{\lim_n\, (-)/\!\!/p^n} \mathcal{D}(\mathbb{Z})\xrightarrow{\pi_i(-)} \mathcal{A}b.
$$

We call these functors the *derived* p*-completion functors* on the category of abelian groups.

Lemma A.22. *Recall the* p*-adic t-structure from Definition [2.13,](#page-13-0) now applied to the category of spectra. Then*

- *(1)* Sp^{p♡} ⊂ Sp[♡],
- (2) if *E* is a p-complete spectrum, then $\pi_n(E) = \pi_n^p(E)$, and
- (3) there are canonical isomorphisms $\mathbb{L}_i \cong L_i$

Proof. We first prove (1). By definition and Lemma [2.19,](#page-15-0) we see that $E \in Sp^{p\heartsuit}$ if and only if $\pi_i(E)$ is uniquely p-divisible for all $i < -1$, $\pi_{-1}(E)$ is p-divisible, $\pi_0(E)$ has bounded *p*-divisibility, and $E = E_p^{\wedge} = \tau_{\leq 0}E$. The conditions on the negative homotopy groups imply that E_p^{\wedge} is connective: Indeed, from [\[BB19,](#page-96-4) Theorem 2.6], we have for every $n \in \mathbb{Z}$ the following short exact sequence:

$$
0 \to L_0 \pi_n(E) \to \pi_n(E_p^{\wedge}) \to L_1 \pi_{n-1}(E) \to 0.
$$

If $\pi_{n-1}(E)$ is uniquely p-divisible, it has in particular no p-torsion. Thus, fol-lowing [\[MP11,](#page-97-1) Corollary 10.1.15] (using that $\mathbb{H}_p \cong L_1$, see [MP11, Proposition 10.1.17]), we see that $L_1\pi_{n-1}(E) = 0$. On the other hand, if $\pi_n(E)$ is p-divisible, we see that $L_0(\pi_n(E)) = 0$ following (the proof of the abelian case of) [\[MP11,](#page-97-1) Proposition 10.4.7 (iii)] (using that $\mathbb{E}_p \cong L_0$, see [\[MP11,](#page-97-1) Proposition 10.1.17]). Thus, $E = E_p^{\wedge}$ is connective. Hence, $E = \pi_0(E)$ is in Sp^{\heartsuit} .

In order to prove (2), suppose now that E is p-complete. Let $n \in \mathbb{Z}$ be arbitrary. There is a fiber sequence

$$
\tau_{\geq n}^p E \to E \to \tau_{\leq n-1}^p E.
$$

From the discussion directly above, we see that $\tau_{\geq n}^p E$ is in fact *n*-connective. On the other hand, it is immediate from Lemma [2.19](#page-15-0) that $\tau_{\leq n-1}^p E$ is actually $(n-1)$ -truncated. Thus, by the uniqueness of a decomposition in *n*-connective and $(n-1)$ -coconnective parts in a t-structure, we see that actually $\tau_{\geq n}^p E \cong$ $\tau_{\geq n}E$ and $\tau_{\leq n-1}^pE \cong \tau_{\leq n-1}E$ for all $n \in \mathbb{Z}$. This immediately implies that $\overline{\pi_n^p}(E) \cong \pi_n(E)$ for all $n \in \mathbb{Z}$.

It remains to show (3). This follows directly from the fact that $\mathcal{D}(\mathcal{A}b) \cong$ $\text{Mod}_{H\mathbb{Z}} \to \text{Sp}$ is a limit-preserving exact and t-exact functor, and that $\mathbb{L}_i A =$ $\pi_n^p(A) \cong \pi_n^p(A_p^{\wedge}) \cong \pi_n(A_p^{\wedge})$ (using (2), since A_p^{\wedge} is p-complete). \Box

Definition A.23. Let G be a nilpotent group. We define $\mathbb{L}_i G \coloneqq \pi_{i+1}((BG)_{p}^{\wedge})$ $_{p}^{\wedge}).$

Lemma A.24. *Let* A *be an abelian group, and let* G *be the underlying nilpotent group (i.e. we forget that* A *is abelian). Then* $\mathbb{L}_i A \cong \mathbb{L}_i G$ *for all* $i \geq 0$ *.*

Proof. This follows for example from [\[MP11,](#page-97-1) Theorem 10.3.2].

 \Box

Lemma A.25. Let X be a nilpotent, pointed anima. For every $n \geq 1$ there is *a short exact sequence (functorial in* X*)*

$$
0 \to \mathbb{L}_0 \pi_n X \to \pi_n X_p^{\wedge} \to \mathbb{L}_1 \pi_{n-1} X \to 0,
$$

where we use Definition [A.23](#page-82-0) for $\mathbb{L}_i \pi_1(X)$ *. Note that this distinction does not matter if* $\pi_1(X)$ *is abelian, see Lemma [A.24.](#page-82-1) Note that we use the definition* $\mathbb{L}_1 \pi_0 X = 0.$

Proof. [\[MP11,](#page-97-1) Theorem 11.1.2 (ii)] provides a short exact sequence

$$
0 \to L_0 \pi_n(X) \to \pi_n(X_p^{\wedge}) \to L_1 \pi_{n-1}(X) \to 0.
$$

The lemma follows from Lemma [A.22,](#page-81-0) and the fact that our definition of $\mathbb{L}_i G$ is the same as the definition of L_i G in [\[MP11,](#page-97-1) Section 10.4] for nilpotent groups G (note that they use the notation \mathbb{E}_p and \mathbb{H}_p for what we call L_0 and L_1 , see [\[MP11,](#page-97-1) Proposition 10.1.17]).

Lemma A.26. Let E be a 1-connective spectrum. Then $\Omega_*^{\infty}(E_p^{\wedge}) = (\Omega_*^{\infty}E)_p^{\wedge}$ p *.*

Proof. Using the short exact sequence from Lemma [A.25,](#page-82-2) we conclude that the homotopy groups of $(\Omega_*^{\infty}E)^{\wedge}_p$ \int_{p}^{∞} fit into short exact sequences

$$
0 \to \mathbb{L}_0 \pi_n(\Omega^\infty_* E) \to \pi_n((\Omega^\infty_* E)_p^\wedge) \to \mathbb{L}_1 \pi_{n-1}(\Omega^\infty_* E) \to 0.
$$

By Lemma [2.29,](#page-18-0) the homotopy groups of E_p^{\wedge} fit into a short exact sequence

$$
0 \to \mathbb{L}_0 \pi_n(E) \to \pi_n^p(E_p^{\wedge}) \to \mathbb{L}_1 \pi_{n-1}(E) \to 0.
$$

Thus, the lemma follows from Whitehead's theorem and the fact that $\pi_n(\Omega_*^{\infty}E) \cong$ $\pi_n(E)$ and $\pi_n^p(E_p^{\wedge}) \cong \pi_n(E_p^{\wedge}) \cong \pi_n(\Omega_*^{\infty}(E_p^{\wedge}))$ (see Lemma [A.22\)](#page-81-0). \Box

Lemma A.27. Let $E \to F$ be a p-equivalence of 1-connective spectra. Then $\Omega_*^{\infty} E \to \Omega_*^{\infty} F$ *is a p-equivalence.*

Proof. Since $E_p^{\wedge} \cong F_p^{\wedge}$ is an equivalence by assumption, we conclude by the last Lemma [A.26](#page-82-3) that also $(\Omega_*^{\infty}E)^{\wedge}_p$ $p^{\wedge} \cong (\Omega_*^{\infty} F)^{\wedge}_p$ p_{p}^{\wedge} , i.e. that $\Omega_{*}^{\infty}E \rightarrow \Omega_{*}^{\infty}F$ is a p-equivalence. 口

Definition A.28. Let X_k be an N-indexed inverse system of pointed connected anima. We say that it is a *weak Postnikov tower* of anima if $\tau_{\leq k}X_{k+1} \cong \tau_{\leq k}X_k$ for all $k \geq 0$ (i.e. the maps $X_{k+1} \to X_k$ are k-connective for all k).

We want to prove that the suspension spectrum commutes with the limit of weak Postnikov towers. For this, we need the following well-known statement:

Lemma A.29. Let $f: X \to Y$ be a morphism of pointed anima. Suppose that f *is* k-connective for some k. Then $\Sigma^{\infty} f: \Sigma^{\infty} X \to \Sigma^{\infty} Y$ *is* k-connective.

Proof. Let $F := fib(f)$ be the fiber. By assumption, we have that F is kconnective. Let $C := \operatorname{cofib}(f)$ be the cofiber. By the Blakers-Massy Theorem (see e.g. [\[tD08,](#page-97-2) Theorem 6.4.1]) that C is $(k+1)$ -connective. Since Σ^{∞} preserves colimits (as it is a left adjoint), we get a cofiber sequence of spectra $\Sigma^{\infty} X \rightarrow$ $\Sigma^{\infty}Y \to \Sigma^{\infty}C$. Again by Blakers-Massey (or it's corollary, the Freudenthal Suspension Theorem), we conclude that $\Sigma^{\infty}C$ is $(k+1)$ -connective. Thus, since Sp is stable, we see that there is a fiber sequence $\Omega \Sigma^{\infty} C \to \Sigma^{\infty} X \to \Sigma^{\infty} Y$. Note that $\Omega \Sigma^{\infty} C$ is k-connective. This proves that $\Sigma^{\infty} f$ is k-connective. \Box

Lemma A.30. *Let* X_k *be a weak Postnikov tower of anima. Then*

$$
\Sigma^\infty \lim\nolimits_k X_k \cong \lim\nolimits_k \Sigma^\infty X_k.
$$

Proof. By assumption, each of the morphisms $X_{k+1} \to X_k$ is k-connective. By Lemma [A.29](#page-83-0) we see that $\Sigma^{\infty} X_{k+1} \to \Sigma^{\infty} X_k$ is k-connective.

Since by assumption the homotopy groups of the system X_k stabilize, we see by [\[MP11,](#page-97-1) Proposition 2.2.9] that $\lim_n X_n \to X_k$ is k-connective for every k. Therefore, again by Lemma [A.29](#page-83-0) also the morphism Σ^{∞} lim_n $X_n \to \Sigma^{\infty} X_k$ is k-connective.

Note that the k-connectivity of $\Sigma^{\infty} X_{k+1} \to \Sigma^{\infty} X_k$ implies that the projection $\lim_{n} \Sigma^{\infty} X_n \to \Sigma^{\infty} X_k$ is k-connective for every k.

Thus, we see that $\pi_k(\lim_n \Sigma^{\infty} X_n) \cong \pi_k(\Sigma^{\infty} X_k) \cong \pi_k(\Sigma^{\infty} \lim_n X_n)$. We conclude by Whitehead's theorem. П

The above statement about weak Postnikov towers now allows us to conclude that p -equivalences of weak Postnikov towers induce p -equivalences on the limits of the towers:

Lemma A.31. *Suppose there are* N*-indexed inverse systems of pointed connected anima* X_k *and* Y_k *, and for any* $n \geq 0$ *there exists a* $k_n \geq 0$ *such that* $\pi_n(X_k) \cong \pi_n(X_{k_n})$ and $\pi_n(Y_k) \cong \pi_n(Y_{k_n})$ for all $k \geq k_n$. Suppose further that *there is a morphism of systems* $f_k: X_k \to Y_k$ *such that each* f_k *is a p-equivalence. Then* $f: \lim_k X_k \to \lim_k Y_k$ *is a p-equivalence.*

Proof. Up to replacing N by a cofinal subset, we may assume that $k_n = n$ for each *n*. Note that we have equivalences $\tau_{\leq n-1} X_n \cong \tau_{\leq n-1} X_{n-1}$ by assumption. Thus, the system X_k is a weak Postnikov tower. This allows us to conclude from Lemma [A.30,](#page-83-1) that Σ^{∞} lim_k $X_k \cong \lim_k \Sigma^{\infty} X_k$ and Σ^{∞} lim_k $Y_k \cong \lim_k \Sigma^{\infty} Y_k$. Thus, $\Sigma^{\infty} f \cong \Sigma^{\infty} \lim_k f_k \cong \lim_k \Sigma^{\infty} f_k$. We now conclude that f is a pequivalence because $\Sigma^{\infty} f/p \cong (\lim_k \Sigma^{\infty} f_k)/\!/p \cong \lim_k ((\Sigma^{\infty} f_k)/\!/p)$ is a limit of equivalences. \Box

A.4 Conservativity of the Free Sheaf Functor

Let X be a 1-topos, i.e. the category of sheaves of sets on some site (C, τ) . Let R be a ring, this defines a presentable 1-category $Mod_{R,\mathcal{X}}$ of R-modules internal to X, together with a conservative forgetful functor $\iota: Mod_{R,\mathcal{X}} \to \mathcal{X}$. This forgetful functor commutes with limits and filtered colimits, and thus has a left adjoint $R[-]: \mathcal{X} \to \text{Mod}_{R,\mathcal{X}}$ by presentability. Note that for $X \in \mathcal{X}$, the value $R[X]$ is given by the sheafification of the presheaf of R-modules $U \mapsto R[X(U)]$, where $R[X(U)]$ is the free R-module on generators $X(U)$. This can be seen by comparing right adjoints. Our goal in this section is to prove that $R[-]$ is conservative.

Definition A.32. Let C be a 1-category, and $f: X \to Y$ a morphism in C. Then f is called an *extremal monomorphism* if f is a monomorphism and for all factorizations $f = i \circ p$ with p an epimorphism, we already have that p is an isomorphism.

The following is (the dual of) a well-known result in category theory:

Lemma A.33. Let $L: \mathcal{C} \rightleftarrows \mathcal{D}: R$ be an adjunction of 1-categories, and write $\eta: \text{id} \to RL$ *for the unit map. Suppose moreover that* $\eta_X: X \to R L X$ *is an extremal monomorphism for all* $X \in \mathcal{C}$. Then L *is conservative.*

Proof. Let $f: X \to Y$ be a morphism in C such that Lf is an isomorphism. We have to show that f is an isomorphism. By naturality of η , we get a commutative square

$$
X \xrightarrow{\eta_X} R L X
$$

\n
$$
\downarrow f \qquad \qquad \downarrow R L f
$$

\n
$$
Y \xrightarrow{\eta_Y} R L Y.
$$

Note that the right vertical map is an isomorphism, and the horizontal maps are extremal monomorphisms. Thus, by the definition of extremal monomorphism, it suffices to show that f is an epimorphism.

So suppose that there is $T \in \mathcal{C}$ and $h_1, h_2 \colon Y \to T$ such that $h_1 f = h_2 f$. We need to show that $h_1 = h_2$. By functoriality, we have $RLh_1 \circ RLf = R Lh_2 \circ RLf$. Since RLf is an isomorphism, we conclude that $RLh_1 = R L h_2$. By naturality of η , we thus get the following equality:

$$
\eta_T \circ h_1 = R L h_1 \circ \eta_Y = R L h_2 \circ \eta_Y = \eta_T \circ h_2.
$$

We conclude that $h_1 = h_2$ because η_T is a monomorphism by assumption. \Box

In order to apply the above, we need the following two lemmas:

Lemma A.34. *Suppose that* C *is a balanced category (i.e. every morphism* f *which is both monic and epic is already an isomorphism), and that* $f: X \rightarrow Y$ *in* C *is a monomorphism. Then* f *is an extremal monomorphism.*

Proof. Suppose that we have a factorization $f = i \circ p$ with p an epimorphism. We need to show that p is an isomorphism. Since $\mathcal C$ is balanced, it suffices to show that p is a monomorphism, which follows immediately from the assumption that f is a monomorphism. 口

Lemma A.35. *For every* $X \in \mathcal{X}$ *, the unit* $X \to \iota R[X]$ *is a monomorphism.*

Proof. Write F for the presheaf (of R-modules) $U \mapsto R[X(U)]$, such that $R[X]$ is the sheafification of F. Note that the map $X \to F$ is clearly a monomorphism, because on each level it is just the canonical map $X(U) \to R[X(U)]$, which maps an element $x \in X(U)$ to the corresponding basis element of $R[X(U)]$. Now observe that sheafification preserves monomorphisms: Indeed, monomorphisms $f: A \to B$ can be characterized as the existence of pullback squares of the form

$$
A \longrightarrow A
$$

$$
\parallel \qquad \qquad \downarrow f
$$

$$
A \longrightarrow B,
$$

which are preserved because sheafification is left exact. But since X is already a sheaf by assumption, we conclude that $X \to R[X]$ is a monomorphism. □

This allows us to conclude:

Proposition A.36. *The functor* $R[-]: \mathcal{X} \to \text{Mod}_{R,\mathcal{X}}$ *is conservative.*

Proof. Since every 1-topos is a balanced category, it follows from Lemmas [A.34](#page-85-0) and [A.35](#page-85-1) that the unit $X \to \iota R[X]$ is an extremal monomorphism for all $X \in \mathcal{X}$. Thus, we conclude from Lemma [A.33](#page-84-0) that $R[-]$ is conservative. \Box

B The Pro-Zariski Topology

Let k be a field and denote by Sm_k the category of quasi-compact smooth kschemes. Let $\text{Shv}_{\text{zar}}(\text{Sm}_k)$ be the ∞ -topos of sheaves on Sm_k with respect to the Zariski topology, i.e. covers are given by fpqc covers $\{U_i \rightarrow U\}_i$ such that each $U_i \to U$ can be written as $\bigcup_j U_{i,j} \to U$ such that each $U_{i,j} \to U$ is an open immersion. In this section, we develop an analog of the pro-étale topology from [\[BS14\]](#page-96-5), adapted for the Zariski topology. We use this pro-Zariski topology to show that $\text{Shv}_{\text{zar}}(\text{Sm}_k)$ can be embedded into a topos of the form $\mathcal{P}_{\Sigma}(W)$, where the category W will be realized by zw-contractible rings, an analog of w-contractible rings from [\[BS14\]](#page-96-5). We will begin with a general discussion with categories of sheaves on locally weakly contractible sites, and then specialize this discussion to the pro-Zariski topos.

B.1 Locally Weakly Contractible ∞ -Topoi

The goal of this section is to prove that the topos of hypercomplete sheaves on a locally weakly contractible site (C, τ) (see Definition [B.3\)](#page-86-0) is always of the form $\mathcal{P}_{\Sigma}(W)$ for a suitable subcategory $W \subset \mathcal{C}$ of weakly contractible objects. Since we will deal with hypercomplete and non-hypercomplete sheaves, if (C, τ) is a site, then denote the categories of sheaves on this site (resp. hypercomplete sheaves on this site) by $\text{Shv}_\tau^{\text{nh}}(\mathcal{C})$ (resp. $\text{Shv}_\tau^{\text{h}}(\mathcal{C})$). Moreover, denote the sheafification adjunction by

$$
L_{nh} \colon \mathcal{P}(\mathcal{C}) \rightleftarrows \text{Shv}_{\tau}^{\text{nh}}(\mathcal{C}) \colon \iota_{nh}
$$

and

$$
L_h \colon \mathcal{P}(\mathcal{C}) \rightleftarrows \operatorname{Shv}^h_{\tau}(\mathcal{C}) \colon \iota_h,
$$

respectively. Note that L_h factors over L_{nh} , write

$$
L_{hyp}\colon \operatorname{Shv}_\tau^{\operatorname{nh}}(\mathcal{C}) \rightleftarrows \operatorname{Shv}_\tau^{\operatorname{h}}(\mathcal{C})\colon \iota_{hyp}
$$

for the geometric morphism corresponding to this factorization.

Definition B.1. Let (C, τ) be a site which admits finite coproducts. We say that the topology τ is a Σ -topology if every finite collection of morphisms $\{U_i \rightarrow$ U _i such that $\sqcup_i U_i \to U$ is an isomorphism is a cover in the τ -topology.

Definition B.2. Let (C, τ) be a site. We say that an object $w \in C$ is *weakly contractible* if every cover by a single morphism $U \rightarrow w$ has a splitting.

Definition B.3. Let (C, τ) be a site. We say that C is *locally weakly contractible*, if there is a subcategory $W \subset \mathcal{C}$ such that

(LWC 1) $\mathcal C$ has finite coproducts, and finite coproducts distribute over all pullbacks that exist in C, i.e. if $(U_i)_i$ is a family of objects in C, $f: X \to Y$ a morphism in C, and $g_i: U_i \to Y$ morphisms, then $(\sqcup_i U_i) \times_Y X \cong \sqcup_i (U_i \times_Y X),$

- (LWC 2) every object $w \in W$ is weakly contractible (Definition [B.2\)](#page-86-1),
- (LWC 3) W is closed under finite coproducts in \mathcal{C} ,
- (LWC 4) every object $w \in W$ is quasi-compact, i.e. every cover of w can be refined by a finite cover,
- (LWC 5) the topology is a Σ -topology (Definition [B.1\)](#page-86-2),
- (LWC 6) every object $X \in \mathcal{C}$ has a cover $w \to X$ by a weakly contractible object $w \in W$, and
- (LWC 7) the category W is extensive, see Definition [4.11.](#page-34-0)

Suppose from now on that (C, τ) is a locally weakly contractible site. Since by assumption [\(LWC 7\)](#page-87-0) the category W is extensive, we see that $\mathcal{P}_{\Sigma}(W)$ is an ∞-topos, see Lemma [4.12.](#page-34-1) In particular, we have a geometric morphism

$$
L_{\Sigma} \colon \mathcal{P}(W) \rightleftarrows \mathcal{P}_{\Sigma}(W) \colon \iota_{\Sigma}.
$$

The fully faithful inclusion $W \to \mathcal{C}$ induces an adjunction of presheaf categories

$$
j^* \colon \mathcal{P}(W) \rightleftarrows \mathcal{P}(\mathcal{C}) \colon j_*,
$$

where j_* is given by restriction, and j^* is given by left Kan extension (see [\[Lur09,](#page-96-6) Corollary 4.3.2.14] for the existence of left Kan extensions of presheaves, and [\[Lur09,](#page-96-6) Corollary 4.3.2.16 and Proposition 4.3.2.17] for a proof that the left Kan extension functor exists and is left adjoint to the restriction functor). Write π_n^{pre} for the homotopy objects in a presheaf category, i.e. the functor given by postcomposing with the functor $\pi_n: An \to \text{Set}.$

Lemma B.4. *Let* $F \in \text{Disc}(\mathcal{P}(\mathcal{C}))$ *be a* 0*-truncated presheaf (i.e. a presheaf of* sets), such that $j_*F = \iota_{\Sigma} L_{\Sigma} j_*F \in \mathcal{P}(W)$. Then the canonical map $L_{nh} j^* j_* F \to$ $L_{nh}F$ *is an equivalence, and for all* $w \in W$ *we have an equivalence* $(L_{nh}F)(w) \cong$ $F(w)$.

Proof. Since everything is 0-truncated, this is a statement about sheaves of sets. In particular, $L_{nh}G \cong G^{++}$, where $(-)^+$ is the plus construction, see e.g. [\[Sta23,](#page-97-3) [Tag 00W1\]](https://stacks.math.columbia.edu/tag/00W4). Since the $w \in W$ generate the topos $Disc(Shv_{\tau}^{nh}(\mathcal{C}))$ (this follows from assumption [\(LWC 6\)\)](#page-87-1), it suffices to prove that $(L_{nh}j^*j_*F)(w) \rightarrow$ $(L_{nh}F)(w)$ is an equivalence for all $w \in W$. Moreover, since $(j^*j_*F)(w) \cong$ $(j_*F)(w) \cong F(w)$, it suffices to prove that $(L_{nh}G)(w) = G(w)$ for every presheaf $G \in \text{Disc}(\mathcal{P}(\mathcal{C}))$ with $j_*G \cong \iota_{\Sigma} L_{\Sigma} j_*G$ and $w \in W$. Thus, it suffices to show that $G^+(w) = G(w)$. Let $\{U_i \to w\}_i$ be a cover of w. We can refine this cover by a cover $\{w_i \to w\}_i$ with $w_i \in W$, by assumption [\(LWC 6\).](#page-87-1) We may assume that this cover is finite since w is quasi-compact, see assumption [\(LWC 4\).](#page-87-2) Thus, by the definition of $G^+(w) = \operatorname{colim}_{\mathcal{U} \in J_w^{\text{op}}} H^0(\mathcal{U}, G)$ (see the discussion right before [\[Sta23,](#page-97-3) [Tag 00W4\]](https://stacks.math.columbia.edu/tag/00W4) for the notation), we can run the colimit only over covers $\{w_i \to w\}$ with $w_i \in W$. But now since $j_*G \cong \iota_{\Sigma}L_{\Sigma}j_*G$, we know that $\prod_i G(w_i) \cong G(\sqcup_i w_i)$. Thus, since coproducts distribute over pullbacks in C by assumption [\(LWC 1\),](#page-86-3) we see that the Cech-nerves of $\{w_i \to w\}_i$ and $\{\sqcup_i w_i \to w\}$ agree. Therefore, we may assume that the cover is in fact a single morphism $\mathcal{U} = \{v \to w\}$, with $v = \bigcup_i w_i \in W$ because objects in W are stable under coproducts by assumption [\(LWC 3\).](#page-87-3) This morphism has a split by assumption [\(LWC 2\).](#page-87-4) Hence, the Cech nerve is homotopy equivalent to (the constant simplicial object) w, see (the dual version of) [\[Sta23,](#page-97-3) [Tag 019Z\]](https://stacks.math.columbia.edu/tag/019Z). Thus, $H^0(\mathcal{U}, G) = G(w)$. Since this is true for a cofinal family of covers, we conclude $G^+(w) = G(w).$ 口

Lemma B.5. *Let* $F \in \mathcal{P}(\mathcal{C})$ *be a presheaf, such that* $j_*F = \iota_{\Sigma}L_{\Sigma}j_*F \in \mathcal{P}(W)$ *. Then the canonical map* $L_h j^* j_* F \to L_h F$ *is an equivalence, and for all* $w \in W$ *, we have an equivalence* $(L_h F)(w) \cong F(w)$ *.*

Proof. Write $\epsilon: j^*j_*F \to F$ for the counit of the adjunction $j^* \dashv j_*$. For the first statement, by hypercompleteness it suffices to show that for each n , each $U \in$ $\text{Shv}_\tau^h(\mathcal{C})$ and each morphism $x: U \to L_h j^* j_* F$ (i.e. each choice of basepoint in the overtopos $\text{Shv}^h_\tau(\mathcal{C})_{/U}$) the morphism $\pi_n((L_h j^* j_* F)|_U, x) \to \pi_n((L_h F)|_U, \epsilon \circ$ x) induced by ϵ is an equivalence for all $n \geq 0$ (in the case $n = 0$, we can do the same calculations as below, but do it without the choice of a basepoint). But for every presheaf $G \in \mathcal{P}(\mathcal{C})$ (and object U and basepoint $x: U \to L_h G$), we have a chain of equivalences $\pi_n((L_hG)|_U, x) \cong \pi_n((L_{nh}G)|_{\iota_{hyp}U}, \iota_{hyp}(x)) \cong$ $L_{nh} \pi_n^{pre}(G|_{\iota_h U}, \iota_h x)$, where the first equivalence follows since \overline{L}_h factors over L_{nh} , and this factorization is the universal functor out of $\text{Shv}_{\tau}^{\text{nh}}(\mathcal{C})$ that inverts π_* -isomorphisms (i.e. morphisms f such that $\pi_k(f)$ is an isomorphism for all k). Thus, it suffices to prove that the canonical morphism

$$
L_{nh} \pi_n^{pre}((j^*j_*F)|_{\iota_h U}, \iota_h(x)) \xrightarrow{-\circ \epsilon} L_{nh} \pi_n^{pre}(F|_{\iota_h U}, \epsilon \circ \iota_h(x))
$$

is an equivalence. We know that $\pi_n^{pre}((j^*j_*F)|_{\iota_h U}, \iota_h(x)) \cong j^*j_*\pi_n^{pre}(F|_{\iota_h U}, \epsilon \circ$ $u_h(x)$, since j^* is a geometric morphism and thus commutes with homotopy objects, and j_* is just the restriction of functors. Thus, the result follows from Lemma [B.4,](#page-87-5) if $j_* \pi_n^{pre}(F|_{\iota_h U}, \epsilon \circ \iota_h(x)) \cong \iota_{\Sigma} L_{\Sigma} j_* \pi_n^{pre}(F|_{\iota_h U}, \epsilon \circ \iota_h(x)).$ But this is clear since $j_* \pi_n^{pre}(F|_{\iota_h U}, \epsilon \circ \iota_h(x)) \cong \pi_n^{pre}(j_* F|_{j_* \iota_h U}, j_* \iota_h(x))$ (again since j^{*} is just the restriction of functors), since j ^{*} F ≃ ι _Σ L _Σ j ^{*} F by assumption and since the homotopy presheaf $\pi_n^{pre}((j_* F)|_{j_* \iota_h U}, j_* \iota_h (x))$ is the homotopy object of $(j_*F)|_{j_* \iota_h U}$ in $\mathcal{P}_\Sigma(W)_{j_* \iota_h U}$ with respect to the given basepoint, see Lemma [4.15.](#page-35-0)

For the second point, choose again a U and x as above. Note that by the above and Lemma [B.4,](#page-87-5) we get

$$
(\pi_n((L_hF)|_U, x))(w) \cong (L_{nh}\pi_n^{pre}(F|_{\iota_h U}, \iota_h(x)))(w)
$$

$$
\cong (\pi_n^{pre}(F|_{\iota_h U}, \iota_h(x)))(w)
$$

$$
= \pi_n(F|_{\iota_h U}(w), \iota_h(x)(w)).
$$

On the other hand, since $j_* \pi_n^{pre}((L_h F)|_U, x) \cong \iota_{\Sigma} L_{\Sigma} j_* \pi_n^{pre}((L_h F)|_U, x)$, we again conclude by Lemma [B.4](#page-87-5) that

$$
(\pi_n^{pre}((L_h F)|_U, x))(w) \cong (L_{nh}\pi_n^{pre}((L_h F)|_U, x))(w) = (\pi_n((L_h F)|_U, x))(w).
$$

Thus, we conclude that for all n, U and x we have an isomorphism

$$
\pi_n(F|_{\iota_h U}(w), \iota_h(x)(w)) \cong (\pi_n((L_h F)|_U, x))(w)
$$

\n
$$
\cong (\pi_n^{pre}((L_h F)|_U, x))(w)
$$

\n
$$
= \pi_n((L_h F)|_U(w), x(w)).
$$

By Whitehead's lemma, we conclude that $F(w) \cong L_hF(w)$.

Lemma B.6. *The unit* $j_* \iota_h \to \iota_{\Sigma} L_{\Sigma} j_* \iota_h$ *is an equivalence. In particular, for every sheaf* $F \in \text{Shv}_\tau^h(\mathcal{C})$, there is a canonical equivalence $j_*\iota_h F \cong \iota_{\Sigma} L_{\Sigma} j_*\iota_h F$. *Proof.* Fix $F \in \text{Shv}_\tau^h(\mathcal{C})$. Since W is extensive by assumption [\(LWC 7\),](#page-87-0) using Lemma [4.12](#page-34-1) it suffices to show that $j_* \iota_h F$ has descent for disjoint union covers in W. But those covers are in particular in τ by assumption [\(LWC 5\).](#page-87-6) Thus, \Box we conclude since F is a τ -sheaf.

Lemma B.7. *The adjunction* j^* : $\mathcal{P}(W) \rightleftarrows \mathcal{P}(\mathcal{C})$: j_* *induces an adjunction*

$$
p^* \colon \mathcal{P}_{\Sigma}(W) \rightleftarrows \operatorname{Shv}^{\mathrm{h}}_{\tau}(\mathcal{C}) \colon p_*,
$$

where the left adjoint is given by $p^* := L_h j^* \iota_{\Sigma}$, and the right adjoint is given by p[∗] := LΣj∗ιh*. Moreover, this adjunction is an equivalence.*

Proof. We first show that there is an adjunction $p^* \dashv p_*$: We construct the unit as the composition

id
$$
\cong L_{\Sigma} \iota_{\Sigma} \to L_{\Sigma} j_* j^* \iota_{\Sigma} \to L_{\Sigma} j_* \iota_h L_h j^* \iota_{\Sigma} = p_* p^*.
$$

Here, the first arrow is the inverse of the counit of the adjunction $L_{\Sigma} \dashv \iota_{\Sigma}$, note that it is invertible because ι_{Σ} is fully faithful. The next two arrows are the units of the adjunctions j^* + j_* and L_h + ι_h . The last equality are the definitions of p[∗] and p_* . It is now clear that this defines the unit of an adjunction, because it is equivalent to the composition of the units of two adjunctions. Thus, we get the required adjunction via [\[Lur09,](#page-96-6) Proposition 5.2.2.8]. We need to show that the counit and unit maps are equivalences.

So let $F \in \text{Shv}_\tau^h(\mathcal{C})$. Then $p^*p_*F = L_hj^*\iota_{\Sigma}L_{\Sigma}j_*\iota_hF$. Since we know that $j_{*l}F \cong \iota_{\Sigma}L_{\Sigma}j_{*l}F$ from Lemma [B.6,](#page-89-0) we conclude that $L_{h}j_{*l}L_{\Sigma}j_{*l}F \cong$ $\tilde{L}_h j^* j_* \iota_h F \cong \tilde{L}_h \iota_h F \cong F$, where we used Lemma [B.5](#page-88-0) for the middle equivalence.

On the other hand, let $F \in \mathcal{P}_{\Sigma}(W)$. We want to prove that for all $w \in W$, we have $(p_*p^*F)(w) \cong F(w)$. We compute

$$
(p_*p^*F)(w) = (L_{\Sigma}j_*\iota_h L_h j^* \iota_{\Sigma} F)(w)
$$

\n
$$
= (\iota_{\Sigma} L_{\Sigma}j_*\iota_h L_h j^* \iota_{\Sigma} F)(w)
$$

\n
$$
\cong (j_*\iota_h L_h j^* \iota_{\Sigma} F)(w)
$$

\n
$$
= (L_h j^* \iota_{\Sigma} F)(w)
$$

\n
$$
\cong (j^* \iota_{\Sigma} F)(w)
$$

\n
$$
\cong (\iota_{\Sigma} F)(w)
$$

\n
$$
= F(w),
$$

where we use the last conclusion from Lemma [B.5](#page-88-0) in the fifth equivalence. \Box

 \Box

In the last part of this section, we want to establish a condition which allows us to conclude that an inclusion of sites actually induces a fully faithful geometric morphism of (hypercomplete) ∞-topoi.

Proposition B.8. Let $(C', \tau') \subseteq (C, \tau)$ be a full subcategory such that any τ' *cover* $\{U_i \to U\}_i$ *is also a* τ -cover. Suppose that $\text{Shv}^{\text{h}}_{\tau}(\mathcal{C})$ and $\text{Shv}^{\text{h}}_{\tau'}(\mathcal{C}')$ are *Postnikov-complete. Write*

$$
L_h: \mathcal{P}(\mathcal{C}) \rightleftarrows \text{Shv}_\tau^h(\mathcal{C}) : \iota_h
$$

$$
L'_h: \mathcal{P}(\mathcal{C}') \rightleftarrows \text{Shv}_{\tau'}^h(\mathcal{C}') : \iota'_h
$$

for the sheafification adjunctions.

Write $k: \mathcal{C}' \hookrightarrow \mathcal{C}$ *for the inclusion. This induces an adjoint pair*

$$
k^*\colon \mathcal{P}(\mathcal{C}') \rightleftarrows \mathcal{P}(\mathcal{C})\colon k_*,
$$

 $where k_∗$ *is restriction and* $k[∗]$ *is left Kan extension. Then we have the following:*

• *These functors then induce an adjoint pair*

$$
j^* \colon \operatorname{Shv}^{\mathrm{h}}_{\tau'}(\mathcal{C}') \rightleftarrows \operatorname{Shv}^{\mathrm{h}}_{\tau}(\mathcal{C}) \colon j_*,
$$

where j^* *is given by* $L_h k^* \iota'_h$ *and* j_* *is given by* $L'_h k_* \iota_h$ *.*

- *This adjoint pair is a geometric morphism of* ∞*-topoi.*
- We have a natural equivalence $\iota'_h j_* \cong k_* \iota_h$ *(i.e. the restriction of a* τ *hypersheaf to* C' *is a* τ' -*hypersheaf*).

Assume moreover that if $F \in Shv^h_{\tau'}(\mathcal{C}')$ is n-truncated for some n, then $\iota_h j^* F \cong k^* \iota'_h F$ *(i.e. the left Kan extension of an n-truncated* τ' -hypersheaf is *already a* τ*-hypersheaf).*

Then j ∗ *is fully faithful.*

Proof. We first prove that there is an equivalence $\iota'_h j_* \cong k_* \iota_h$. This follows immediately from the fact that every τ' -hypercover is in particular a τ -hypercover, thus every τ -hypersheaf is automatically a τ' -hypersheaf.

We now prove that there is an adjunction $j^* \dashv j_*$: We construct the unit as the composition

$$
\mathrm{id} \cong L_{h'} \iota_{h'} \to L_{h'} k_* k^* \iota_{h'} \to L_{h'} k_* \iota_h L_h k^* \iota_{h'} = j_* j^*.
$$

Here, the first arrow is the inverse of the counit of the adjunction $L_{h'} \dashv \iota_{h'}$, note that it is invertible because $\iota_{h'}$ is fully faithful. The next two arrows are the units of the adjunctions $k^* \dashv k^*$ and $L_h \dashv \iota_h$. The last equality is the definition of j[∗] and j ∗ . It is now clear that this defines the unit of an adjunction, because it is equivalent to the composition of the units of two adjunctions. Thus, we get the required adjunction via [\[Lur09,](#page-96-6) Proposition 5.2.2.8].

In particular, we see that j^* is (the left adjoint of) a geometric morphism, because it has a right adjoint and preserves finite limits (since ι'_h preserves limits

as a right adjoint, and k^* and L_h preserve finite limits as the left adjoints of geometric morphisms).

Assume from now on that if $F \in Shv^h_{\tau'}(\mathcal{C}')$ is *n*-truncated for some *n*, then $\iota_h j^* F \cong k^* \iota'_h F$. In order to show that j^* is fully faithful, we first show that it is fully faithful on *n*-truncated objects. For this, it suffices to show that for every *n*-truncated $F \in \text{Shv}^{\text{h}}_{\tau'}(\mathcal{C}')$, the natural map $F \to j_*j^*F$ is an equivalence. But we compute

$$
j_*j^*F \cong L'_hk_*\iota_hj^*F \cong L'_hk_*k^*\iota'_hF \cong L'_h\iota'_hF \cong F,
$$

where we used for the first equivalence the definition of j_* , in the second equivalence that $\iota_h j^* F \cong k^* \iota'_h F$ since F is n-truncated, in the third equivalence that k^* is fully faithful, and in the last equivalence that ι'_h is fully faithful.

We now want to show that j^* is fully faithful. Again, it therefore suffices that the canonical morphism $F \to j_*j^*F$ is an equivalence for all $F \in \text{Shv}^{\text{h}}_{\tau'}(\mathcal{C}')$. We have a chain of equivalences

$$
j_*j^*F \cong j_*\lim_{n} \tau_{\leq n} j^*F
$$

$$
\cong \lim_{n} j_*j^* \tau_{\leq n} F
$$

$$
\cong \lim_{n} \tau_{\leq n} F
$$

$$
\cong F.
$$

Here, the first equivalence uses Postnikov-completeness of $\text{Shv}^{\text{h}}_{\tau'}(\mathcal{C}')$, the second equivalence uses that j_* commutes with limits (it is right adjoint to j^*) and that j^* commutes with truncations (see [\[Lur09,](#page-96-6) Proposition 6.3.1.9]), the third equivalence holds because we have seen that j^* is fully faithful on n-truncated objects, and the last equivalence uses Postnikov-completeness of $\text{Shv}_\tau^h(\mathcal{C})$. This finishes the proposition. \Box

B.2 The Pro-Zariski Topos

Recall the following definition from [\[Sta23,](#page-97-3) [Tag 0965\]](https://stacks.math.columbia.edu/tag/0965):

Definition B.9. Let $f: A \rightarrow B$ be a ring map. We say that

- (1) f is a *local isomorphism* if for every prime $\mathfrak{q} \subset B$ there exists a $g \in B$, $g \notin \mathfrak{q}$ such that $A \to B_g$ induces an open immersion $Spec(B_g) \to Spec(A),$
- (2) f is an *ind-Zariski map* if f is a filtered colimit of local isomorphisms,
- (3) f is an *ind-Zariski cover* if f is a faithfully flat ind-Zariski map.

Definition B.10. A ring A is called *zw-contractible* if it satisfies the equivalent conditions from [\[Sta23,](#page-97-3) [Tag 09AZ\]](https://stacks.math.columbia.edu/tag/09AZ), i.e. if any faithfully flat ind-Zariski map $A \rightarrow B$ has a retraction.

Lemma B.11. Let A be a ring. Then there exists an ind-Zariski cover $A \rightarrow \overline{A}$ *such that* \overline{A} *is zw-contractible.*

Proof. This is [\[Sta23,](#page-97-3) [Tag 09B0\]](https://stacks.math.columbia.edu/tag/09B0).

Definition B.12. Let $f: X \to Y$ be a morphism of schemes. We say that f is a *Zariski localization* if f is isomorphic to $\amalg_{i\in I} U_i \to Y$ with I a finite set and $U_i \rightarrow Y$ open immersions. We say that f is a *pro-Zariski localization* if f is isomorphic to a cofiltered limit $\lim_i f_i: \lim_i X_i \to Y$ such that each f_i is a Zariski localization (and hence all transition maps $X_i \to X_j$ are also Zariski localizations).

Definition B.13. Write $ProZar(Sm_k)$ for the full subcategory of schemes over k consisting of pro-Zariski schemes over Sm_k , i.e. morphisms $X \to \text{Spec}(k)$ such that X can be written as a cofiltered limit $X = \lim_i X_i$ with $X_i \to \text{Spec}(k)$ smooth such that all transition morphisms $X_i \to X_j$ are Zariski localizations. Write ProZarAff(Sm_k) ⊂ ProZar(Sm_k) for the full subcategory consisting of affine schemes.

Lemma B.14. *The category* ProZar(Smk) *has finite coproducts and the inclu* $sion$ *into* Sch_k *preserves them.*

Similarly, ProZar(Smk) *has pullbacks along pro-Zariski localization and the* $inclusion$ $into$ Sch_k $preserves$ $those$ $pullbacks.$

Proof. For the first part, let I be a finite set, and $(X_i)_{i\in I}$ be a family of schemes $X_i \in \text{ProZar}(\text{Sm}_k)$. Write $X_i \cong \lim_{j \in J_i} X_{i,j}$ as a cofiltered limit with $X_{i,j} \to$ $Spec(k)$ smooth such that the transition morphisms are Zariski localizations. We get

$$
\sqcup_i X_i \cong \sqcup_i \lim_{j \in J_i} X_{i,j} \cong \lim_{(j_i)_i \in \prod_i J_i} \sqcup_i X_{i,j_i},
$$

where the second isomorphism exists because cofiltered limits commute with finite colimits and a cofinality argument. Hence, the coproduct is again in $ProZar(Sm_k)$.

We now prove the second part. So suppose that X, U and V are in $ProZar(Sm_k)$, and that there are morphisms $f: X \to U$ and $g: V \to U$ with g a pro-Zariski morphism. Since all limits are cofiltered, we can choose a common filtered category I and presentations $X = \lim_i X_i$, $U = \lim_i U_i$ and $V = \lim_i V_i$, with X_i , U_i and V_i in Sm_k , with Zariski localizations as transition maps, and such that $g_i: V_i \to U_i$ is a Zariski localization, i.e. g_i is of the form $\amalg_{j\in J}V_{i,j}\to U_i$ for some finite set J, such that $V_{i,j}\to U_i$ is an open immersion. Then $X_i \times_{U_i} V_i \in \text{Sm}_k$: Indeed, it suffices to show that $X_i \times_{U_i} V_{i,j}$ is smooth for every $j \in J$, but this is just an open subscheme of X_i . Note that the transition morphisms $X_i \times_{U_i} V_i \to X_j \times_{U_j} V_j$ are Zariski localizations (as a composition of basechanges of Zariski localizations). Thus, $X \times_U V \cong \lim_i X_i \times_{U_i} V_i$ is again in $ProZar(Sm_k)$. \Box

Definition B.15. Let $\mathcal{U} := \{f_i : U_i \to U\}_{i \in I}$ be a family of morphisms in ProZar(Sm_k). We say that U is a *pro-Zariski cover* if and only if f_i is pro-Zariski for all i and the f_i form an fpqc-cover.

Remark B.16*.* Let $Spec(f)$: $Spec(B) \rightarrow Spec(A)$ be a morphism of schemes in ProZarAff(Sm_k). Then $\{Spec(f)\}\$ is a pro-Zariski cover if and only if $f: A \rightarrow B$ is an ind-Zariski cover. To see this, it suffices to show that $Spec(f)$ is a Zariskilocalization if and only if f is a local isomorphism. This follows from $[Sta23,$ [Tag 096J\]](https://stacks.math.columbia.edu/tag/096J).

Lemma B.17. *The categories* ProZar(Smk) *and* ProZarAff(Smk) *together with the class of pro-Zariski covers form sites in the sense of [\[Sta23,](#page-97-3) [Tag 00VH\]](https://stacks.math.columbia.edu/tag/00VH). Moreover, the natural inclusion* $ProZarAff(Sm_k) \subset ProZar(Sm_k)$ *is a morphism of sites in the sense of [\[Sta23,](#page-97-3) [Tag 00X1\]](https://stacks.math.columbia.edu/tag/00X1).*

Proof. For the first statement, the only nontrivial part is the existence of pullbacks of covers, which was proven in Lemma [B.14.](#page-92-0) The last assertion is clear from [\[Sta23,](#page-97-3) [Tag 00X6\]](https://stacks.math.columbia.edu/tag/00X6), since the inclusion commutes with limits (as limits of affine schemes are affine). \Box

Definition B.18. Let $(ProZar(Sm_k), prozar)$ and $(ProZarAff(Sm_k), prozar)$ be the sites from Lemma [B.17.](#page-93-0)

Lemma B.19. *The geometric morphisms*

$$
\mathrm{Shv}^{\mathrm{nh}}_{\mathrm{prozar}}(\mathrm{ProZarAff}(\mathrm{Sm}_k)) \rightleftarrows \mathrm{Shv}^{\mathrm{nh}}_{\mathrm{prozar}}(\mathrm{ProZar}(\mathrm{Sm}_k))
$$

and

$$
\mathrm{Shv}_{\mathrm{prozar}}^{\mathrm{h}}(\mathrm{ProZarAff}(\mathrm{Sm}_k)) \rightleftarrows \mathrm{Shv}_{\mathrm{prozar}}^{\mathrm{h}}(\mathrm{ProZar}(\mathrm{Sm}_k))
$$

induced by the morphism of sites are equivalences.

Proof. The first morphism is an equivalence by [\[Hoy15,](#page-96-7) Lemma C.3]. Thus, it also induces an equivalence after hypercompletion. \Box

Definition B.20. Let $W \subset \text{ProZarAff}(Sm_k)$ be the full subcategory spanned by the (spectra of) zw-contractible rings (see Definition [B.10\)](#page-91-0).

Lemma B.21. W *is an extensive category and* $\mathcal{P}_{\Sigma}(W)$ *is an* ∞ *-topos given by sheaves on* W *with respect to the disjoint union topology.*

Proof. The category of schemes is extensive, and W is a full subcategory stable under summands and finite products. From this we immediately conclude that W is extensive. The last statement is Lemma [4.12.](#page-34-1) □

Lemma B.22. *The site* $(ProZarAff(Sm_k), prozar)$ *is locally weakly contractible.*

Proof. The pro-Zariski topology is a Σ -topology, since a clopen immersion is in particular a pro-Zariski morphism. The pro-Zariski topology on $ProZarAff(Sm_k)$ is finitary (cf. [\[Lur18a,](#page-96-1) Definition A.3.1.1]) by definition, so every object is quasicompact. The category W is exactly the subcategory of weakly contractible objects by definition. Every element in $ProZarAff(Sm_k)$ has a cover by a weakly contractible object, this is the content of Lemma [B.11.](#page-91-1) We have seen that W is extensive, see Lemma [B.21.](#page-93-1) This proves the lemma. \Box Theorem B.23. *We have an equivalence of categories*

$$
Shv_{\mathrm{prozar}}^{\mathrm{h}}(\mathrm{ProZar}(\mathrm{Sm}_k)) \cong \mathcal{P}_{\Sigma}(W).
$$

Proof. There is a chain of equivalences

$$
\mathrm{Shv}_{\mathrm{prozar}}^{\mathrm{h}}(\mathrm{ProZar}(\mathrm{Sm}_k)) \cong \mathrm{Shv}_{\mathrm{prozar}}^{\mathrm{h}}(\mathrm{ProZarAff}(\mathrm{Sm}_k)) \cong \mathcal{P}_{\Sigma}(W),
$$

where the equivalences are supplied by Lemmas [B.7](#page-89-1) and [B.19.](#page-93-2) Here we used that the affine pro-Zariski site is locally weakly contractible, see Lemma [B.22.](#page-93-3) 口

We now want to embed the category of Zariski sheaves on Sm_k into the category of hypercomplete pro-Zariski sheaves on $ProZar(Sm_k)$.

Theorem B.24. *There is a geometric morphism*

$$
\nu^* \colon \operatorname{Shv}_{\operatorname{zar}}^{\operatorname{h}}(\operatorname{Sm}_k) \rightleftarrows \operatorname{Shv}_{\operatorname{prozar}}^{\operatorname{h}}(\operatorname{ProZar}(\operatorname{Sm}_k)) \cong \mathcal{P}_{\Sigma}(W) \colon \nu_*,
$$

where the right adjoint is given by restriction, and the left adjoint is fully faithful.

Moreover, an n-truncated sheaf $F \in Shv_{\text{prozar}}^h(\text{ProZar}(Sm_k))$ *is in the essential image of* ν ∗ *(i.e. it is classical in the notation of Definition [4.35\)](#page-41-0) if and only if for all* $U \in \text{ProZar}(\text{Sm}_k)$ *and all presentations of* U *as cofiltered limit* $U \cong \lim_i U_i$ *(with the* $U_i \in \text{Sm}_k$ *such that the transition morphisms* $U_i \to U_j$ *are Zariski) the canonical map* $\text{colim}_i F(U_i) \to F(U)$ *is an equivalence.*

Proof. We want to apply Proposition [B.8](#page-90-0) with $C = \text{ProZar}(Sm_k)$ with the pro-Zariski topology and $C' = \text{Sm}_k$ with the Zariski topology, where we use the notation from Proposition [B.8.](#page-90-0)

We have seen in Lemma [4.58](#page-48-0) that $\text{Shv}^{\text{h}}_{\text{zar}}(\text{Sm}_k) \cong \text{Shv}^{\text{nh}}_{\text{zar}}(\text{Sm}_k)$ is Postnikovcomplete. Note that $\text{Shv}_{\text{prozar}}^h(\text{ProZar}(\text{Sm}_k)) \cong \mathcal{P}_{\Sigma}(W)$ by Theorem [B.23,](#page-93-4) thus this ∞-topos is also Postnikov-complete, see Lemma [4.13.](#page-34-2)

It remains to prove that $\iota_h j^* F \cong k^* \iota'_h F$ for every *n*-truncated Zariski sheaf $F \in \text{Shv}_{\text{zar}}^{\text{h}}(\text{Sm}_k)$, i.e. we have to show that the presheaf $k^* \iota'_h F$ is already a pro-Zariski hypersheaf. But note that $\text{Shv}_{\text{zar}}^{\text{h}}(\text{Sm}_k)_{\leq n} \cong \text{Shv}_{\text{zar}}^{\text{nh}}(\text{Sm}_k)_{\leq n}$ (since every ∞ -connective object in $\text{Shv}_{\text{zar}}^{\text{nh}}(\text{Sm}_k)$ which is also *n*-truncated is automatically 0), so it suffices to proof that $k^* \iota'_h F$ is a pro-Zariski sheaf. Note that by definition if $U \in ProZar(Sm_k)$ is a scheme with presentation as a cofiltered limit $U =$ $\lim_i U_i$ with $U_i \in \text{Sm}_k$, $(k^* \iota'_h F)(U) \cong \text{colim}_i F(U_i)$.

Using Lemma [B.19,](#page-93-2) it suffices to show that $k^* \iota'_h F$ has descent for all pro-Zariski covers $\{V_i \to V\}_i$ with V_i and V in ProZarAff(Sm_k), i.e. all schemes are affine. First note that $k^* \iota'_h F$ is a Zariski sheaf: If $Spec(B) = \bigcup_j U_j$ is a finite union of affine open subschemes, and B is a filtered colimit of smooth algebras B_i (where the transition maps are Zariski), then this union is pulled back from some B_i (since open immersions are of finite presentation). But F is a Zariski sheaf on Sm_k by assumption. Now let $\{V_j \to V\}_j$ be some pro-Zariski cover. Note that $\{V_j \to \Box_k V_k\}$ is a Zariski cover. Thus, since $k^* \iota'_h F$ satisfies Zariski descent, we can reduce to the case that the cover is of the form $\{\text{Spec}(f)\}\$ for a single ind-Zariski cover $f: B \to C$. Write $C = \text{colim}_i C_i$ as a filtered colimit

of Zariski covers $B \to C_i$. Again, since $k^* \iota'_h F$ satisfies Zariski descent, we have descent for these covers. Thus, the claim follows by taking filtered colimits (note that filtered colimits commute with finite limits, and since $k^* \iota'_h F$ is *n*-truncated, the sheaf axiom is actually a finite limit). This proves the theorem.

Corollary B.25. Let $A \in \text{Shv}_{\text{prozar}}(\text{ProZar}(\text{Sm}_k), \text{Sp})^{\heartsuit}$. Then A is in the es*sential image of* ν^* *if and only if for all* $U \in ProZar(Sm_k)$ *and all presentations of* U as cofiltered limit $U \cong \lim_i U_i$ (with the $U_i \in \text{Sm}_k$ such that the transi*tion morphisms* $U_i \to U_j$ *are Zariski) the canonical map* colim_i $\Gamma^{\heartsuit}(U_i, A) \to$ $\Gamma^{\heartsuit}(U, A)$ *is an equivalence.*

Proof. Recall that the equivalence of abelian categories

 $\text{Shv}_{\text{prozar}}(\text{ProZar}(\text{Sm}_k), \text{Sp})^{\heartsuit} \xrightarrow{\cong} \mathcal{A}b(\text{Disc}(\text{Shv}_{\text{prozar}}(\text{ProZar}(\text{Sm}_k))))$

is given by $A \mapsto \Gamma^{\heartsuit}(-, A)$. Note that the sheaf $\Gamma^{\heartsuit}(-, A)$ is 0-truncated. Thus, the result follows immediately from Theorem [B.24.](#page-94-0) \Box

References

- [AD09] Aravind Asok and Brent Doran. A 1 -homotopy groups, excision, and solvable quotients. *Advances in Mathematics*, 221(4):1144–1190, 2009.
- [AFH22] Aravind Asok, Jean Fasel, and Michael J Hopkins. Localization and nilpotent spaces in homotopy theory. *Compositio Mathematica*, 158(3):654–720, 2022.
- [Bac21] Tom Bachmann. Rigidity in étale motivic stable homotopy theory. *Algebraic & Geometric Topology*, 21(1):173–209, 2021.
- [BB19] Tobias Barthel and A.K. Bousfield. On the comparison of stable and unstable p-completion. *Proceedings of the American Mathematical Society*, 147(2):897–908, 2019.
- [BBD82] Alexander Beilinson, Joseph Bernstein, and Pierre Deligne. Faisceaux pervers. *Astérisque*, 100(1), 1982.
- [BH17] Tom Bachmann and Marc Hoyois. Norms in motivic homotopy theory. *Ast´erisque*, 2017.
- [BK72] A.K. Bousfield and D.M. Kan. *Homotopy Limits, Completions and Localizations*. Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1972.
- [BS14] Bhargav Bhatt and Peter Scholze. The pro-étale topology for schemes, 2014.
- [Hai21] Peter J Haine. From nonabelian basechange to basechange with coefficients. *arXiv preprint arXiv:2108.03545*, 2021.
- [HK20] Amit Hogadi and Girish Kulkarni. Gabber's presentation lemma for finite fields. *Journal für die reine und angewandte Mathematik (Crelles Journal)*, 2020(759):265–289, 2020.
- [Hoy15] Marc Hoyois. A quadratic refinement of the grothendieck–lefschetz– verdier trace formula. *Algebraic & Geometric Topology*, 14(6):3603– 3658, 2015.
- [Lur09] Jacob Lurie. Higher topos theory, 2009.
- [Lur17] Jacob Lurie. Higher algebra. Available online at <https://www.math.ias.edu/~lurie/papers/HA.pdf>, 2017.
- [Lur18a] Jacob Lurie. Spectral algebraic geometry. Available online at <https://www.math.ias.edu/~lurie/papers/sag-rootfile.pdf>, 2018.
- [Lur18b] Jacob Lurie. Spectral schemes. Available online at <https://www.math.ias.edu/~lurie/papers/DAG-VII.pdf>, 2018.
- [MNN17] Akhil Mathew, Niko Naumann, and Justin Noel. Nilpotence and descent in equivariant stable homotopy theory. *Advances in Mathematics*, 305:994–1084, 2017.
- [Mor04] Fabien Morel. An introduction to \mathbb{A}^1 -homotopy theory. *ICTP Lect. Notes*, 15:357–441, 01 2004.
- [Mor12] Fabien Morel. A 1 *-algebraic topology over a field*, volume 2052. Springer, 2012.
- [MP11] J P May and K Ponto. *More Concise Algebraic Topology: Localization, Completion, and Model Categories*. University of Chicago Press, Chicago, 2011.
- [MV99] Fabien Morel and Vladimir Voevodsky. A¹-homotopy theory of schemes. *Publications Mathématiques de l'IHES*^{, 90:45–143, 1999.}
- [Sta23] The Stacks Project Authors. *Stacks Project*. <https://stacks.math.columbia.edu>, 2023.
- [Swe69] M.E. Sweedler. *Hopf Algebras: Notes from a Course Given in the Spring of 1968*. Mathematics lecture note series. W. A. Benjamin, 1969.
- [tD08] Tammo tom Dieck. *Algebraic topology*, volume 8. European Mathematical Society, 2008.