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Unstable p-completion in motivic homotopy
theory
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Abstract

We define unstable p-completion in general co-topoi and the unstable
motivic homotopy category, and prove that the p-completion of a nilpotent
sheaf or motivic space can be computed on its Postnikov tower. We then
show that the (p-completed) homotopy groups of the p-completion of a
nilpotent motivic space X fit into short exact sequences 0 — Lo, (X) —
72 (X)) — Limp—1(X) — 0, where the L; are (versions of) the derived
p-completion functors, analogous to the classical situation.
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1 Introduction

In their seminal paper [BK72], Bousfield and Kan defined the p-completion
functor on (nilpotent) spaces/anima. This process associates to every nilpotent
anima X another anima X7, together with a map X — X7, which is univer-
sal among Fj-equivalences, i.e. maps f: X — Y which induce isomorphisms
on FF)-homology. Roughly, the p-completion functor “derived p-completes the
homotopy groups of X”, in the following sense: Write L;: Ab — Ab for the
derived p-completion functors on abelian groups, i.e. the composition
lim,, (— n s
Ab s D(A) 2 e apy iy ap,
where the map in the middle is understood to be the derived limit of the cofibers

(or cones) of the multiplication-by-p™-maps. Then, one has the following theo-
rem:

Theorem 1.1 (Bousfield-Kan). Let X be a nilpotent pointed anima (resp. a
spectrum). Then for every n > 1 (resp. any n € Z) there is a short exact
sequence

0 = Lomn(X) = mp (X)) = Limp—1(X) = 0.

In this paper, we want to show that there is an analogous functor in unstable
motivic homotopy theory over a perfect field, which behaves similar to the
classical situation.

Let k be a perfect field. Recall that Spc(k) C P(Smy) is the full sub-
category of presheaves of anima on Smy, (the category of smooth quasi-compact
k-schemes) consisting of those presheaves which are A'-invariant and satisfy Nis-
nevich descent, called the category of motivic spaces. Similarly, write SH” 1(k:) C
P(Smyg, Sp) for the full subcategory of presheaves of spectra, consisting of the
Al-invariant Nisnevich sheaves, called the category of S!-spectra. There is an
adjunction ¥3°: Spc(k) 2 SHSl(k): Q. We regard SHSl(k) as equipped with
the homotopy t-structure (SHSl(k)>O, SHSl(k)<O), with heart SHSl(k)Qp. Write
(—)2: SHSI(k:) — SHSI(k:) for the p-adic completion functor, i.e. the functor

A
E + limy, EJ/p*, and (SHSl(k)) for its essential image.
P
Note that in this setting, classical theorems cannot be true on the nose: For

example, one cannot expect that for every A € SHSl(k)QQ there are short exact
sequences

0 = Lomn(A) = m,(A)) = Lym,—1(A) = 0,

(where the L; are defined analogously to the case of abelian groups), since it
is unreasonable to expect that A]’D\ has no negative homotopy groups (although
the negative homotopy groups are always uniquely p-divisible, see Lemma [2.9]).
These negative homotopy groups appear since infinite products are not t-exact

in SHY (k).



Luckily, there is a new t-structure (the p-adic t-structure) one can asso-

ciate to SH? 1(Ic) which solves those problems. Our main theorem can now be
summarized as follows:

Theorem 1.2. There is a localization functor (—)2: Spc(k) — Spc(k) which
inverts p-equivalences, i.e. morphisms f: X —Y in Spc(k), such that (3°f)/p
18 an equivalence.

P

One can define the p-adic t-structure (SHSl(k);J, SHSl(k)SO) on SHSl(k) with
heart SHSl(k)po, and derived p-completion functors

L;: SHS(k)® — SHS (k)*?,
A 7l (A) = QiTgT;A.

2 2

For every X € Spc(k)., there is a functorial sequence of p-completed homo-

topy groups 7P (X) € SHSl(k)po for m > 2. There is a simliar construction if
n=1.
These constructions satisfy the following:

(1) The p-adic t-structure is not left-separated. Write
SHS (k)% = [ SHS (k)2
Then there is a canonical equivalence

SHS (k) /SHS (k)% = (SHSl(k)>A.

p

(2) A morphism f: A — B is a p-equivalence in SHSl(k)@ (i.e. f//p is an
equivalence) if and only if L;(f) is an equivalence for all i.

More generally, a morphism f: E — F in SHSl(k) is a p-equivalence if
and only if 72 (f) is an equivalence for all n € Z.

(8) An object E € SHSl(k) lives inside the p-adic heart SHSl(k)pQj if and only
if EJfp € SHY(k)5,, E € SH5(k)_y, E = E) and mo(E) is of bounded
p-divisibility (i.e. has no map from a p-divisible object A € SHSl(k)o).

(4) If E € SHSl(k), then there are functorial short exact sequences

0 — Lomn (E) = 7h(E)) = Lamn—1(E) — 0.

(5) If f: X =Y is a p-equivalence of pointed nilpotent motivic spaces, then
7P (f) is an isomorphism for all n > 1.

The converse holds if moreover w1 (X) and 7 (Y') are abelian.



(6) Moreover, if X € Spc(k). is a pointed nilpotent motivic space, then for

every n > 2 there is a functorial short exact sequence in SHSl(k)po
0— Lomp(X) = 72(X) = Lim,—1(X) — 0.
(and there is also a similar sequence for n =1).

Proof. The p-completion functor is constructed in Lemma 37l The p-adic t-
structure is defined in Definition 213l and the derived p-completion functors
are constructed in Definition The definition of the p-completed homotopy
groups is Definition (.44l For proofs of the other statements, see:

Remark 217,
Corollary 2.27]
3) Lemmas and [2.19]

(1)
(2)
(3)
(4) Lemma 229
(5)
(6)

2

5) Propositions [5.47 and (5.52] and
6) Theorem [5.49

O

Remark 1.3. The results about the p-adic t-structure are very general: One can
associate a p-adic t-structure with the same properties to any presentable stable
oo-category which is equipped with a (right-separated) t-structure.

The situation is somewhat more complicated than the classical situation,
for the following reasons: First, as already remarked above, if we have an S*-
spectrum A € SHY 1(k)@, then (contrary to the classical situation) A} is no
longer concentrated in degrees 0 and 1, since there are no connectivity bounds on
sequential limits of connective S!-spectra. Nonetheless, we can fix this problem
by introducing the p-adic t-structure and the derived p-completion functors L;.
In this t-structure, the p-completion AQ is concentrated in degrees 0 and 1.
It follows that the derived p-completion functors vanish for all ¢ # 0,1, see
Proposition

In particular, the p-adic heart SH” l(k)p@ does not live inside the standard

heart SHSl(k)Qp. Therefore, in order for the short exact sequence [(6)] to make
sense, we cannot use the homotopy groups 7, (X 9), but need a more elaborate
construction.

Note that in the classical situation, our constructions give the same results as
before, because here the heart of the p-adic t-structure on Sp (the co-category
of spectra) actually lives inside the normal heart, and the (new) derived p-
completion functors L; agree with the classical derived p-completion functors
L;. A proof of this fact can be found in Lemma [A.22]

In order to prove the above theorem, we introduce a notion of p-completion
on a general co-topos X, and then use this in the special case of the co-topos of
Nisnevich sheaves on smooth k-schemes. In particular, we obtain the following:



Lemma 1.4. Let X be an oco-topos (or more generally any presentable co-
category). Then there is a localization functor (—)A: X — X, which inverts
p-equivalences (i.e. maps f such that (X f)/p is an equivalence).

Proof. The construction can be found in Lemma 3.7 O

Note that the short exact sequence in Theorem is unsatisfying: It
relates the p-completed homotopy groups of X to the derived p-completions of
the homotopy groups of X. But this does (a priori) not say anything about
the (p-completed) homotopy groups of X Q! In particular, note that we cannot
use that the canonical p-equivalence X — X/ induces an equivalence 75 (X) —
72 (X)) via[(5)] of Theorem [[2} since it is not clear (and probably wrong) that
X 9 is nilpotent even if X is. But we are nonetheless able to say more: By the
above lemma, we get p-completion functors in the categories of Zariski sheaves,
Nisnevich sheaves, motivic spaces and connected motivic spaces, denote them

by L., Lb.., LY and LY, .|, respectively. We can relate the different functors:

=21
Proposition 1.5. Let X € Spc(k). be a nilpotent motivic space, it is in par-
ticular connected. Then there are equivalences

r (X)=ILP

zar nis

(X) = LE

a1, >1(X)-

In particular, the p-completion of X as a Nisnevich or Zariski sheaf is again an
Al-invariant Nisnevich sheaf!

If Conjecture [5.29) is true (i.e. if the p-completion L}, (Y') is connected for
every nilpotent motivic space Y ), then we also get an equivalence LP. (X) =
12,(X).

Proof. The equivalences can be found in Theorems [(.31] and 534 O

Note that here a small problem arises: Currently we do not know whether the
p-completion of a nilpotent motivic spaces is still connected. The corresponding
fact in an oo-topos is true, see Lemmal[3.12] This introduces some complications,

but at least for L, , Ly, and L}, ., we have the following:

Theorem 1.6. Let X € Spc(k). be a nilpotent motivic space. We have equiv-
alences

m(X) = (L

zar

(X)) = (Lo (X)) = 7 (L 51 (X))

nis

for all n. In particular, we get a short exact sequence
0 — Lom,(X) = 7h (X)) = Limn—1(X) = 0,

where X, is any of LY, (X) = LY

zar nis

(X) = L 51 (X).

Proof. See Lemma [5.46] together with the above Proposition for the first
claim. For the short exact sequence, see Corollary [5.50 O

In order to be able to compute p-completions of nilpotent sheaves, we will
be using the following theorem:



Theorem 1.7. If X is locally of finite uniform homotopy dimension (see Def-
wnition [3.29, this is a mild generalization of the notion of being of homotopy
dimension < n, which is in particular satisfied by the Nisnevich and Zariski
topoi), then the p-completion of a nilpotent sheaf X € X (see Definition [A10
for the definition of nilpotence in an co-topos) can be computed on its Postnikov
tower, i.e. there is an equivalence

Xp 2 limg (< X))

Proof. This can be found in Theorem O

The above result about the Postnikov tower is extremely useful in computing
the p-completions of nilpotent sheaves: Let X € & be a nilpotent sheaf, where X’
is an co-topos locally of finite uniform homotopy dimension. Then the Postnikov
tower has a principal refinement (see Definition[AT4)), i.e. there are positive inte-
gers my,, n-truncated spaces X, 1., abelian group objects A,, € Ab(Disc(X)) in
the associated 1-topos of discrete objects for all n and all 0 < k < m,,, and fiber
sequences X, 41 Prok, Xk — K(An g+1,n+1) that refine the Postnikov tower
(in the sense that X, o = 7<,X and that the truncation map 7<p X — 7<p—1 X
can be factored as pn m, —1 90 pn,0). Now we have the following proposition:

Proposition 1.8. For every n and k we have an equivalence
A~y A A
(K1) Tzlﬁb((xn,k)p — (K(Apg,n+ 1))p).
Moreover, there is an equivalence
(K(A,n)), =197 ((E"HA)))
for every abelian group object A € Ab(Disc(X)).

Proof. See Corollary B.I8 and Proposition 320 O

The above proposition, together with Theorem [[.7 about the Postnikov
tower, allows us to compute the p-completion of nilpotent sheaves by reduc-
ing to the much easier case of the p-completion of sheaves of spectra, which is
just given by the p-adic limit F +— El’)\ = limy, E//p¥. This computational tool
will power almost all of our results.

Outline

We will start with the construction of and some basic results about the sta-
ble p-completion functor on a stable oco-category in Section We will then
construct the p-adic t-structure on a stable oco-category, which is a t-structure
which behaves exceptionally well with respect to p-completion. In particular,
we will show that this t-structure admits an analog of the fundamental short
exact sequence for the (stable) p-completion of spectra in Lemma



In Section [ we will first construct the unstable p-completion functor on an
arbitrary presentable co-category X, and then show that if X’ is moreover an
oo-topos, then this functor is very well-behaved. In particular, we prove our
fundamental computational result, that we can calculate the p-completion of a
nilpotent sheaf by reducing to its Postnikov tower; and then to the much easier
case of Eilenberg MacLane spaces, see Theorem [[.7 and Proposition

In order to show that there is a short exact sequence as in Theorem [[.2] we
will use the following diagram of right adjoints:

P(W) —— P=(W) = Shvprozar (ProZar(Smyg))

JV*

Spe(k) —£s Shvyis(Smy) ——2=—— Shy,a (Smy).

First, we will show that there is a short exact sequence for objects in P(W)
in Section 4.1l by using the classical short exact sequence on each level. Then,
we will show in Section that this also gives short exact sequences on the
nonabelian derived category Ps (W) for suitable W. We will then show in
Section L3 that if we have an embedding of co-topoi v*: X & Ps(W): v,, then
(at least in good cases), we also get a short exact sequence for objects in X. An
example of such an embedding of oo-topoi is the embedding of the Zariski topos
into the pro-Zariski topos, constructed in Appendix [Bl Thus, we get a short
exact sequence for (certain) objects in Shv,,,(Smy). Then, in Section B we will
show that the sequence on the Zariski topos actually induces a sequence for
objects in the Nisnevich topos, and then, finally, for nilpotent motivic spaces.

Note that in Shv,,,(Smy,), the short exact sequence only exists for a nilpotent
Zariski sheaf X if the following technical condition is satisfied: (L;(m,v*X))/p
must be classical (i.e. in the essential image of v*). Therefore, we will spend
some time in Section to find a geometric condition that will always imply
this technical statement: Gersten injectivity of m,(X)/p*, see Definition
If X is a motivic space, then we will deduce Gersten injectivity of m,(X)/p*
from the Gabber presentation lemma in Section

In the remainder of Section [f] we will compare the various different notions of
p-completion (we can p-complete as a (connected) motivic space, as a Nisnevich
sheaf or as a Zariski sheaf), see Proposition [[.5

Notation

We will write An for the oo-category of anima/homotopy types/spaces, and
Sp for the stable co-category of spectra. More generally, if V is a presentable
oo-category, we write Sp(V) for the stabilization of V.

Conventions

We will adhere to the following derived convention:



If D and & are stable co-categories equipped with t-structures and F': D — £
is an exact functor, we will also write F' for the composition

P’ —p L.
In contrast, we write F'Y for the functor
¥ DL ™ e

Note that in particular limits in D are calculated as lim; ¥ (=) = mo(lim; (<)),
and similar for colimits. To avoid awkward notation, if f: X — Y € DY
is a morphism, we will write ker(f) for the kernel of f in the abelian cate-
gory D (instead of e.g. fib”(f)), whereas fib(f) refers to the fiber of f in
the stable oco-category D, and similar for coker(f) and cofib(f). If n € Z
is an integer, then n induces an endomorphism n: X — X. We will write
X/n = coker(X 2 X) € DY and X /n = cofib (X UN X) €D.

Moreover, suppose that X and ) are oo-topoi, and that F: X — ) is a
functor that respects n-truncated objects for every n > 0 and finite limits (e.g.
the left adjoint or the right adjoint of a geometric morphism). Then F in-
duces a functor on the stabilizations Sp(X) — Sp(}), which we also denote
by F. Note that there is a standard t-structure on Sp(X’), and an equivalence
Ab(Disc(X)) 22 Sp(&X)”, where the left-hand side denotes the abelian group ob-
jects in the underlying 1-topos of discrete objects in X. Using this equivalence,
we will identify the homotopy object functors m, with functors

Tt X — Sp(X)O

for n > 2. Since F' commutes with finite products, it also induces a functor
Ab(Disc(X)) — Ab(Disc(Y)).
Under the above identifications, we will refer to this functor as
F: 8p(x)7 — Sp(V)”.

Note that this coincides with the earlier use of the symbol F¥ from above. If
F' is the left adjoint of a geometric morphism, it induces a t-exact functor on
the stabilization. Therefore, the functors F'¥ and F (restricted to the heart)
are equivalent, and we will usually omit the heart. However, if F' is the right
adjoint of a geometric morphism, this is usually not the case, and we will always
write F'V if we refer to the functor on the hearts. (Although, in many of our
cases, the right adjoint will actually be t-exact.)

Let (C,7) is a site and X := Shv,(C) is the associated co-topos. Suppose
that A € Sp(X)¥ = Shv,(C,Sp)”. For U € C, we will write I'(U, A) € Sp for
the value of A at U (note that this spectrum knows about the 7-cohomology of
A at U!). In contrast, I'V(U, A) = mo(T'(U, A)) are the global sections of A €
Ab(Disc(X)). Note that in particular, the equivalence Sp(&X)¥ — Ab(Disc(&X))
is realized by the functor A — I'V(—, A).



Acknowledgement

I want to thank my advisor Tom Bachmann for suggesting the topic, for an-
swering an uncountable amount of questions, and for his excellent comments on
drafts of this paper. I also want to thank Lorenzo Mantovani, Luca Passolunghi
and Timo Weif} for helpful discussions about parts of this paper.

2 Stable p-Completion

Let D be a presentable stable oo-category [Lurl7 Definition 1.1.1.9]. Suppose
that D is equipped with an accessible t-structure (D>, D<) [Lurl?, Defini-
tion 1.2.1.4 and Definition 1.4.4.12]. Suppose moreover that this t-structure is
right-separated (i.e. [,, D<, = 0). We will call this t-structure the standard t-
structure (on D). Let DY := DsoND<q be the heart of the standard t-structure.
This is an abelian category, see [Lurl7, Remark 1.2.1.12]. We write 7<,, and 7>,
for the truncation functors, and 7, : D — DY for the n-th homotopy object. We
say that an object E € D is k-connective (resp. k-coconnective or k-truncated)
for some k € Z if E € D5y, (resp. E € D<y,).

2.1 Properties of the Stable p-Completion Functor

In this section, we define the stable p-completion functor and prove some basic
properties. Most of the results are well-known, see for example [MNNT17], Section
2.2] or [Bac21l Section 2.1].

Definition 2.1. Let (—)/p be the endofunctor on D given on objects by E
cofib(E 5 E).

We say that a morphism f: E — F in D is a p-equivalence if f/p is an
equivalence. We say that an object E € D is p-complete if for all p-equivalences
F — F’ the induced map on mapping spaces Mapp (F’, E) — Mapp(F, E) is
an equivalence.

Write D]/D\ for the subcategory of p-complete objects.

Remark 2.2. If D is equipped with a symmetric monoidal structure ® that is
exact in each variable, then the endofunctor (—)/p is equivalent to the functor
— ® (S/p), where S is the unit of the symmetric monoidal structure. This
follows immediately from the assumption that the tensor product is exact in
each variable.

Lemma 2.3. The class S of p-equivalences in D s strongly saturated and of
small generation.

Proof. Using [Lur09, Proposition 5.5.4.16], it suffices to show that S = f~1(S")
for some colimit-preserving functor f and a strongly saturated class S’ of small
generation. This holds for f = (—/p) and S’ the collection of equivalences
in D. S’ is of small generation because it is the smallest saturated class of
morphisms in D, see [Lur09, Example 5.5.4.9], and therefore generated by the
empty collection. O

10



Lemma 2.4. The category DQ is presentable, and the inclusion DQ — D has
a left adjoint (—)2: D — Dy In other words, (—)Q is a localization functor.

Proof. This is an application of [Lur09, Proposition 5.5.4.15], using that the
class S of p-equivalences in D is of small generation, see Lemma 2.3 O

This localization functor is called the (stable) p-completion functor. By

abuse of notation, we will also write (—)2: D — D for the composition of the
localization functor with the inclusion. The p-completion functor has an easy
description:
;\ >~ lim,, (—/p").
Proof. Suppose that D is equipped with a symmetric monoidal structure ® that
is exact in each variable. Then this follows from the discussion before [MNN17,
Proposition 2.23].

We also give a second proof, which does not require the existence of a stably
symmetric monoidal structure: Let L,: D — D be the functor given by E
lim, (E/p™). It suffices to show that L,(FE) is p-complete for every E and
that the canonical map ag: E — L,(E) induced by the maps E — E/p" is a
p-equivalence.

Since the inclusion of p-complete objects is a right adjoint, it commutes with
limits. In particular, in order to show that lim,, F/p™ is p-complete, it suffices
to show that E//p" is p-complete for all n.

First, let f: X — Y be a p-equivalence, i.e. f/p is an equivalence. For every
n, there is a fiber sequence (in the stable category Fun(A', D))

o= fIp" — fIp" "

By induction, we deduce that if f/p is an equivalence, so is f//p™ for all n.
We now show that E/p™ is p-complete for all n. For this, let f: X — Y be
a p-equivalence. We have the following chain of natural equivalences:

Mapp(f, E/p") = Mapp ( £.fib (EE LN EE))
~ fib (Mapp( £.5E) 25 Mapp (f, EE))
= MapD (f//pnv ZE) .

Here, we use that the mapping space functor is left exact in both variables, and
that cofib(g) = fib(Xg) for every morphism g in a stable category. Thus, since
f/p™ is an equivalence by the above, we conclude that Mapy(f, E/p™) is an
equivalence. In other words, E /p™ is p-complete.

Thus, we are left to show that for every F, ag/p: E/p — (lim, E/p™)/p
is an equivalence. Indeed, we can write

(lim,, E/p")//p = lim,, ((E/p") /)
= limy, ((E/p)/p")
>~ lim,, (E/p ® SE//p)
~ F/p.

Lemma 2.5. There is a natural isomorphism of functors (—)

11



The first equivalence holds because D is stable, and thus the cofiber (—/p) is
also a (suspension of) a limit, and limits commute with limits. The last equality
holds, because in the limit, the transition maps on the left part are the identity,
and are multiplication by p on the right part. o

From now on we will use the equivalence from Lemma 2.5 without reference.
Lemma 2.6. Let f: E — F be a morphism in D. The following are equivalent:
(1) f is a p-equivalence,
(2) (f);\ is an equivalence,
(8) Mapp(f,T) is an equivalence of anima for every T € Dy,.

In particular, for any object E the unit E — EQ is a p-equivalence, and FE
is p-complete if and only if E = EQ.

Proof. This follows immediately from the fact that (—)Q is a localization functor,
and that the class of p-equivalences is strongly saturated by Lemma 2.3l See
[Lur09, Proposition 5.5.4.2 and Proposition 5.5.4.15 (4)]. O

Lemma 2.7. Let E € D be k-truncated. Then E}) is (k + 1)-truncated.

Proof. For each n, we see that E/p" = coﬁb(E i> E) = Eﬁb(E i> E)

Since D<y, is stable under limits (see [Lurl?, Corollary 1.2.1.6]), we conclude
that E//p™ € D<gy1. By the same corollary we now get that £, = lim,, (E/p")
is (k + 1)-truncated. O

Definition 2.8. Let A be an abelian category, and let A € A. We say that A
is uniquely p-divisible, if A 2> A is an isomorphism. Similarly, we say that A is
p-divisible, if coker(A £ A) = 0.

Lemma 2.9. Let f: F — FE be a p-equivalence in D such that F is k-connective
for some k. Then m, E is uniquely p-divisible for all n < k.

Proof. Since f is a p-equivalence, it induces an equivalence F/p — E//p. We

have a cofiber sequence E LESE //p, and thus a cofiber sequence F 5E—
F//p. This induces a long exact sequence on homotopy objects, which gives us

Tip1 (F)p) = mi(E) 2 mi(E) — mi(F)/p)

for all 4.

If ¢ < k—2, then the outer terms vanish (F//p is k-connective). Thus, m;(E)
is uniquely p-divisible.

Ifi=k—1, we get

(B p) —— mp_1(E) — Th-1(E) —— m—1(F/p) =0

i w

Wk(F//p) —_— 7Tk_1(F) =0

12



Commutativity of the square implies that & = 0. Thus, also m;_1(E) is uniquely
p-divisible. O

Lemma 2.10. Let E € D. Consider the following statements:

(1) E;\ =0,

(2) T (E}) =0 for all n,

(3) mn(E)/p) =0 for all n, and

(4) mn(E) is uniquely p-divisible for all n.

Then [(1] = = |(3) <= % If D>oo = (), D>n is stable under

sequential limits, then also |(2) <— . If the t-structure is moreover left-

separated, then also[(1) < [(2)}

Note that if the t-structure is left-separated, then D>o = 0 is in particular
stable under sequential limits (i.e. in this case, all four statements are equiva-
lent).

Proof. Tt is clear that (1) = (2). Moreover, if the t-structure is left-separated,
then it follows directly that (2) = (1) (note that the t-structure is assumed
to be right-separated).

We now show (2) == (3). Since E — E} is a p-equivalence, we have
E/p= E}//p. In other words, there is a cofiber sequence

A P A
Ep = Ey — Effp.

This induces the following long exact sequence on homotopy:

L T (BD) —— T (B ffp) —— mp1(E)) —L -

We conclude that 7, (E//p) = 0 for all n.
The equivalence (3) <= (4) follows immediately from the long exact

sequence associated to the fiber sequence E % E — F //p, similar to the proof
of Lemma
We are left to show that (4) = (2) if we assume that D>, is stable under

k
sequential limits. Using the cofiber sequence E 2+ E — E//p* we conclude
as above that m,(E/p¥) = 0 for all k > 1 and all n. In particular, since the
standard t-structure is right-separated, we see that E//p* € D> . But now we
conclude that B} = limy E/p* € D>o. This implies that m,(E}) = 0 for all
n. (]

Corollary 2.11. Let f: E — F be a morphism in D. Consider the following
statements:

(1) f is a p-equivalence,
(2) (fib(f)), =0,
(3) (cofib())) =0,
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(4) fib(f) has uniquely p-divisible homotopy objects,
(5) cofib(f) has uniquely p-divisible homotopy objects.

Then (1) <<= (2) < (3) = (4) < (5). If moreover the standard
t-structure is left-separated, then also (4) = (3).

Proof. The equivalence of (1) and (2) follows from the fiber sequence fib(f) —
E — F. That (2) implies (4) was proven in Lemma [ZT0 If the t-structure is
left-separated, then also (4) implies (2), again by Lemma 210l The other equiv-
alences follow because D is stable and thus there is an equivalence cofib(f) =
Yfib(f). O

Lemma 2.12. Suppose that D is equipped with a symmetric monoidal structure
® that is exact in each variable.

Let f;: E; — F; be a p-equivalence in D for i = 1,....,n. Then also
R, fi: @, Ei = Q, Fi is a p-equivalence, i.e. p-completion is compatible with
the symmetric monoidal structure in the language of [Lurl7, Definition 2.2.1.6].

Proof. Note that by [Lurl7, Example 2.2.1.7], it suffices to show that for every
p-equivalence f: E — F, and any object Z € D, also f® Z: EQ®Z - F® Z
is a p-equivalence. We thus have to show that (f ® Z)/p is an equivalence.
Since the symmetric monoidal structure is exact in each variable, we can write
(f®2))p=(f/p)® Z, which is an equivalence by assumption. O

2.2 The p-adic t-structure

The aim of this section is to define a t-structure on D which is suited for p-
completions.

Definition 2.13. For i € Z, let D%, be the full subcategory of D given by
objects B

{E € D|n;(E) uniquely p-divisible Vj < i — 1,m;_1(E) p-divisible }.

Let DL, be the right orthogonal complement of DY, , i.e. E € DY, if and
only if for all F € DY, the mapping space Map(F, E) is contractible. We
will show below in Lemma that this defines a t-structure (D% ,,D%,) on
D. We will call this t-structure the p-adic t-structure on D. Denote by 7P the
n-th homotopy object and by 72, and 72 the truncations of this t-structure.
Moreover, denote by DPY := DL N D2, C D the heart.

Remark 2.14. Note that the p-adic t-structure (D%, D%,) depends on the t-
structure (D>o, D<g). This is suppressed in our notation. Later, D will be the
stabilization of a presentable co-category, which admits a canonical t-structure,
so this slight abuse of notation will not be a problem.

In order to prove that the p-adic t-structure is a t-structure, we will need
the following lemma:

14



Lemma 2.15. Let E € D. The following are equivalent:

(‘Z) E e ng
(2) Ejfp" € D>g for all n and
(3) E[/p € Dxo.

Proof. The fiber sequence E i) E — E//p™ yields the long exact sequence

e e (B ) — mh(B) 2 e (B) = mo(E ) — -

We conclude that m(E/p™) = 0 for all k < 0 if and only if m;(E) is uniquely
p"-divisible for all K < —1 and 7_1(F) is p"-divisible. But being (uniquely)
p"-divisible is the same as being (uniquely) p-divisible. Since the standard t-
structure is right-separated by assumption, we see that m(E/p™) = 0 for all
k < 0 is equivalent to E//p"™ € D>o. O

Lemma 2.16. The pair (D%, DY) from Definition 213 defines an accessible
t-structure on D. - -

Proof. Using [Lurld, Proposition 1.4.4.11], it suffices to show that D% is pre-
sentable and closed under colimits and extensions. Note that by Lemma 215
we see that DY) = {E € D|E//p € D>q }.

We first show that DY, is presentable. Note that by assumption, the stan-
dard t-structure is accessible, i.e. D>q is presentable. Using Lemma 2T5 we
see that there is a cartesian diagram of oco-categories

Y4
Dy — Dxo

(=)/»

D D.

The inclusion D>g < D and the functor (—)/p commute with colimits (by
[Lurl?, Corollary 1.2.1.6], and since colimits commute with colimits). By as-
sumption, D and Dx( are presentable. Thus, the limit of the above diagram
can be computed in the oco-category of presentable oco-catgories Pr’ (see [Lur09,
Proposition 5.5.3.13]), and we conclude that D%, is presentable. In particular,
we see that the functor DY, < D commutes with colimits, i.e. the subcategory
DY, is closed under colimits.

~ We are left to show that DY, is closed under extensions. This follows im-
mediately from the fact that D> is closed under extensions (this is true for the
connective part of any t-structure), and that (—)/p: D — D commutes with
extensions (because it is an exact functor). O

Remark 2.17. We quickly explain why we made those choices. We will see in
Lemma [2.20] that the p-adic t-structure is not left-separated, with

ﬂ DL, ={E € D|n,(E) uniquely p-divisible for all n } .
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Note that this is exactly the kernel of the p-completion functor (—)2, hence the
left-seperation of this t-structure (i.e. the Verdier quotient D/ (1), D%,,) is given
by Dz/v\' There is another t-structure with the same property: -

Let C :={ E € D|m;(E) uniquely p-divisible ¥j < 0}. Then we could define
a t-structure by declaring the —1-coconnective objects to be the right orthog-
onal complement of C, and the connective objects to be the left orthogonal
complement of the —1-coconnective objects. (Note that C itself cannot be the
subcategory of connective objects of a t-structure since it is not closed un-
der extensions). If D = Sp is the category of spectra (or more generally the
stabilization of an co-topos locally of homotopy dimension 0), then these two
t-structures agree. But in general, this is not true: Let X be the oco-topos of
étale sheaves (of anima) on the small étale site of Spec(Q). Let up~ be the
sheaf of p-power roots of unity, i.e. ppe (Spec(k)) = {a: ek ‘ In,zP" =1 } The
associated Eilenberg-MacLane spectrum H e lies inside Sp(X)2 | (since ppeo
is p-divisible), but is only 0-connective in this second t-structure. If one views
pp as an étale version of the (ordinary) spectrum H(Z[p~!]/Z), then one would
expect this shift.

Definition 2.18. Let A be an abelian category. Let A € A. We say that A
has bounded p-divisibility if for all p-divisible B € A we have Map(B, A) = 0.

Lemma 2.19. Let E € D. Then E € DY if and only if E = 7<oE, E = E}
and mo(E) has bounded p-divisibility. B

Proof. Suppose first that E € DL . Note that D>; C D%, since the zero object

0 € DY is (uniquely) p-divisible. Thus, D<o 2 D%,. Hence, E = 7<oE. In
order to show that F is p-complete, it suffices to show that Map(A, E) = 0 for
all A with A7) = 0. So let A} = 0. Hence, by Lemma 210, 7,(A) is uniquely
p-divisible for all n. Thus, A € D%,. Thus, by definition of D% we know that
Map(A, E) = 0. For the bounded p-divisibility, suppose that B is a p-divisible
object of DV. Then B € D,. Hence, Map(B, mo(E)) = Map(B, E) = 0, where
we used that F € D<q and thus mo(E) & 750 F in the first equivalence, and that
E € DY, in the second.

For the other direction, assume that E = 7<oF, E = E; and that mo(E)
has bounded p-divisiblity. Let F' € DX,. We need to show that Map(F, E) = 0.
But by assumption on F, 750F — F is a p-equivalence (see e.g. Corollary 2T
and mo(F) is p-divisible. Thus,

Map(F, ) 2 Map(rso ., E)
= Map(mo(F), E)
= Map(mo(F), mo(E)) = 0.
The first equivalence holds because E is p-complete and the second exists be-

cause E is coconnective. The third follows because mo(F') is connective. The
last equality holds because 7o (F) has bounded p-divisibility and F € Dgl. O
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Lemma 2.20. We have

=

and

ﬂ DL, ={ E € D|m.(E) uniquely p-divisible for all n} .

In particular, we have that 78 (E) = 0 for all n if and only if 7, (E) is uniquely
p-divisible for all n.

Proof. Note that D% C D<,, by Lemma 2ZI9 Hence, (), D%, C ), P<n =0
since (D>, D<o) is rlght separated. The second statement is clear since uniquely
p-divisible abelian group objects are in particular p-divisible. For the last part,
note that 72 (FE) = 0 for all n if and only if F lives in the stable subcategory
of D generated by (), D%, and (N, D%, . But by the above, the latter is zero,
and the former consists of exactly those spectra which have uniquely p-divisible
homotopy objects. O

Corollary 2.21. Suppose that the standard t-structure is left-separated. Let
f: E — F be a morphism in D. Then f is a p-equivalence if and only if
7P (E) — w2 (F) is an isomorphism for all n.

Proof. From Corollary 2T we see that f is a p-equivalence if and only if fib(f)
has uniquely p-divisible homotopy objects. Using Lemma[2.20] this is equivalent
to fib(f) € N,, PZ,,- The long exact sequence now implies that this is the case
if and only if 72(f) is an equivalence for all n. O

Definition 2.22. For every n € Z define a functor L,,: DY — DPY via A
7P (A), i.e. the restriction of 72 to the heart.

Definition 2.23. Let A be an abelian category. Let A € A, and n € N. Denote
by A[p"] := ker(A £— A) the p"-torsion of A.

Lemma 2.24. Let A € D<g. Then m(A)) = lim? 7o (A)[p"] is of bounded
p-divisibility. Here, the transition maps in the limit are multiplication by p.

Proof. Let E = A} = lim, A/p". Note that A/p" is I-truncated, with
T (A)p™) = m(A )[p”] (This can be seen from the long exact sequence as-

sociated to the fiber sequence 4 £~ A — AJ/p™.) Since 7>1 is a right adjoint,
it commutes with limits. We now compute

m(E) =2 m(t>1E)

71 (limy, 7>1(A/p"))
w1 (limy, X(mo (A)[p"]))
mo(limy, mo (A)[p"])

= lim mo(A) "]

1R 1R

I
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In order to show that 71 (E) has bounded p-divisibility, let B € DY be p-
divisible. We need to show that Map(B, 71 (E)) = 0. By pulling out the limit
(note that lim; is the categorical limit in DV) we get

Mappo (B, m1(E)) = lim, Map po (B, m0(A)[p"]).

Thus, it suffices to show that for every n we have Map(B, mo(A)[p"]) = 0. So
fix n > 1 and a map ¢: B — mo(A)[p"]. Since p": B — B is an epimorphism
(B is p-divisible), in order to show that ¢ = 0, it suffices show that ¢ o p™ = 0.
But ¢ o p™ = p™ o ¢. Now we conclude by noting that the endomorphism

p": mo(A)[p"] — mo(A)[p™] is zero. O
Lemma 2.25. Let A € DV. If A is uniquely p-divisible, then L, A = 0 for all
n.

Proof. If A is uniquely p-divisible, then A € DY, for all k. Hence, L, A =
72 (A) = 0 for all n. - O

Proposition 2.26. Let E € D. We have the following:
(1) If E € D<o, then E) € Dgl,
(2) if E[/p € Dxo, then E;; € DY,
(3) if E € Dxo, then E; € DY, and
(4) if E € DY, then Ej € D%, NDL,.
In particular, if E € DY, then L,E =0 for all n # 0, 1.

Proof. We start with (1): We have seen in Lemma 2.7 that 74 (E7) = 0 for all
k> 1. Ej) is p-complete by definition. By Lemma [224] we get that 71 (E})) is
of bounded p-divisibility. Thus, E) € DL, by Lemma 219

We now prove (2): By Lemma I3 we sce that E7 € DY, if and only if
E;\//pGDZQ. But E;/D\//p%E//pEDZ(). a

Part (3) follows from (2), noting that E € Dx¢ implies that E/p € D>,
since D> is stable under colimits, see [Lurl7, Corollary 1.2.1.6].

Part (4) is an immediate consequence of (1) and (3). The last statement
follows immediately from (4): Corollary 2221] implies that L, E = 7P (E) =
mh(E}), thus L, (E) = 0 for all n # 0, 1. This proves the lemma. O

Lemma 2.27. Let A € DY. Then there is a canonical fiber sequence

Proof. Proposition2.26shows that A) € D% ;NDY,. Thus, using Corollary2.2T]
we conclude LoA = wf(A)) = 72(A}). Similar, we see XIL;(A) = Xy (A)) =
72,(A)). The lemma now immediately follows since we have a canonical fiber

sequence
Tgl(A;\) — AQ — TQO(AQ).
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Lemma 2.28. Let A € DY. Then (L1 A)/p € DY and there is a short ezact
sequence in DY

0= (L1 4)/p — Alp] = m((LoA)/p) = 0,
coming from the fiber sequence of Lemma [2-27
Proof. Consider the fiber sequence
S A — A = LoA
from Lemma 2271 Applying (—)/p yields the fiber sequence
S(L1A)/p — Ay o — (LoA) [ p.

Note that A} /p = A//p is concentrated in degrees 0 and 1. Using Lemma 2T
we know that L; A//p € D> for i = 0,1. Since LoA € D%, C D<o, we conclude
that (LoA)/p € D<1. Now the long exact sequence in homotopy associated to
the above fiber sequence yields that m;((ILy A)/p) = 0 for all ¢ > 1. We therefore
conclude that (IL; A)/p € DY. The long exact sequence also gives us

0— m1(2(L1A))p) = m(A)p) = m((LoA)/p) — 0.

We conclude by noting that 71 (X(L; A) /p) = mo((L14) /p) = (L1 A)/p and that
™ (A//p) = Alp. O

Lemma 2.29. Let E €D and n € Z. Then there is a short exact sequence
0 — Lom,(F) = 72 (F) = Limp—1(E) — 0
natural in E.

Proof. Note that for any spectrum F' we have the following: If F' is k-connective,
then 72(F) = 0 for all n < k (D>, C DY), and if F is k-truncated, then
m2(F)=0for alln > k+ 1 (Lemma27).

Consider the fiber sequence

TZ'n,E —FE — TgnflE.
This gives the following long exact sequence in DPY:
Tpi1(Ten1E) = w3 (T2 E) = m(E) = 7] (T<n1 E) = m_y (720 E).

Since T7<n—1E is n — l-truncated, we get that ml (7<,—1FE) = 0. Similarly,
since 7>, F is n-connective, we get that 7¥ _; (7>, F) = 0. Thus, we arrive at a
short exact sequence

0 — 72 (r5nE) = 72 (E) = 7P (1<n_1E) — 0.
Now consider the fiber sequence

Sy 1 E = T<n 1 E = T<n o F,
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which induces the following long exact sequence in DPY:
T (T<n—2E) = P (Z" 1 E) = 7P (T<n 1 E) = 12 (T<n_2F).

Again, since 7<,_oF is n — 2-truncated, the outer terms vanish, and we are

~

left with an isomorphism 7P (7<,_1E) = 72(¥" 7, 1E) =& n{(m,1E) =
Ll (ﬂ'n, 1 E) .
Similarly, we can consider the fiber sequence

TZnJrlE — TZnE — Znﬂ'n(E),
which induces the following long exact sequence in DPY:
T (Tent1E) = 7 (Ton B) = w3 (8" (E)) = 7y (T2na ).
Now 7>p+1FE is n+ 1-connective, so the outer terms vanish, and we are left with
and isomorphism 72 (7>, E) & 72 (Y"1, (E)) = 7} (7n(E)) = Lo (1, (E)).
Plugging those isomorphisms into the short exact sequence from the begin-

ning, we get a short exact sequence

0— Lomp(E) = 72 (FE) = Lim,—1(E) — 0.

O
Corollary 2.30. Let E € D and n € Z. We have equivalences b (E) =
(>, E) 2wk (rE) for allk <n—1 and alll > n.
Proof. This follows immediately from Lemma [2.29] O

Corollary 2.31. Suppose that the standard t-structure is left-separated. Let
f: E— F be amap in D. If f induces isomorphisms L;m,(E) — L7, (F) for
allm and i = 0,1, then [ is a p-equivalence.

Proof. Combine Lemma and Corollary 2271 O

2.3 Comparison Results

In this section, we will compare the p-adic t-structures on different stable
categories. For this suppose that D and £ are two presentable stable cate-
gories, satisfying the assumptions from the beginning of the section, i.e. they
both come equipped with accessible right-separated t-structures (D>, D<g) and
(€>0,E<0). We again call those t-structures the standard t-structures, in con-
trast to the p-adic t-structures.

Lemma 2.32. Let F: D — &£ be an exact functor. Then F preserves p-
equivalences.

If moreover F' commutes with sequential limits (e.g. if F' is a right adjoint
functor), then F commutes with p-completion, and in particular preserves p-
complete objects.
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Proof. Since F is exact, it commutes with coﬁb(— LN —). Thus, since F' sends

equivalences to equivalences, it follows that F' preserves p-equivalences.
Suppose now that F' commutes with sequential limits. Let X € D. Then

we compute (FX)Q > lim, (FX)/p™ = lim, F(X/p") = F(lim, X/p") =

F(X7). O

Lemma 2.33. Let F': D — £ be an exact conservative functor. Then F detects
p-equivalences, i.e. for every f: E — F in D the following holds: If F(f) is a
p-equivalence, then f is a p-equivalence.

Proof. Let f: E — F in D a morphism such that F(f) is a p-equivalence,
i.e. F(f)/p is an equivalence. Note that since F is exact, we have F(f)/p =
F(f/p). Now since F is conservative, we conclude that f/p is an equivalence,
i.e. f is a p-equivalence. O

Lemma 2.34. Let L: D — & be an exact functor which is right t-exact for the
standard t-structures. Then L is right t-exact for the p-adic t-structures. If L
has a right adjoint R, then R is left t-exact for the p-adic t-structures.

Proof. Suppose that X € DY . Lemma implies that X //p € D>¢. Since L

is exact and right t-exact for the standard t-structures, we also have LX //p =

L(X//p) € £>0. But this now implies that LX € £, again by Lemma 215
The last statement is a general fact about t-structures, see e.g. [BBD82]

Proposition 1.3.17 (iii)] (note that in the reference, cohomological indexing is
used). O

Lemma 2.35. Let L: D — & be an exact conservative functor which is t-exact
for the standard t-structures. Suppose that X € D such that LX € &L for some
n. Then X € DY .

Proof. Suppose X € D such that LX € 2 for some n. Lemma implies
that L(X/p) 2 LX)/p € E>,. Using the same lemma, it suffices to show that
X//p € D>,. Therefore, the lemma follows from the following more general
statement, that any Y € D with LY € &, already lives in D>,. So suppose
that we have such a Y € D. Then the map 7>, LY — LY is an equivalence.
By t-exactness of L for the standard t-structures, L commutes with connective
covers, i.e. LT>,Y = 75, LY. Conservativity of L implies that 7>,Y — Y is an
equivalence, i.e. Y € Dx,,. O

3 Unstable p-Completion in oco-Topoi

Let X be a presentable oo-category [Lur09, Definition 5.5.0.1]. We will have to
deal with pointed and unpointed objects. Write X, for the category of pointed
objects, i.e. the category X,, of objects under the terminal object x. The for-
getful functor X, — X has a left adjoint (—)4: X — X, given on objects by the
formula X +— X U .
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Let Sp(&X) be the stabilization of X'. See [Lurl, Section 1.4.2] for a discus-
sion of the stabilization of co-categories. We have an adjoint pair of functors

¥ X, &2 Sp(X): Q.

Write ¥5°: & — Sp(X) for the composition 3°° o (—);. Hence, this is left
adjoint to Q°°: Sp(X) — X, which forgets about the basepoint of the infinite
loop space.

There is an accessible right-separated t-structure (Sp(X).,,Sp(X).,) on
Sp(X), given by Sp(X). , = { E € Sp(X)|Q°E = x }, see Lemma [A5] We
will call this t-structure the standard t-structure on Sp(X). Therefore we can
apply the results from Section

Remark 3.1. Later in this section, we will only work in the situation where X
is an oco-topos. But since the category of motivic spaces is not an co-topos, we
have to make some definitions in this more general setting.

Later, we will reduce statements about the p-completion of motivic spaces
to the easier case of p-completion in suitable oco-topoi.

3.1 Definition of the p-Completion Functor

In this section, X will always be a presentable co-category. We will define the
unstable p-completion functor on the category X. As in the stable case, the
p-completion functor is a localization along a suitable class of p-equivalences:

Definition 3.2. Let g: X — Y be a morphism in X,. We say that ¢ is a
p-equivalence (of pointed objects) if ¥°°g is a p-equivalence.

Similarly, if g: X — Y is a morphism in X, we say that g is a p-equivalence
(of unpointed objects) if g4 : X — Y, is a p-equivalence of pointed objects, i.e.
if ¥5°g is a p-equivalence.

As the next lemma shows, the distinction between pointed and unpointed
p-equivalences does not matter:

Lemma 3.3. Let g: X — Y be a morphism in X,. Then g is a p-equivalence
of pointed objects if and only if g is a p-equivalence of the underlying unpointed
objects.

Proof. We need to prove that ¥°°g is a p-equivalence if and only if ¥%°g is a
p-equivalence.

Note that we have natural cofiber sequences in &, for every X € X: First
we have the inclusion of the basepoint 1y : * — X. This induces a morphism
Nx,+: *+ — X4. Second, we have the counit cx: X; — X. Both constructions

are natural in &X,. We claim that * REIEN X, 25 X is a cofiber sequence.
Consider the following diagram:

[
* * 4 *

[ e

X — X, 25 X,
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The left horizontal arrows are the natural inclusions. The left square is clearly
cocartesian. Since this is a retract diagram, the outer rectangle is also cocarte-
sian. Thus, also the right square is cocartesian, see [Lur09, Lemma 4.4.2.1]. In
other words, the above sequence is a cofiber sequence.

Since the sequence is natural in X,, we get a morphism of cofiber sequences
in X,:

*+—>X+*>X

H Jf+ jf

Since ¥*° and (—)/p commute with colimits (as 3°° is left adjoint to Q2°), and
since ¥ = X o (—)4, we get a morphism of cofiber sequences

N2k fp 2 N X fp 2 BOX p
H lE‘”f//p lEmf//p
N2 % fp 2 2RV p 2 BV )p.

Taking cofibers of the vertical maps, we get a cofiber sequence
0 — cofib(S° f /p) — cofib(E> f //p).

Hence, cofib(2%° f/p) = cofib(E>° f /p). Thus, cofib(E f/p) = 0 if and only if
cofib(¥%° f //p) = 0. This proves that ¥3° f is a p-equivalence if and only if ¥ f
is a p-equivalence. O

Definition 3.4. We say that X € X is (unpointed) p-complete if every p-
equivalence of unpointed objects f: Y — Y’ induces on mapping spaces an
equivalence Mapy (Y’, X) — Mapy (Y, X). Denote by X the full subcategory
of p-complete objects.

Similarly, we say that a pointed object X € X, is (pointed) p-complete
if every p-equivalence of pointed objects f: Y — Y’ induces an equivalence
Mapy, (Y, X) = Mapy, (Y, X). We write X,/ for the full subcategory of p-
complete objects.

Again, this distinction between pointed and unpointed objects does not mat-
ter:

Lemma 3.5. Let X € X,. Then X is pointed p-complete if and only if the
underlying unpointed object is unpointed p-complete.

Proof. Suppose that the underlying unpointed object is unpointed p-complete.
Let f: Z — Z' be a p-equivalence of pointed objects. Consider the following
commutative cube:
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Mapy (Z, X) Mapy (+, X).

Here, the vertical maps * — Mapy (*, X) select the map * — X given by the
pointing of X. The horizontal map Map,(Z, X) — Map (*, X) is given by
precomposition with the basepoint * — Z, and similarly for Z’. Note that
the front and back squares are cartesian by definition of X,. Thus, since
f*: Map,(Z',X) — Map,(Z,X) is an equivalence by assumption, also the
map f*: Mapy (Z',X) = Mapy (Z,X) is an equivalence. This proves that X
is pointed p-complete.

For the other direction, we have to show that a p-equivalence of unpointed
objects g: Z — Z' induces an equivalence Map, (Z’, X) — Map,(Z,X). By
definition, g is a p-equivalence of pointed objects. This implies that the induced
map Mapy, (Z),,X) = Mapy, (Z4,X) is an equivalence, since X was assumed
to be pointed p-complete. But this gives

MapX(Z/aX) = Map/’\’* (ZZHX) = MapX* (ZJrvX) = MapX(ZaX)v

using that (—)y is left adjoint to the forgetful functor. In other words, X is
unpointed p-complete. O

In view of the last lemmas, being a p-equivalences or being p-complete is
independent of a choice of basepoint. Below, we will use this without reference.

Lemma 3.6. The collection of p-equivalences in X (resp. in X.) is strongly
saturated and of small generation.

Proof. Write S for the class of p-equivalences in X. Using [Lur09, Proposition
5.5.4.16], it suffices to show that S = f~1(S’) for some colimit-preserving functor
f and a strongly saturated class S’ of small generation. Then let f = X (—),
and S’ be the collection of p-equivalences in Sp(X). S’ is strongly saturated
and of small generation by Lemma 23]

In the pointed case, on argues in the same way, using the functor f =
. O

Lemma 3.7. The inclusion X, — X has a left adjoint (—)2: X — X). We
call this functor the p-completion functor.
Similarly, the inclusion X*Q — X, has a left adjoint, which we also denote

by (=)
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Proof. This is an application of [Lur09, Proposition 5.5.4.15], using Lemma 3.6l
O

As in the stable case, the theory of Bousfield localizations gives us the fol-
lowing characterization of p-equivalences:

Lemma 3.8. Let f: X — Y be a morphism in X (resp. X.). Then f is a
p-equivalence if and only if fl/)\ is an equivalence.

Proof. This follows from [Lur09, Proposition 5.5.4.15 (4)], where we use that
the class of p-equivalences is strongly saturated, see Lemma O

Lemma 3.9. Let I be a small co-category and (X;); an I-indexed diagram in
X. Suppose that X; is p-complete for each i € I. Then lim;c; X; is p-complete.
In particular, x € X is p-complete.

The same is true for limits in Xy.

Proof. The inclusion X 9 — X is a right adjoint by Lemma 3.7 hence it com-
mutes with limits. The final object * is the limit over the empty diagram, hence
it is p-complete.

For the pointed case, we can use the same proof, or note that X, is pre-
sentable by [Lur09, Proposition 5.5.3.11]. Thus, we can apply the above result
to the presentable co-category Xi. O

Corollary 3.10. Let X € X, be p-complete. Then QX is p-complete.

Proof. QX is the limit of the diagram * — X < *. Since X is p-complete
by assumption, and * is p-complete by Lemma [3.9 we conclude that QX is
p-complete as a limit of p-complete objects (again by Lemma [3.9]). O

Lemma 3.11. Let ); be a collection of presentable co-categories. Suppose
sf: X 2 Vit i are adjunctions. Let f: X — X' be a morphism in X. If
f is a p-equivalence, so is s} f for every i. The converse holds if the s} form
a conservative family of functors, and all of the s} are left-exact (i.e. commute
with finite limits).

In particular, if X is an co-topos with enough points, then f is a p-equivalence
if and only if it is a p-equivalence on stalks.

Proof. Using Lemma [AT] we see that the s} - s; , induce exact functors on the
stabilizations, such that the following diagram of functors commutes:

Sp(X) — Sp())

S

Si
X, — s Wi

If the s; are left-exact, then the functors on stabilizations are jointly conservative
if the corresponding family of functors on X is, see Lemma [A3]l The lemma
follows from Lemmas 2.32] and 2.33] O
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3.2 Basic Properties of Unstable p-Completion

From now on, we will assume that X is actually an oo-topos [Lur09, Defini-
tion 6.1.0.4], it is in particular presentable [Lur(9, Theorem 6.1.0.6]. If X is
hypercomplete (see the discussion directly before [Lur09, Remark 6.5.2.11]),
then the standard t-structure is left-separated: If E € Sp(X) is oo-connective,
then Q°¥"™FE is oco-connective for every n. By hypercompleteness, we conclude
QX¥"E = % for all n. But this implies that £ = 0, in other words, the t-
structure is left-separated.

Write Disc(&X) for the category of discrete objects in X, i.e. the essential
image of the truncation functor 7<p: X — A&. This is an ordinary 1-topos.
Write Ab(Disc(X)) for the category of abelian group objects in Disc(X'). Note
that there is an equivalence Sp(X )O >~ Ab(Disc(X)) from the heart of the t-
structure to the category of abelian group objects in X, see [Lur18al, Proposition
1.3.2.7 (4)]. We will identify these two categories. In particular, for n > 2 we
will regard the homotopy object functors m,: X — Ab(Disc(X)) as functors
Tt X — Sp(X)Q?.

There is a symmetric monoidal structure ® on Sp(X), see [Lurl8al Proposi-
tion 1.3.4.6]. Moreover, ® is exact (and moreover cocontinuous) in each variable.
Note that X5 admits the structure of a symmetric monoidal functor from X
with the cartesian structure to Sp(X) with ®, see again [Lurl8al, Proposition
1.3.4.6].

Lemma 3.12. Let f: X =Y be a p-equivalence in X. Then mo(f): mo(X) —
mo(Y) is an equivalence.

Proof. Consider the following diagram:

X Sp(X) — = Sp(X)+,

J”“ [rso

Disc(X) s Ab(Disc(X)) —=— Sp(x)°,
where Z[—] is the left adjoint to the forgetful functor Ab(Disc(X’)) — Disc(X).
This functor exists since all categories are presentable, and the forgetful functor
commutes with limits and filtered colimits. The diagram commutes: We can see
this by uniqueness of adjoints: Note that Z[mo(—)] is left adjoint to the forgetful
functor Ab(Disc(X)) — X, and 7<o7>0XY is left adjoint to Q>: Sp(X)” — x
(note that X9 actually factors over Sp(X).,). But these two right adjoint
functors agree under the identification Ab(Disc(X)) = Sp(X)?.
We can enlarge the diagram to the following:

»ee _
X — s Sp(X)sy 28 Sp(),

lﬂo [ [reo

Disc(X) ﬂ Sp(X)o % Sp(é\,’)@7
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Here, (—)/p is the functor given by X — coker(X 2 X). We have seen above
that the left square commutes. The commutativity of the right hand side can
be easily seen from the long exact sequence.

Since f is a p-equivalence, (35°f)/p is an equivalence. This implies that
Z[mo(f)]/p is an isomorphism. Note that the functor (Z[—])/p can be identified
with F,[—]. Here, F),[—] is the left adjoint to the forgetful functor from p-torsion
abelian group objects (i.e. sheaves of IF,-vectorspaces) in Disc(X) to Disc(X).
Note that this functor is conservative, see Proposition This implies that
mo(f): mo(X) — mo(Y) is an isomorphism. O

Lemma 3.13. Let D € X a discrete space. Then D is p-complete.

Proof. We need to show that Map (Y, D) — Map(X, D) is an equivalence for all
p-equivalences f: X — Y. But since D is discrete, Map(Y, D) = Map(mo(Y), D)
and Map(X, D) = Map(no(X), D). Thus, it suffices to show that mo(X) —
mo(Y) is an equivalence, which was proven in Lemma O

Corollary 3.14. Let X € X, be p-complete. Then 151X is p-complete.

Proof. There is a fiber sequence 751X — X — 7<0X. But X is p-complete
by assumption, and 7<¢X is p-complete because it is discrete, see Lemma [3.13]
Thus, 751X is p-complete as a limit of p-complete objects, see Lemma B9 O

Lemma 3.15. Let f;: X; — Y, be p-equivalences in X fori=1,...,n. Then
IL fi: I, Xi = L, Yi is a p-equivalence, and hence (][], Xi);\ =TI, Xip-

Proof. We need to show that X°(]], fi) = &®,(Xfi) is a p-equivalence of
spectra. This follows immediately from Lemma For the last point, it
suffices to note that the canonical maps X; — Xig are p-equivalences, and that
IL Xi;;\ is p-complete as a limit of p-complete objects, see Lemma o

3.3 Completions via Postnikov-towers

Suppose from now on that X has enough points, see [Lur09, Remark 6.5.4.7].
In particular, X' is hypercomplete (again [Lur09, Remark 6.5.4.7]).

Lemma 3.16. Let f: E — F be a p-equivalence in Sp(X), with E and F
1-connective. Then Q°f: QFE — QX F is a p-equivalence.

Proof. Since X has enough points and Q2° commutes with points (see Lemmal[A.3]),
this statement can be checked on stalks, see Lemma 311l Thus, the lemma fol-
lows from the corresponding statement about anima, see Lemma [A.27] o

Lemma 3.17. Let E € Sp(X) such that E is k-connective for some k > 1. Then
QX E — Q°7>k(Ep) is a p-equivalence. Moreover, (Q;‘OE);\ = OX7>1(E)).

Proof. By the last Lemma [B.16, it is enough to show that E — TZkE;\ is a
p-equivalence. But F — EQ is a p-quivalence, and since F is k-connective,
we conclude that 7, (E7)) is uniquely p-divisible for all n < k, see Lemma
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Thus, T<]€E;)\ has uniquely p-divisible homotopy objects, and it follows that
>k E) — Ej is a p-equivalence, see Corollary ZTIl Since E — E; is a p-
equivalence, we conclude by 2-out-of-3 (the class of p-equivalences is strongly
saturated by Lemma [3.6]).

For the last part, note that QX FE — Qi:orzl(EQ) is a p-equivalence by the
first part(since a k-connective spectrum is in particular 1-connective). Thus, it
suffices to show that QE:OTzl(EQ) is p-complete. But we have an equivalence
Q°7>1(E)) =2 75102 (E)). Since Q2° preserves p-complete objects (as a right
adjoint to X°°, which preserves p-equivalences), we conclude by Corollary B.14

O

Corollary 3.18. Let K = K(A,n) be an Filenberg-MacLane object in X, with
n>1and A € Sp(X)°. Then K 2 Qr>1((S"A)]) = m1Q2((S"A))).
In particular, K7 is connected and n 4 1-truncated, and m;(K})) is abelian and
uniquely p-divisible for all 1 <1 < n.

Proof. Note that K = Q¥X"A. Thus, the result follows immediately from
Lemmas 2.7] and [3.17 O

In Appendix (in particular in Definition [A10), we will define what a
nilpotent object X € A, is. Nilpotent objects have the property, that their
Postnikov tower can be built by repeatedly building in an Eilenberg-MacLane
space K(A,n), see Definition [A-14] and Lemma [A.T5] This allows one to prove
statements about nilpotent objects by induction over the (refined) Postnikov
tower, and from the corresponding statement about Eilenberg-MacLane objects.

Proposition 3.19. Let f: X — Y € X, be a morphism of pointed nilpotent
spaces, such that X} and Y are also nilpotent. Then

A A
(reafib(X L)) = rosfib (Xg EEN Yg>.
P
Proof. The right-hand side is p-complete as the connected cover of a limit of
p-complete spaces, see Corollary B.I4l Thus, it suffices to show that the map
7>1fib(f) — 7>1fib (fﬁ) is a p-equivalence. This can be checked on stalks, see
Lemma [3T1l Since stalks preserve connected covers, nilpotent spaces, fibers
and p-equivalences, this immediately follows from Lemma [A.20] applied to the
following diagram of fiber sequences of pointed anima (where s is a point of X))

s*ib(f) = fib(s* f) s*X s*Y

l | |

s*ﬁb(fg) = ﬁb(s*(fg)) N s*(XI/)\) N s"‘(YI/,\)7

where the middle and right vertical maps are p-equivalences. O
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Proposition 3.20. Let X € X, be nilpotent and choose a principal refinement
of the Postnikov tower as in Lemmal[d.13 Then for alln >1 and all 1 <k <
My, (Xn,k);\ 1s nilpotent and there is an equivalence

(Xni)p & ro1fib((Xok 1)) = K(Aupn+1)p).

Proof. We prove the lemma by induction on n and k, note that X, 0 =2 Xp,_1 s, .
Also note that X ¢ =% = *Q = (Xl,o)ﬁ is nilpotent.
X, 1 is connected and fits into a fiber sequence of pointed spaces

Xk = Xpk—1— K(Amk,n + 1).

K (A k,n+1) is nilpotent by Lemma [A1T]and (Xn,kq);\ is nilpotent by induc-
tion. Moreover, by Corollary there is an equivalence (K (A, k,n + 1))2 =
Q2 (1>1 (E"‘HA",;C);\), which is thus also nilpotent by Lemma [A.11l We con-

clude by PropositionB.I9that (Xn)k);\ o TZlﬁb((Xn)k_l)z/)\ — K(Apg,n+ 1)2).

Note that (X, x)” is now nilpotent as the connected cover of a fiber of nilpotent
spaces, see Lemma, [A.12) O

Proposition 3.21. Let X € X, be nilpotent and n-truncated for some n € Z.
Then X is (n + 1)-truncated.

Proof. Choose a principal refinement X, ; of the Postnikov tower, which is
possible by Lemma [A.TAl Since X is n-truncated, we see that X = X,, o. We
proceed by induction on m and k as in the proof of Proposition[3.201 Note that

(Xl,o);\ = (*)2 = % is clearly (n + 1)-truncated. So suppose that 1 < m < n

and 1 < k < m,, and that (Xm,k_l);\ is (n+ 1)-truncated. Now we have a fiber
sequence

(Xm’k);\ =~ TZlﬁb((Xm,k:—l);\ — K(Am7k;, m + 1);\)

from Proposition Since (n 4 1)-truncated objects are closed under limits
(see [Lur09, Proposition 5.5.6.5]), we conclude from the induction hypothesis
and Corollary that (XmJC)Q is (n + 1)-truncated. If m = n, then the

Postnikov tower stabilizes, and we conclude that X = (Xn10)$ = (Xn-1.m, );\
is (n + 1)-truncated. O

Suppose now that X = Shv(T) is the category of hypercomplete sheaves on
T where T is a Grothendieck site.

Definition 3.22. We say that X is locally of finite uniform homotopy dimension
if there is

e a conservative family of points S of X,

e for every s € S a pro-object Zs in T such that s*F = colimyez, F'(U) for
every '€ X, and
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e a function htpydim: & — N,

such that for all s € S every object U € Z, has homotopy dimension htpydim(s),
ie. if F € X is k-connective, then F(U) is (k-htpydim(s))-connective.

Suppose from now on that X is locally of finite uniform homotopy dimension,
and choose S, Zs and htpydim as in Definition In the rest of this section
we show that then p-completion of nilpotent spaces can be computed on the
Postnikov tower.

Lemma 3.23. Let s € S, U € Z; and E € Sp(X). Suppose that E is m-
connective. Then E;(U) is (m-htpydim(s)-1)-connective.

Proof. We may assume m = 0. Since E/p™ = cofib (E Ll E) is also connec-

tive, it suffices to prove the more general fact that a sequential limit F' = lim,, F;,
of connective spectra F,, has the property that (lim,, F},)(U) is (-htpydim(s)-1)-
connective for all U € Z,. By assumption, F,(U) is (-htpydim(s))-connective
for all n. But then (lim,, F,)(U) = lim,, F,,(U) is (-htpydim(s)-1)-connective as
a sequential limit of (-htpydim(s))-connective spectra (see e.g. [MP11] Proposi-
tion 2.2.9] for the corresponding fact about anima, then shift the F;, such that
they are (htpydim(s) + )-connective for some ! > 1, and use that Q2° commutes
with limits, and with homotopy objects in non-negative degrees). O

Lemma 3.24. Let X be an N-indexed inverse system of connected anima.
Suppose that for all n > 0, there exists a ky, > 0 such that m,(Xg) = mp(Xk, )
for all k > k. Then 7, (limy Xj) = limy QQ7Tn(X;€) > 1, (Xg,) for all n.

Proof. See e.g. [MP11, Proposition 2.2.9]. Note that the lim! -term vanishes
because the homotopy groups get eventually constant, and hence satisfy the
Mittag-Lefler property. The last equivalence holds because the limit is eventu-
ally constant. U

Lemma 3.25. Let Xj be an N-indezed inverse system of connected objects in
X... Suppose that for all n,d > 0 there exists a kq,n > 0 such that 7w, (X, (U)) =
T (Xkpepyaimeer .o (U)) for all s € S, k > kppydim(s),n and U € L. Then
s*limg Xi = limg, s* Xy, for all point s € S.

Proof. Fix a point s € S. Note that for k > knipydim(s),n and n > 0 we have

WHS*X/C = C[})él:gl T‘—H(XIC(U)) = (%Joéj%nﬂ-n(thtpydim(s),n (U)) = ﬂ-ns*'thtpydinl(s),n'

s

Lemma 324 implies (use k, = Entpydim(s),n) that for every n and U € T, we
have isomorphisms

Tn, (hmk Xk(U)) =Ty ('thtpydin](s),n (U))

Tn, (limk S*Xk) = T, (S*thtpydim(s),n)'
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We now compute

1

wn(s*limk Xk) S*ﬂ'n(limk X;g)

1%

COthGIS Tn (hmk Xk (U))

COthEZs Tn (thtpydim(s),n (U))

Il

ﬂ-n(s*—thtpydiFﬂ(S)’n)

mn (limy $* Xy).

1%

Since n was arbitrary, we conclude that s*limy X = limg s* Xy, using White-
head’s theorem. O

Lemma 3.26. Let X € X, be nilpotent, s € S be a point and n € N. De-
fine kntpydim(s),;n = 1 + htpydim(s) + 2. Then for all U € I, we have that
Wn((TSkX);\(U)) is independent of k for k > Kytpydim(s),n-

Proof. Fix n € N and U € Z;. We proceed by induction on k, the case
k = Knpydim(s),n holds tautologically. Using Lemma [AT5, we find a princi-

pal refinement of the Postnikov tower. For every 1 < [ < my, there is an
equivalence

(X)) =2 Tzlﬁb((XkJ_l)g — (K (A, ke + 1))2),

see PropositionB20l Thus, it is enough to show that (K (A, k + 1))2(U) isn+
2-connective. Using Corollary BI8 it suffices to prove that (Ek“AkJ):(U) is
n+2-connective. Note that the connectivity of $*¥+1 Ay ; is at least Fntpydim(s),nt+
1 = n + htpydim(s) + 3. Using Lemma [B:23] we conclude that the connectivity
of (Ek+lAk7[);\(U) is at least n + htpydim(s) + 3 — htpydim(s) — 1 =n+2. O

Theorem 3.27. Let X € X, be nilpotent. Then Xﬁ = limy, (TSkX)Q.

Proof. The right-hand side is p-complete because it is a limit of p-complete
objects. Hence, it suffices to show that X — limy (1< X )2 is a p-equivalence.
This can be checked on stalks. So let s € S be a point, we need to show that
s* X — s*limy (TSkX);\ is a p-equivalence. Using Lemma [3.25] and Lemma [3.26]
we conclude that s*limy (TSkX)Q = limy, s*((TSkX)Q). The left-hand side is
s* X = limy 7<fs* X =2 limy, s¥7<; X, using that An is Postnikov-complete and
that s* commutes with truncations, see [Lur09, Proposition 5.5.6.28]. Note that

§* 1< X = s* (1< X )2) is a p-equivalence for each k. Hence, the result follows
from Lemma [A31] O

4 Completions via Embeddings

4.1 Completions of Presheaves

Let C be a small co-category. For every oo-category D, denote by P(C,D) =
Fun(C°P, D) the category of presheaves with values in D. Denote by P(C) =
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P(C, An) the category of presheaves (of anima) on C. Recall that there is a
canonical equivalence of categories Sp(P(C)) = P(C,Sp), see [Lurl7, Remark
1.4.2.9].

Lemma 4.1. P(C) is locally of homotopy dimension 0, and thus in particular
of cohomological dimension 0. In particular, if F € 'P(C,Sp)o and U € C,
then TV (U, F) 2 T(U, F) (i.e. there is no sheaf cohomology on presheaf topoi).
Therefore, we will just write F(U) for the abelian group T'V (U, F).

Moreover, P(C) is Postnikov-complete.

Proof. This follows from [Lur09, Example 7.2.1.9, Corollary 7.2.2.30 and Propo-
sition 7.2.1.10]. O

Proposition 4.2. Let f: X — Y € P(C) be a morphism of presheaves. Then
[ is a p-equivalence if and only if f(U): X(U) — Y(U) is a p-equivalence for
all U € C. Moreover, X is p-complete if and only if X (U) is p-complete for all
U €C. Thus, we have X)(U) = (X(U)), for all U € C.

Proof. By definition, f is a p-equivalence if and only if ¥°(f)/p is an equiv-
alence. Using the equivalence Sp(P(C)) = P(C,Sp), we see that this can be
checked on sections.

For the second point, suppose first that X is p-complete. Let U € C an
arbitrary object. Let A — A’ be a p-equivalence of pointed anima. Denote
by ca and ca/ the presheaves on C given by juy ® A and jy ® A’, respectively
(where jiy denotes the Yoneda embedding of U), i.e. ¢4 is the presheaf such that
ca(V) = ju(V) x A = Ubiom(v,0)A for all V', and similar for ca-. By the above,
cA — car is a p-equivalence. Thus, we get a chain of equivalences

Map(4’, X (U)) = Map(4’, Map(ju, X))
>~ Map(car, X)
= Map(ca, X)
= Map (4, Map(ju, X))
= Map(4, X (U)),

—~ o~~~

where the first and last equivalences follow from the Yoneda lemma, the second
and fourth equivalences follow because ® exhibits P(C) as tensored over An
(note that An is the tensor unit of the Lurie tensor product of presentable oo-
categories, see [Lurl7, Example 4.8.1.20], and hence P(C) is a module over An),
and the middle map is an equivalence because X is p-complete. Thus, since
A — A’ was arbitrary, we conclude that X (U) is p-complete.

Suppose now that X (U) is p-complete for all U € C. We need to show
that the p-equivalence X — X 1/0\ is an equivalence. Note that for every U,
X(U) = X, (U) is a p-equivalence. But since X, is p-complete, we have already
seen that X Q(U ) is p-complete. Since X (U) is p-complete by assumption, we
conclude that X (U) — X, (U) is an equivalence.

For the last point, let F' be the presheaf (—)2 o X. Then by the above, the
canonical morphism X — F'is a p-equivalence, and F' is p-complete. This shows
that F'is the p-completion of X. o
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Lemma 4.3. Let F' € P(C) be a presheaf. If F is n-connective, then Fﬁ 18
n-connective.

Proof. Since connectivity and p-completions can be computed on sections (see
Proposition for the statement about p-completions), the result follows from
the analogous result in the category of anima, see Lemma [A-T8 O

Recall the p-adic t-structure from Definition 2.13

Lemma 4.4. Let U € C be an object. Then the functor evy: P(C,Sp) — Sp
(given by precomposition with the functor A° — C,* +— U) is t-exact for the
standard t-structures and t-exact for the p-adic t-structures.

Moreover, a presheaf of spectra E € P(C,Sp) is connective or coconnective
for the standard t-structure (resp. the p-adic t-structure) if and only if evy (F)
is connective or coconnective for the standard t-structure on Sp (resp. the p-adic
t-structure on Sp) for all U € C.

Proof. The claim about the standard t-structures follows immediately from the
fact that €22° is computed on section, and that the evy are jointly conservative.
Thus, evy is also right t-exact for the p-adic t-structures by Lemma 2.34]
(applied to L = evy). The last part about connective objects follows from
Lemma
So let E € P(C,Sp). We need to show that E € P(C,Sp)%, if and only if
E(U) € Sp?,, for all U. By Lemma ZT9 it thus suffices to show that

(1) E =71<oF if and only if E(U) = (1<oE)(U) for all U,
)

(2) m(E) has bounded p-divisibility if and only if mo(E)(U) has bounded
p-divisiblity for all U and

(3) E is p-complete if and only if E(U) is p-complete for all U.

the first point follows because everything can be computed on sections. The
third point is Proposition [£.2]

For the second point, assume first that mo(E)(U) has bounded p-divisibility
for all U. Let B € P(C,Sp)o be p-divisible. Then B(U) is p-divisible for all
U. In particular, Map(B,m(E)) C [[, Map(B(U),m(E)(U)) = 0. On the
other hand, suppose that 7(E) has bounded p-divisibility, and suppose that
U € C. We have to show that m(E)(U) has bounded p-divisibility. So let
B e Sp” = Ab be p-divisible. As in the proof of Proposition ©2 let ¢g be the
presheaf jiy ® B. Then we have Map (B, mo(E)(U)) = Map(cp, mo(FE)). Since cp
is clearly p-divisible, the right mapping space is 0. Thus, mo(F)(U) has bounded
p-divisibility. O
Lemma 4.5. Let E € P(C,Sp) be a presheaf of spectra. Then there are natural
equivalences (2 (E))(U) = 72 (E(U)) for all U € C. In particular, 7P (E) €
P(C,5p)".

IfA e P(C, Sp)o be a presheaf of abelian groups, then there are natural equiv-
alences (L; A)(U) = Li(A(U)) for all U € C. In particular, L;A € P(C,Sp)”.
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Proof. The second part is a special case of the first (note that L; A = 77 A).
The lemma follows from t-exactness of the evaluation functors for the p-adic

t-structures, see Lemma@dl For the last statement, note that 72 (E(U)) € Sp”

by Lemma O

In presheaf categories, the p-adic heart is particularly simple: it lives inside
the normal heart, and consists exactly of the p-complete objects therein:

Lemma 4.6. We have 'P(C,Sp)po C P(C,Sp)o, consisting exactly of the p-
complete objects in the standard heart.
In particular, for every p-complete E € P(C,Sp), we have m,(E) = 7k (E).

Proof. The inclusion is an immediate consequence of Lemma L5l Suppose that
E € P(C,Sp)” is p-complete. We now note that by Lemma [A22 E(U) =
mo(E(U)) 2 7 (E(U)) for all U (note that E(U) is p-complete since evaluation
commutes with limits), and thus 7/ (E) = E, again by Lemma O

Definition 4.7. Let G € Grp(Disc(P(C))) be a nilpotent presheaf of groups
(i.e. the conjugation action of G on itself is nilpotent, see Definition [A.8). We
define

LlG = 7TH_1((BG);\)

for i > 0.

Remark 4.8. Since the p-completion of a 1-truncated nilpotent object is 2-
truncated (see Proposition B.21]), we see that L;G = 0 for all ¢ > 2.

Lemma 4.9. Let A € P(C,Sp)” = Ab(Disc(P(C))). Denote by G the un-
derlying nilpotent presheaf of groups (i.e. we forget that A is abelian). Then
L;A2L,G for alli> 0.

Proof. Note first that G is actually nilpotent, see Lemma[A.0l Let U € C. We
have the following chain of natural equivalences

Here, the first equivalence is Lemma .5, the second is Lemma [A:24] the third
and fifth equivalences hold by definition and the fourth equivalence exists be-
cause homotopy groups, Eilenberg-MacLane objects and p-completions can be

computed on sections (see Proposition for the claim about p-completions).
O
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Proposition 4.10. Let F € P(C), be a pointed nilpotent presheaf. Then for

every n > 2 there exists a canonical short exact sequence in 'P(C,Sp)o (or a
short exact sequence in Grp(Disc(P(C))) if n=1)

0 = Lomn (F) = mp(F))) = Lymp_1(F) — 0,

where we use Definition [{.7 for L;m1(X). Note that this distinction does not
matter if m1(X) is abelian, see Lemma[{.9 Here we define Limo(F) == 0, since
F is connected.

Proof. By Lemma [A.25] for every U there are functorial short exact sequences
0 = Lomn(F(U)) = mn(F(U)p) = Lamn 1 (F(U)) = 0.

But by Proposition and Lemma (4.5 this is equivalently a short exact se-
quence

0 = (Lomn (F))(U) = (mn (Fp))(U) = (Lamn—1(F))(U) — 0
for every U € C. These sequences thus give

0 = Lomn (F) = mo(F)) = Lam,—1(F) — 0.

4.2 Completions in the Nonabelian Derived Category

Let C be an (essentially) small category with finite coproducts. Recall that
Px(C) C P(C) is the full subcategory of presheaves that transform finite coprod-
ucts into finite products. It is the category freely generated by C under sifted
colimits. Write ¢: Px(C) — P(C) for the inclusion, and Ly;: P(C) — Px(C) for
the left adjoint.

Definition 4.11. Recall from [BHI7, Definition 2.3] that a category is called
extensive if it admits finite coproducts, coproducts are disjoint (i.e. for objects
X,Y € C, the pullback X x x ;v Y exists and is an initial object), and finite
coproduct decompositions are stable under pullbacks.

Lemma 4.12. Suppose that C is extensive. Then Px(C) = Shv(C), where
we write U for the Grothendieck topology on C generated by covers of the form
{U; = Ulier with I a finite set such that L;U; — U is an equivalence. In
particular, Ps(C) is a topos and Ly, is left exact.

Proof. This is [BH17, Lemma 2.4]. O

Suppose from now on that C is extensive, so that Px(C) is a topos, and Ly
is the left adjoint of a geometric morphism Px(C) — P(C).

Lemma 4.13. Px(C) is Postnikov-complete.
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Proof. See [BH1T, Lemma 2.6]. O
Lemma 4.14. We have a canonical equivalence Sp(Ps(C)) = Px(C, Sp).
Proof. This is proven in [Lurl8b, Remark 1.2]. O

Lemma 4.15. Let X € Px(C), be a pointed sheaf. Then for every U € C and
n >0 we have m,(X)(U) = m, (X (U)).

Proof. Tt suffices to show that the homotopy presheaf U — 7, (X (U)) is actually
a sheaf. This is immediate since homotopy groups of anima preserve finite
products. O

Lemma 4.16. Let G € Grp(Px(C)) be a sheaf of groups. Then the classifying
space can be computed on sections, i.e. for every U € C we have BG(U) =
B(G(U)).

Proof. Using Lemma [£T5] it suffices to show that the classifying presheaf U
B(G(U)) is actually a sheaf. This is clear since the classifying space of a product
of two groups is the product of the classifying spaces. O

Proposition 4.17. A morphism f: F — G in Px(C) is a p-equivalence (in
Px(C)) if and only if L(f) is a p-equivalence in P(C).

Proof. One direction is immediate: If ¢f is a p-equivalence, so is f = Lx(cf).
For this, note that Ly, is the left adjoint of a geometric morphism P(C) = Px(C),
and use Lemma [3.T11

So suppose that f is a p-equivalence. Write Modp, 4 for the category of
graded [F,-vectorspaces, and

CoAlg(Modg, g ) := CAlg(Modg, g°")""

for the category of cocommutative graded coalgebras in Fj,-vectorspaces. Note
that the categorical product of coalgebras is given by the tensor-product of the
underlying graded IF-vectorspaces, i.e. the forgetful functor

U: CoAlg(Modg, ) = CAlg(Modg, ") — (Modr, &°")” = Modg,

is symmetric monoidal where we equip CoAlg(Modr, ¢:) with the categorical
product, and Modp, ¢ with the tensor product of graded IF,-vectorspaces. Note
that for every F' € P(C), the presheaf H,(F(—),F,): C°® — Modp, 4 can be
promoted to a presheaf of cocommutative graded coalgebras in F,-vectorspaces
(see e.g. [tD08] 19.6.2]). By abuse of notation, write again H..(F(—),F,): C°? —
CoAlg(Modr, g) for this presheaf. If F' € Px(C) is in the nonabelian derived
category, then also H,(F(—),F,) € Pg(C, CoAlg(Modg, g )): This is clear since
the product of anima yields the tensor product on homology (by the Kiinneth
formula, using that we take the homology with coefficients in a field), which
is the categorical product in CoAlg(Modg, ). Now note that since f is a
p-equivalence, we know that s*f is a p-equivalence for all points s. This im-
plies (using Lemma [ATT) that H.(s*f,F,) is an equivalence for all s. Since
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homology commutes with filtered colimits, it commutes with stalks, thus we
get that s*H.(f,F,) is an equivalence for all s (here we implicitly use that
H.(F(-),F,) € Ps(C,CoAlg(Modr, ¢))). Thus, using e.g. [Hai2l, Example
2.13] and the fact that CoAlg(Modp, ) is compactly generated (this is the fun-
damental theorem of coalgebras, see [Swe69| 11.2.2.1]), already H.(f,Fp) is an
equivalence. But this means, on every section U € C we have an isomorphism
H.(F(U),F,) = H.(G(U),F,). Using Lemma [A17 again, we conclude that
fu: F(U) = G(U) is a p-equivalence for all U. Thus, ¢f is a p-equivalence by
Proposition O

Proposition 4.18. Write temporarily L, = (—)2 ou: Ps(C) = P(C). If F €
Ps(C), then Ly(F) € Ps(C) and L,(F) = F.

Proof. Let F € Px(C). We need to prove that L,(F) transforms finite coprod-
ucts into finite products. Thus let U,V € C. Then

Ly(F)(ULIV) = (WF),(ULV)

where the second and fifth equivalence are Proposition 2] the third equiva-
lence exists because F' € Px(C), and the fourth equivalence holds because p-
completion commutes with products, see LemmaB.I8 Thus, L,(F) = Lx(L,(F)).
Since Ly, preserves p-equivalences, we get that F — L,(F) is a p-equivalence.
Thus, we are left to show that L,(F) is p-complete in Px(C). Let f: G — G’ be
a p-equivalence in Px(C). Then Mapp, ¢)(f, Ly(F)) = Mapp ey (Lf, tLp(F)) =
Mapp ) (uf, (L F )2) is an equivalence because ¢f is a p-equivalence by Proposi-
tion LI71 We conclude that L,(F) is p-complete. O

Lemma 4.19. Let ' € Px(C) be n-connective. Then F, is n-connective.

Proof. By Proposition[£.I8 we can compute the p-completion on the underlying
presheaf. Then the result follows from Lemmas [£.3] and E.15] O

Lemma 4.20. Px(C) is locally of homotopy dimension 0. In particular, it

is locally of cohomological dimension 0, and thus for every A € 'Pg(C,Sp)O,
L(U, A) € Sp¥ for all U € C (i.e. there is no sheaf cohomology).

Proof. Since the elements of C generate Px(C) under colimits, it suffices to show
that for every C' € C the topos Px(C) /¢ is of homotopy dimension 0. Note that
P=(C),c = P=(C/c). Therefore, we may assume that C has a final element, and
we want to prove that Pg(C) has homotopy dimension 0.
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Note that there is a unique geometric morphism const: An = Pg(C): T.
Since C has a final object %, the functor I' is given by evaluating at the final
object. By [Lur09, Lemma 7.2.1.7], it suffices to show that I preserves effective
epimorphisms. By Lemma .15 the homotopy sheaves can be calculated as
the underlying homotopy presheaves. Therefore, we see that for an effective
epimorphism f: X — Y, that T'(f) is still surjective on m, i.e. I'(f) is an
effective epimorphism. (Note that in the disjoint union topology a surjective
map of sheaves of sets is already surjective on sections).

The last part is [Lur09, Corollary 7.2.2.30]. O

Lemma 4.21. Let F € Px(C) be nilpotent. Then F;) = (1imn7'§nF)£ =

lim,, (7<, F), .

Proof. Using Theorem B.27] it suffices to show that Pg(C) is locally of finite
uniform homotopy dimension. This is clear, since Px(C) is locally of homotopy
dimension 0, see Lemma [4.20 O

Recall the p-adic t-structure from Definition 2.13

Lemma 4.22. The inclusion functor vs: Px(C,Sp) — P(C,Sp) is t-exact for
the standard t-structures and t-exact for the p-adic t-structures.

Proof. The claim about the standard t-structures is immediate as homotopy
objects can be computed on the level of presheaves.

Using Lemma 4] it suffices to show that E € Px(C, Sp) is connective (resp.
coconnective) for the p-adic t-structure if and only if F(U) is connective (resp.
coconnective) for the p-adic t-structure on Sp for all U € C. Here, one ar-
gues as in the proof of Lemma 44l noting that the homotopy objects of E
are calculated as the homotopy objects of the underlying presheaves, and using
Proposition O

Lemma 4.23. Let A € Ps(C,Sp)”. Then (L; A)(U) = Li(A(U)) for every
U €C. In particular, L;A € Px(C, Sp)o.

Proof. First note that A(U) € Sp” by Lemma E20, so the statement makes
sense. Note that the presheaf U — L;(A(U)) is actually a sheaf. This is clear
since L; is additive and thus preserves finite products.

Thus, the lemma follows from the t-exactness of ¢5; for the p-adic t-structures
(Lemma[L22]) and LemmalLdl The last claim follows, because ¢y, is fully faithful
and t-exact for the standard t-structures (by the same lemma) and the corre-
sponding claim about presheaves. o

As in the case of presheaves, the heart of the p-adic t-structure has a very
simple description:

Lemma 4.24. We have 'Pg(C,Sp)p@ C PE(C,SP)Q, consisting exactly of the
p-complete objects in the standard heart.
In particular, if E € Px(C,Sp) is p-complete, then m,(E) = wP(E).
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Proof. The inclusion ¢y, is fully faithful and t-exact for the standard t-structures
and t-exact for the p-adic t-structures by Lemma .22l Thus, the lemma follows
from Lemma (note that s, preserves p-complete objects, see Lemma [2.32)).

O

Definition 4.25. Let G € Grp(Disc(Ps(C))) be a nilpotent sheaf of groups (i.e.
the conjugation action of G on itself is nilpotent). We define

LZG = 7Tz+1((BG)Z/,\)
for ¢ > 0.

Remark 4.26. Since the p-completion of a 1-truncated nilpotent object is 2-
truncated (see Proposition B.21]), we see that L;G = 0 for all ¢ > 2.

Lemma 4.27. Let A € Pg(C,Sp)” = Ab(Disc(Pg(C))). Denote by G the
underlying nilpotent presheaf of groups (i.e. we forget that A is abelian). Then
L;A2L,G for alli> 0.

Proof. Since homotopy sheaves (Lemma [1.17]), classifying spaces (Lemma [.T6I)
and p-completions (Proposition LI8) in Px(C) can be computed in P(C), we
conclude that also L;G can be computed in P(C). Also, L; A can be computed
in P(C) by Lemmas and Thus, the lemma follows immediately from
the corresponding Lemma O

Proposition 4.28. Let X € Px(C), be a pointed nilpotent sheaf. Then for
every n > 2 there exists a short exact sequence in Px(C, Sp)pv (or a short exact
sequence in Grp(Disc(Px(C))) ifn=1)

0 = Lomn(X) = mp (X)) = Limn—1(X) = 0,

where we use Definition [{-25 for L;m(X). Note that this distinction does not
matter if m1(X) is abelian, see Lemma [{.27 Here we define Limo(X) = 0,

since X is connected by assumption.

Proof. Note that everything can be computed on the underlying presheaves

(Lemmas ET5] ET6] and [£23] and Proposition [18]), thus the lemma follows
immediately from Proposition £.10 O

4.3 Completions via Embeddings

Let & be an co-topos. Suppose moreover that there is a small extensive category
C and a geometric morphism

v X 2 Ps(C): vy,

such that the left adjoint v* is fully faithful. We will freely use that v* and
v, induce an adjoint pair on stabilizations, see Lemma [A.Tl Note that since v*
is fully faithful, also the induced functor on stabilizations is fully faithful (see

Lemma [A7]).
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Lemma 4.29. In this situation X is Postnikov-completete. In particular, X is
hypercomplete.

Proof. We need to show that for every X € X the canonical map X — lim,, 7<, X
is an equivalence. Lemma [L.13shows that Px(C) is Postnikov-complete. Hence,
the canonical map v*X — lim,, 7<,v* X is an equivalence. We now compute

X

1%

vt X

v lim, 7<,v* X

1%

12

lim,, v, 1<, X

= lim,, 7<, X.
Here, we used in the first and last equivalence that v* is fully faithful. The third
equivalence holds because v, commutes with limits (as a right adjoint), and v*
commutes with truncations, see [Lur09, Proposition 5.5.6.28].

The last part follows from the first, see the proof of [Lur09, Corollary
7.2.1.12], where only Postnikov-completeness of X is used. o

Lemma 4.30. Let E € Sp(X). Then E; = V*((V*E);\).

Proof. We have I/*((V*E);\) = plim, (V*E)[p" = lim, (vnv*E)[p" = E},
where we used that v, commutes with limits and cofibers, and that v* is fully
faithful, i.e. v,v* = id. O

Lemma 4.31. Let A € Sp(X)¥ andn > 1. Then K(A,n)) = 15 1v.(K(V*A,n))).

Proof. The statement makes sense: Note that v* A is in the heart of the standard
t-structure, see Lemmal[A Gl Therefore, the Eilenberg-MacLane space K (v* A, n)
is defined.

We have the following chain of equivalences

K(A,n)y = QF(r>1(Z"A),)

Q2 (ro1v. ('S A)))
Tzllf*Qio((E"(’/*A))g)
o1 (K (V" A, n))).

Rl

1%

The first and fourth equivalences are Corollary BI8, noting that (X" (v*A))” is
already n-connective, see Lemma [£.191 The second equivalence is Lemma
The third equivalence follows from the definition of the standard t-structure on

Sp(X) and Lemma [AT] O

We will repeatedly use the following fact about the interaction of connective
covers with limits and geometric morphisms:

Lemma 4.32. Fizn > 0. Let X € Px(C), be a pointed space. We have an
equivalence
TonVsX = ToplsT>n X.
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Similar, if X; is an I-indexed system in X, for some oco-category I, then
there is an equivalence

Teplimy X & 7>, limy, 70, X
Proof. Since v, commutes with limits, we have a canonical fiber sequence
ViTonX — Ve X = VaT<n—1X.

Since vuT<p—1X is (n — 1)-truncated (see [Lur09, Proposition 5.5.6.16]), we
conclude from the long exact sequence that for £ > n we have isomorphisms
T (VsT>nX) = 7 (v X). Thus, using hypercompleteness of X (Lemma [£.29)),
the induced map

TZnV*X = TZnV*TZnX

is an equivalence.

In the case of limits one argues as above, and uses that a limit of fiber
sequences is again a fiber sequence (as limits commute with limits), and that
limits preserve (n — 1)-truncated objects (see [Lur09, Proposition 5.5.6.5]). O

Lemma 4.33. Let F' € X, be nilpotent and n-truncated. Then Tzlu*((y*F);\) =
F7.
P

Proof. We do a proof by induction on n, the case n = 0 being trivial. So suppose
we have proven the statement for n > 0. Since F' is nilpotent, its Postnikov
tower has a principal refinement, see Lemma So assume by induction
that the statement holds for 7<,_1F = F, 0. We proceed by induction on
1 < k <m,. From Proposition B.20] we know that

(v Fui)) = Tzlﬁb((y*Fnﬁk,l)g S K A+ 1)3)
and therefore by applying 7>1v.(—) we get
ro (0 Fag)) = Tzly*rzlﬁb((y*pmk,l)g S K An g n+ 1)9)
= o v fib (v P 1)) = K" A n+ 1))

o TZlﬁb(l/*(V*ka_l);\ — v KW Ay k,n+ 1)2)

7'21ﬁb(7’21y>,< (V*Fn,k—l);\ — Tle*K(u*An,kan + 1)2)
= TZlﬁb((Fn,kfl);\ — K(Anﬁkfl, n —+ 1)2)
= (Fn,k);\

The second and fourth equivalences are Lemma The third equivalence
holds because v, preserves limits (as a right adjoint). The fifth equivalence holds
by induction and Lemma 31l The sixth equivalence is again Proposition 3.201
Thus, by induction, we conclude that the statement holds for F}, ,,,, = Fr41,0 =
T<nF =F. O
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Lemma 4.34. Assume that X is locally of finite uniform homotopy dimension.
Let F' € X, be nilpotent. Then Tzlu*((y*F)Q) =F}.

Proof. We will freely use that X and Px(C) are Postnikov-complete (Lem-
mas and @29). Note that v* commutes with truncations, see [Lur(9,
Proposition 5.5.6.28]. Using Lemma A.2T] we get

(I/*F)g = lim,, (V*TSHF);\.
Applying v, we conclude
V*((V*F)Z/)\) = v, lim, (V*TSnF);\ = lim,, V*(V*TSHF);\,

where we use that v, is a right adjoint for the second equivalence. Thus,

Tle/*((l/*F);\) = TZlhmn V*((V*TSHF);\)

TZlhmn TZIV*((V*TSnF);\)

TZlhmn (TgnF);\

IR

A
TZle

i~ Fg

The second equivalence is Lemma The third equivalence was proven in
Lemma [£.33] The fourth equivalence holds because p-completions can be com-
puted on the Postnikov tower, see Theorem (here we use the assump-
tion that X is locally of finite uniform homotopy dimension). The last equiv-
alence follows because p-completions of connected spaces are connected, see
Lemma [3.12 O

Definition 4.35. Let E € Px(C,Sp). We say that E is classical if E is in the
essential image of v*.

Remark 4.36. Note that since v* is fully faithful, an E € Px(C, Sp) is classical
if and only if £ = v*v, E. Indeed, suppose that F = v*F for some F' € Sp(X).
But then v*v, F 2 v*v,v*F = v*F = E using that v* is fully faithful.

Lemma 4.37. Suppose that A € Px(C, Sp)po and that AJ/p is classical. Then
v, A € Sp(X)*.

Proof. Lemma [2.34] shows that v, is left t-exact with respect to the p-adic t-
structure, therefore we get v, A € Sp(X)%. Thus, it suffices to show that v, 4 €
Sp(X)%,. By assumption there is an X € Sp(X) such that v*X = A//p. Note
that since A € Pg(C,Sp)”” we know that A//p € Px(C, Sp)s (see Lemma [ZT5)).
But this implies that X € Sp(X)s, (V*mpX = mu* X = m(A)p) = 0 for all
k < 0 and v* is fully faithful). Now we have equivalences X = v, v*X &
v«(A)p) = (v« A)/p, hence (v,A))p € Sp(X)-,. Now we conclude again by
Lemma that v, A € Sp(X)%,. O
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Corollary 4.38. Suppose that we have a short exact sequence
0-A—-B—->C—0

mn PE(C,Sp)pQ? such that two out of AJfp, BJJp and C//p are classical. Then
also the third is classical, and we get a short exact sequence

0—viA—>v.B—>v,C—0
in Sp(X)P°.

Proof. First note that we have a morphism of fiber sequences given by the counit
of the adjunction v* - v,:

v (A)p) —— v (B)p) —— v*u.(C)/p)

l l |

Affjp ——— Bj)p —— C//p.

By assumption, two of the vertical morphisms are isomorphisms, hence so is
the third. Thus, we conclude that all of A/p, B/p and C//p are classical. The
claim now follows immediately from Lemma [£37 O

Lemma 4.39. Let A € Sp(X)”. Suppose that (Lyv*A)Jlp is classical. Then
(L;v*A)//p is classical, and we have L;A = v, L;v* A for all i € Z.

Proof. Since L; = 0 for all ¢ # 0,1 (see Proposition [Z20)), the claim needs only
be checked for i = 0,1. Note that by Lemma we have a fiber sequence

YLiv*A — (V*A)Q — Lov™ A.
Applying (—)/p we get a fiber sequence
S(Lyv*A))p — (V*A);\//p — (Lov™A)//p.

Note that the left term is classical by assumption. For the middle term we have
equivalences (V*A);\//p =~ (W*A)Jp =2 v*(A)p), ie. it is also classical. Thus, we
conclude that (Lov* A)//p is also classical by (a proof similar to) Corollary [£.38

Applying v, (—) to the first fiber sequence, and noting that I/*(V*A);\ & AQ
by Lemma 30 we arrive at the fiber sequence

Y Liv*A — Az/v\ — v Lor*A.

Now by Lemma .37 and since (L;v*A)//p is classical, we know that v, L;v*A €
Sp(X)PY. Note that we also have a fiber sequence
ELlA — A;\ — LQA,

see again Lemma Now the lemma follows from the uniqueness of fiber

sequences
XA =Y

with X € Sp(X)%, and Y € Sp(X)~L, by the definition of a t-structure. O
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Definition 4.40. Let G € Grp(Disc(X)) be a nilpotent sheaf of groups. We
define
LG = v, Liv*G = V*7Ti+1((BV*G)Z/)\) € Sp(&X)

for ¢ > 1, using Definition Similarly, we define
LoG = v, Lov*G = V*ﬂ'l((BV*G);\) € Grp(Disc(X)),
where we view v, as a functor Grp(Disc(Pg(C))) — Grp(Disc(X)).

Remark 4.41. Note that L;G = 0 for all ¢ > 2 since (BV*G)Q is 2-truncated by
Proposition 3211

Remark 4.42. If A € Sp(X)Y = Ab(Disc(X)), then there are two conflicting
notions of IL; A: We could use Definition 2.22lor Definition[£.40 for the underlying
sheaf of groups. Those two definitions are equivalent if (IL;v*A)/p is classical,
see Lemma [.43] (where we use Definition [Z22]). Otherwise, it is not clear if the
two notions agree. In the following, we always try to emphasize which definition
we use, and whether the distinction does matter.

Lemma 4.43. Let A € Sp(X)Y = Ab(Disc(X)) be an abelian sheaf of groups.
Denote by G the underlying nilpotent sheaf of groups. Suppose that (Liv*A)//p
1s classical. Then ;G 2 1L; A for all i > 0.

Proof. Using Lemma H.39 it suffices to show that 7Ti+1((Bl/*G);\) = L,v*A.
This was shown in Lemma O

Theorem 4.44. Let X € X, be pointed and nilpotent such that (Lav*m, X)/p
is classical for every n > 2. Suppose further that either

o m X is abelian and (Lyv*m X))/ is classical (where we use Definition[2.22),
or

o that LimX € Sp(X)pQ? (where we use Definition [{-40).

Then for every n > 2 there is a short exact sequence in Sp(X)po (or a short
exzact sequence in Grp(Disc(X)) ifn=1)

0= Lomn X — vumn (V" X)) = Lamp 1 X — 0,

where we use Definition for L;m1(X). Note that this distinction does not
matter if m1(X) is abelian, see Lemma {43 Here, we define LimoX =0 (since
X is connected by assumption).

Moreover, we get that Fn((V*X);\)//p is classical for alln > 2.

Proof. We first prove the case n > 2. Using Lemma [4.39 we conclude that also
(L;v*m, X)//p is classical for all n > 2 and all 4. Proposition 28 gives us a
short exact sequence in Px(C, Sp)? v

0= Lomnv* X — mn (VX)) = Lamn 10" X — 0.
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This induces a fiber sequence

(Lomar* X) 0 = (1 (v X)) P = Lam—1" X) [,

where the outer to parts are classical. Thus, the same is true for the middle,
which proves the last statement. Using Corollary .38 (using the assumptions on
(L;v*m, X)//p), the above short exact sequence induces a short exact sequence

in Sp(Xx)?Y
0 = v Lompv* X — u*wn((l/*X);\) = v Lim_1v*X = 0.

We conclude by noting that v, L;7m,v* X = v, Liv*m, X = L;m, X where the last
equivalence is supplied by Lemma
For the case n = 1, we get a canonical equivalence in Grp(Disc(Px(C))) from
Proposition
]LQ']TlI/*X = st ((V*X)Z/)\)

Applying v,, this induces an equivalence in Grp(Disc(X))
L07T1X = V*LQTHV*X = I/*ﬂ'l((l/*X);\),

which is what we wanted to show. O

4.4 Comparison of the p-adic Hearts

We keep the notation from Section In this section, we prove a technical
result about the functors on the hearts of the p-adic t-structures induced by the
functors v* - v,.

Definition 4.45. Let v*7%: Sp(X)*" — Px(C, Sp)*” be defined as the functor
7P o v* restricted to the heart. Similarly, let 2% : P (C, Sp)*” — Sp(&X)"” be
defined as the functor wg o v, restricted to the heart.

Lemma 4.46. The functor v*P% is left adjoint to Ve Moreover, v*?Y is

right-exact and VAT left-exact as functors of abelian categories.

Proof. Note that v* is right t-exact and v, is left t-exact for the p-adic t-
structures, see Lemma[2:34 Now the statements are [BBD82| Proposition 1.3.17
(i) and (iii)]. O

Lemma 4.47. Let E € Sp(X)po. Suppose that v*PYE = 0. Then E = 0.

Proof. By Lemma 234 and the assumption, we see that v*E € Px(C,Sp)%,.
By Lemma 237 (using that v* is conservative, since it is fully faithful), we

conclude that E € Sp(X)2,. Since by assumption E € Sp(X)"7, it follows that
E=0. - O

Lemma 4.48. Let E € Sp(X)?". Then (V*E);\ € Ps(C,Sp)%, N Ps(C,Sp)%, .-
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Proof. Note that £ € Sp(X)., by Lemma ZI9 Thus, v*E € Px(C,Sp),
(since v* is t-exact for the standard t-structures, see e.g. Lemma[AL6]). On the
other hand, E//p € Sp(X)~, by Lemma[ZT5 Thus, also v*E//p € Px(C,Sp)<,»
again by the t-exactness of v*. The lemma follows immediately from (1) and
(3) of Proposition 226 O

Corollary 4.49. Let E € Sp(X)*". Then 0 (v*E) = 0 if and only if (V*E);\ €
Px(C, Sp)go. In particular, in this case v*PYE = (V*E);\.

Proof. The first part is immediate from Lemma [£48 For the last statement,
note that
VIVE = o (0 ) 2 7 (v E))) = (v E)),

where we used Corollary 2211 O

Definition 4.50. Let A C Sp(X)*" be the full subcategory spanned by objects
E such that 7} (v*E) 0.

Lemma 4.51. Let0 - A — B — C — 0 be a short exact sequence in Sp(X)p@
such that C € A. Then 0 — v*PY A — v*PYB — v*P°C — 0 is ezact.

Proof. We already know that v*P¥ is right exact, see Lemma .46l Moreover,
vePY = 7y o v*. Thus, the result follows from the long exact sequence and the
assumption on C. O

Lemma 4.52. Let E € A C Sp(X)"”. Then v,v*"YE =~ E.
Moreover, W YR~ E. In particular, v*PY is fully faithful on A.

Proof. We compute
v PR = V*(V*E)Z/)\ = (V*I/*E)Z/)\ ~FE)~F,

where we used Corollary [£.49in the first equivalence, Lemma [£.30]in the second
equivalence and the fully faithfulness of v* in the third equivalence. The fourth
equivalence holds because E € Sp(X) “is p-complete, see Lemma 2.19]

For the last part, we note that 2¥1v*?YE = 7 (v, E) = nP(E) = E,
which follows from the calculation above. Note that this equivalence is the
(inverse of the) unit of the adjunction v*? H 2 O, therefore it follows that 2%
is fully faithful on A. O

Corollary 4.53. Let A € Px(C, Sp)pv. Suppose that A is in the essential image
of v*PY| 4, i.e. there is an A’ € A such that v*PY A’ = A.

Then v, A2 A', in particular v, A € Sp(X)P" and v* P, A= A,

Proof. This immediately from LemmalL52, because v, A = v, PY A’ = A’ € A,
and v* POy, A= PV A = A, O

Lemma 4.54. Let f: A — B be a morphism in Sp(X)pO, such that A and B
are in A. Then also ker(f) € A.
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Proof. Note that we have the following two fiber sequences in Sp(X):

AL B - cofib(f),
Yker(f) — cofib(f) — coker(f).

Applying the exact functor (V*(—))Q and using the assumptions on A and B
(and Corollary 49, we conclude by the long exact sequence that (v*cofib(f ))2
lives in p-adic degrees 0 and 1. We know from LemmalL48 that also (v* coker(f ))2
lives in p-adic degrees 0 and 1. Therefore, applying (v* (—));\ to the second fiber
sequence, the long exact sequence implies that 77 (v* ker(f)) = «b ((v*Z ker(f))g) =
0, i.e. ker(f) € A. O

Lemma 4.55. Let 0 — A; L Ay L A3 — 0 be a short exact sequence in
PZ(C,Sp)pO. Suppose that As and one out of Ay and As satisfy that they are
in the essential image of v*P%| 4. Then this is also true for the third.

Proof. We choose A} € A such that v*PY A4 = Aj. Note that the short exact
sequence in the p-adic heart gives a fiber sequence A1 — Ay — A3z in Px(C, Sp).
Applying the functor v, yields the fiber sequence

I/*Al — I/*Ag — Alg, (1)

where we used Corollary .53

We start with the case that the assumptions for As and Az imply the state-
ment for A;. So choose Aj € A such that v*PY AL = Ay. Since v*P¥ is fully
faithful on A, we know that v*?Y © g = g (note that g is a morphism between
objects in the essential image of v*?|4). Thus, again by Corollary E53, the
fiber sequence [Il is equivalent to the fiber sequence

04 M9 0
V*Al — I/f A2 —_— Vf Ag.

By Lemma 234 v,A; € Sp(X)%,. Since #Y Ay and vP¥ Az are living in
Sp(X)PY, the long exact sequence show that v,4; € Sp(X)2_,, and that
7 (1. A1) = coker(2¥g). Note that v*2¥ coker(vF” g) = coker(v* 290 g) =
coker(g) = 0, where we used that v*P is left exact, see Lemma Using
Lemma A7, we see that coker(vF”g) 22 0. This implies that v, A; € Sp(X)*,
in particular, v, A; & ker(uf@g). Since we know by Lemma[£.54] that A is stable
under kernels, we conclude v, A; € A. Therefore, v*P%y, A; = (I/*I/*Al); =
Alﬁ >~ Ay, where we used Corollary [£.49] and the fact that A; is p-complete
because it lives in the p-adic heart. This proves that A; is in the essential image
of V*’po |.A-

We continue with the case that the assumptions for A; and Az imply the
statement for As. So choose A} € A such that v*PY A} = A;. Then by Corol-
lary the fiber sequence [Ilis equivalent to the fiber sequence

Al = v Ay — AL
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Since the outer parts live in the p-adic heart, this is also true for v,As. Now
define A5 = v, A;. We immediately see that A5 € A because A} and A)
are (apply v* and use the long exact sequence for 77). But then v*P% Al =
(V*V*AQ);\ = AQ;)\ = A,, again by Corollary [£.49] and the fact that As lives in

the p-adic heart and is thus p-complete. This proves the lemma. o

The following will be a useful criterion to determine when an object will be
in the essential image of v*7%| 4:

Proposition 4.56. Let 0 - A % B ﬁ> C L D be an ezact sequence in
Pz(C,Sp)pv. Suppose that there are A’, C" and D' in A C Sp(X)pQ? such
that v*PY A" =2 A, v*PYC" =2 C and v*PYD’ = D. Suppose moreover that
coker(vF¥ ) € A.

Then v, B € A C Sp(X)*", and v**° (v, B) = B.

Proof. Tt suffices to prove that B is in the essential image of v*7¥| 4, the claim
then follows from Corollary .53
Write K = ker(v) 2 im(8) and I := im(v). We have exact sequences

0-AS5 B K—0,
0->K—C—1-—0,
0 — I — D — coker(y) — 0.

By applying Lemma three times, it suffices to show that coker(v) is in the
essential image of v*P%| 4.

Since v*PY is fully faithful on A by Lemma 52 we see that there is a
morphism 7/: C’ — D’ such that v*P%(y') = ~. In particular, coker(y’) =
coker(vF” v*P¥~) 2 coker(vP¥), which lives in A by assumption. Therefore,
we see that coker(7y) 2 coker(v*P%4) = 1*P? coker(q') is in the essential image

of V*’p@|A. Here we used that v*?% is right-exact, see Lemma A.40 O

We will also need the following lemma, which helps to determine when the
pushforward v, of an object is actually in A:

Lemma 4.57. Suppose that A € ’Pg(C,Sp)po such that AJ/p is classical, and
such that v, A € Sp(X)PY. Then v, A € A C Sp(X)PY.

Proof. Using Corollary 149 we have to show that (I/*I/*A);\ € P=(C,Sp)Ly.
Denote by ¢: v*v,A — A the counit map. Since A is p-complete (see e.g.
Lemma[2.19), ¢ induces a map : (V*V*A)Z/)\ — A. Thus, if v is an equivalence,
we are done. For this, it suffices to show that ¢ is a p-equivalence. Thus, we are
reduced to show that ¢/p: (v*v.A)p — A//p is an equivalence. By exactness,
the left term is equivalent to v*v.(A/p), and under this identification, the map
@//p corresponds to the counit v*v,(A/p) — A/p. But this is an equivalence
since A//p is classical. O
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4.5 A Short Exact Sequence for Zariski Sheaves

Let k be a field and denote by Smy the category of quasi-compact smooth k-
schemes. Let Shv,,,(Smy) be the oo-topos of sheaves on Smy with respect to
the Zariski topology, i.e. covers are given by fpqc covers {U; — U}, such that
each U; — U can be written as U;U; ; — U such that each U; ; — U is an open
immersion.

The following result is well-known:

Lemma 4.58. The topos Shv,.,(Smy) is Postnikov-complete. In particular, it
s hypercomplete.

Proof. Let X € Shv,,(Smy). We have to show that limg 7<p X, = X. For
U € Smy, write Uy, for the small Zariski site over U (i.e. the poset of open
subsets). There is an evident functor fy: Shv,,, (Smg) — Shv,a, (Uzar) given by
restriction.

Note that Shv,a, (U,ar) is Postnikov-complete (and thus also hypercomplete):
It was proven in [Lur09, Corollary 7.2.4.17] that it is locally of homotopy di-
mension < dim(U). Thus, the result follows from [Lur09, Proposition 7.2.1.10].

The functor fyy commutes with limits because limits of sheaves can be com-
puted on sections. Moreover, fy commutes with truncations: This is clear,
since the topos Shv,a; (Uyar) is hypercomplete and fiy commutes with homotopy
objects. This fact follows because 7, (fy (F)) is the Zariski sheafification of the
presheaf V — m,(fu (F)(V)) = m(F(V)). But on the other hand, m, (F) is the
Zariski sheafification of the presheaf V' + m,(F(V)). Thus, the result follows
from the Postnikov-completeness of Shv,., (U,ay) for every U. O

We now show, using the theory developed in Section 3] that for certain
nilpotent Zariski sheaves there is a short exact sequence

0— Lomp(X) = 72(X) = Lymp_1(X) — 0,

see Theorem [4.69] for the precise statement. Note that we have shown in Ap-
pendix [Bl particularly in Theorems [B23] and [B:24] that there is a geometric
morphism

V" Shv,ar(Smy) = Shvprogar (ProZar(Smy)) = Ps(W): v,

where W C ProZar(Smy) is the full subcategory of zw-contractible affine schemes,
see Definition [B:220] Hence, we can apply the results from Section[d3lto the (big)
Zariski co-topos.

Remark 4.59. At the end, we want to work with motivic spaces, which are
in particular Nisnevich sheaves. Note that one could define the pro-Nisnevich
topology, and prove that the Nisnevich topos on Smy embeds into Ps(Whs)
for a class Wy;s of Nisnevich weakly contractible rings. But the pro-Nisnevich
topos has too many objects: Write pipc C Gy, for the pro-Nisnevich sheaf of
p-power roots of unity (which is the left Kan extension of the Nisnevich sheaf
Hpos|smyer ). But then a calculation shows that (Ljpupe)/p is not classical (in
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the sense of Definition FL35]). Thus, we cannot apply Theorem [£44l As we will
show below, this cannot happen if we work with the pro-Zariski topology.

Definition 4.60. Let F € Shv,..(Smy, Sp)”. We say that F satisfies Gersten
injectivity if for every connected U € Smy the canonical map I'V(U, F) —
I'Y(n, F) is injective where n € U is the generic point, and I'Y (5, F) is the stalk
of F at 7, i.e. we define I'V(n, F') := 'V (n,v* F') 2 colim,, v,y IV (V, F), where
the colimit runs over all Zariski morphisms V' — U that fit into a factorization
n — V — U of the morphism n — U (see Corollary [B.25 for the equivalence).
Note that since n € ProZar(Smy) is zw-contractible (since it represents a
local ring of the Zariski topology, see Definition for the definition of zw-
contractible), we actually have T'V(n, v*F) = T'(n, v*F), see Lemma F20

Lemma 4.61. Let n > 1 be an integer and F € Shvzar(Smk,Sp)o such that
F/p™ satisfies Gersten injectivity. Let U € Smy, a connected smooth scheme,
n € U its generic point and x € T'Y(U,F) a section. Suppose that there is
§ € ITY(n, F) such that p"j = z|,,.

Then there is a Zariski cover V. — U and a y € TY(V, F) such that p"y =
:Z?|V.

Proof. By Gersten injectivity, the map I'V (U, F/p™) — T'V(n, F/p") is injective.
Note that x|, = 0in ' (n, F/p"). Thus, z = 0in TV (U, F//p"). This means that
there exists a Zariski cover V — U and ay € T'V(V, F) such that p"y = z|y,. O

Definition 4.62. Let A € Shvprozar(ProZar(Smy), Sp)Y be a sheaf of abelian
groups on the pro-Zariski site. We say that an element = € I'V(U, A) is locally
p"-divisible if there is a pro-Zariski cover V — U and a y € I'Y(V, A) such that
p"y = x|y, i.e. if z lies in the sheaf-theoretic image (calculated in the heart,
which is an abelian category) of the morphism p": A — A.

We say that x is locally arbitrary p-divisible if x is locally p™-divisible for all
n > 1.

Lemma 4.63. Let A € Shvpozar(ProZar(Smy),Sp)” be a sheaf of abelian
groups on the pro-Zariski site. Define a subsheaf B C A via

B = Afp| N[ im(4 25 A),

For U € ProZar(Smy,) we have
r'°(U,B) = {ze (U, A) ‘p:z: =0,z is locally arbitrary p divisible } .

If A is classical (i.e. A is in the essential image of v*, see Definition[{.59) and
(v A)/p™ satisfies Gersten injectivity for every n, then B is also classical.

Proof. The description of the sections of B is clear, since limits of sheaves can be
computed on sections, and mp: Sp — Ab commutes with limits of coconnective
spectra.
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Let Uy := lim; U; be the cofiltered limit of smooth schemes U; € Smy where
the transition morphisms U; — U; are Zariski localizations. We need to show
that the canonical map ¢: colim; I'Y(U;, B) — I'Y(Us, B) is an isomorphism
(see Corollary [B:25)). Note that we have a commuting diagram

colim; I'Y(U;, B) —2— I'° (U, B)

| |

colim; I (Uy, A) —— I'°(Us, A).

The lower horizontal arrow is an isomorphism because A is classical, see Corol-
lary The left vertical arrow is injective since it is a filtered colimit of
injections. This shows that ¢ is injective. Let z € I'V(Uy, B). In other words,
x € T9(Us, A), pz = 0 and for every n there is a pro-Zariski cover V;, — U,
and a y, € TV(V,, A) such that p"y, = =z|y,. Since A is classical, we have
I'“(Uso, A) = colim; T (U;, A). We conclude that there exists an i € I and an
x; € TY(U;, A) such that z;|p., = 2. U; is of finite type over Spec(k), hence we
can write U; = U;U; ; as a finite coproduct, with U; ; the connected components
of U;. Moreover, since U; is smooth, we conclude that each U; ; is irreducible.
For every j write n; € U; ; for the generic point. Since U;U; ; — Uj; is a Zariski
cover, we conclude that T'V(U;U; ;, A) = Hj (U, j, A). Thus, z; corresponds
to a tuple (z; ;);. Consider the canonical morphism f: Us, — U;. Let jo be an
index. If f does not hit U; j,, i.e. im(f)NU; j, = 0, we can replace x; by the tuple
(%i,5); with @; ; = x;; if j # jo and Z; ;, = 0, this still yields the same element
x € colim; I'Y(U;, A). Note that 0 € T(U, j,, B). Thus, we may assume that
f hits U; j,. Pro-Zariski morphisms are flat (see [Sta23, Tag 05UT]| together
with [Sta23 Tag 00HT (1)]) and hence lift generalizations ([Sta23l Tag 03HV]).
Hence, there exists a point 7o € Uss such that f(7.) = n;,. Since pro-Zariski
morphisms identify local rings (see [Sta23| [Tag 096T]), we conclude that 1. is
a generic point, and that k(n;,) = k(1). Now let n € N. The same reasoning
applies to the pro-Zariski cover V,, — Uy, i.e. we find a generic point n,, € V,
mapping to 7 such that k(n,) = k(1) = k(nj,). By assumption, there is
yn € DV(V,,, A) with p™y,, = x;|v,. Thus, p"ynly, = Tijo|n.. Using the isomor-
phism k(1) = k(n;,) we thus find an element g, € k(nj,) with p" g, = 2 j, |, -
Since (v, A)/p™ satisfies Gersten injectivity, we conclude by Lemma 61l that
there is a Zariski cover V,, j, — Ui j, such that :Ei,j0|‘~,n’j0 is p™-divisible. Thus,
we proved that (x;;); is locally arbitrarily p-divisible, hence z; € TV (U;, B).
This shows that ¢ is surjective. O

Lemma 4.64. Let A € Shvpozar(ProZar(Smy),Sp)¥. There is an equiva-
lence (L1 A)/p & B, where B € Shvpmzar(ProZar(Sltnk),Sp)o is defined as in
Lemma [{-63

Proof. Consider the short exact sequence

0= (L14))p = Alp] = m((LoA)/p) =0
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from Lemma In particular, (L1 A)/p is inside the heart. Note that
since Ly A € Shvprozar(ProZar(Smyg), Sp)p@ C Shvprozar(ProZar(Smy), Sp)@ (see
Lemma for the inclusion), we see that (L1 A)/p = (L1 A)/p, where (—)/p
is the endofunctor coker(— 2, —) on the standard heart. We see that

(L1 A)/p = (m (limy, AJp"))/p = (lim}, A[p*])/p = B.

For the first equivalence, note that Ly A = nh(A) = 7% (A)) = 7,(A)), where
the first equivalence is the definition, the second is Corollary 2.21], and the third
is Lemma

For the last equivalence we used that an element x € TV (U, A) is locally
arbitrary p-divisible if and only if it is locally co-p-divisible, in the sense that
there exists a (pro-Zariski) cover V' — U such that for every n there is a y, €
I'Y(V, A) such that p™y,, = z|y. To show this, suppose that x is locally arbitrary
p-divisible, and choose covers V,, — U and ¢, € T'V(V;,, A) such that p"§, =
x|y, . Then define V := lim, Vi Xy -+ Xy V,, this is a pro-Zariski cover of U.
Then define y,, = gn|v, they satisfy p"y, = x|y. This shows that z is locally
oo-p-divisible.

Now note that (limy A[p*])/p consists exactly of the p-torsion elements of
A that are locally oo-p-divisible: By the above equivalences and short exact
sequence, (lim;” A[p*])/p can be identified with a subsheaf of A[p], via the map
induced by the projection limy A[p¥] — Alp] (note that pA[p] = 0). Now,
an element of z € I'Y(U, Alp]) lies in the image of this map, if and only if
there is a cover V — U and a compatible sequence (y,), € lim; T'9(V, A[p*])
such that x|y = yo. But such a compatible sequence in particular implies that
zly = yo = pFyr for all k, i.e.  is locally co-p-divisible. This concludes the
proof. O

Corollary 4.65. Let A € Shv,,.(Smg,Sp)Y, such that A/p" satisfies Gersten
injectivity for every n > 1. Then (Liv*A)//p is classical.

Proof. Combine Lemmas [£.63] and 4.64 O

Definition 4.66. Let X € Shv,,,(Smg). be a pointed sheaf. We define for
n > 2 the p-completed homotopy groups via

72(X) = v (1 X))) € Shv,ar(Smy, Sp),
and for n =1 via
m(X) = vem ((v*X);) € Grp(Disc(Shvzar (Smy))),
where we view v, as a functor
vy 1 Grp(Disc(Shvprozar(ProZar(k)))) — Grp(Disc(Shv,ar(Smy))).

Remark 4.67. The name ”p-completed homotopy group” instead of something
like ”p-completed homotopy spectrum” is justified: We will show in Theo-
rem [4.601 that at least in good cases 72 (X) actually lives in the abelian category
Shvar(Smy, Sp)pv for all n > 2.
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Lemma 4.68. Let f: X — Y be a morphism of pointed Zariski sheaves. Sup-
pose that f is a p-equivalence. Then w2 (f): 72(X) — 72 (Y) is an equivalence
for all n > 1. In particular, 75(X) = 75 (X)).

Proof. Since v* preserves p-equivalences (see Lemma[3.TT]), and (—)2 transforms
p-equivalences to equivalences, the result follows. o

Theorem 4.69. Let X € Shv,,,(Smy). be a pointed nilpotent sheaf, such that
7. (X)/p* satisfies Gersten injectivity for every k > 1 and n > 2. Suppose
moreover that either

o 71 (X) is abelian and 71 (X)/p" satisfies Gersten injectivity for every k >
1, or
o L;m(X) € Shv,a (Smy, Sp)po, where we use Definition[].70.
Then for n > 2 there is a canonical short exact sequence in Shv,.,(Smy, Sp)po
(or a canonical short exact sequence in Grp(Disc(Shv,,(Smg))) ifn=1)

0— Lomp(X) = 72(X) = Limp—1(X) — 0,

where we use Definition for Lym(X). This distinction does not matter
if m(X) is abelian, see Lemma [{.]3 Here we use Limo(X) = 0, since X is
connected. In particular, 78 (X) € Shv,a,(Smy, Sp)po forn > 2.

Proof. This follows immediately from Theorem [£.44] and Corollary .65 O

Corollary 4.70. Let X € Shv,.,(Smy ). be a pointed nilpotent sheaf, satisfying
the assumptions of Theorem [{.69 Fiz n > 2. We have equivalences 7P (X) =
TP (155 X) Z w2 (1<1 X) for all 0 <k <n-—1and alll > n.

Proof. This follows immediately from Theorem [4.69] O
We can establish a partial converse to Lemma [4.68

Proposition 4.71. Let f: X =Y € Shv,,,(Smy ). be a morphism of nilpotent
pointed sheaves with abelian fundamental group, and suppose that X and Y
satisfy the assumptions of Theorem [{.69 Suppose moreover that wf(f) is an
equivalence for all n > 1. Then f is a p-equivalence.

Proof. Note that we have a commutative square

o1 (V7))

v (V* X)) v (V*Y)))
ok
X5 Yy,
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where the downward arrows are the equivalences from Lemma [£34] (a proof
that Shv,,,(Smyg) is locally of finite uniform homotopy dimension can be found
in Lemma [520), and the horizontal arrows are induced by f. Thus, the upper
horizontal arrow is an equivalence if and only if the lower horizontal arrow is
an equivalence. But f 9 is an equivalence if and only if f is a p-equivalence, see
Lemma[3.8 Hence, in order to prove the lemma, it suffices to show that (v* f );\
is an equivalence. By hypercompleteness of Ps (W), it suffices to show that
wn((u*f)g) is an equivalence for all n > 1 (note that v*X and v*Y are simply
connected). By assumption, we know that v.m,((v* f );\) is an equivalence for
all n > 1. Note that we know from Theorem [.44] and Corollary that
Wn((U*X);\)//p and wn((u*Y)Q)//p are classical for n > 2. We have also seen in
Theorem [£.69 that V*Fn((V*X);\) and V*Fn((V*X);\) live in Shv,,, (Smy, Sp)P¥
for n > 2. Thus, (the proof of) Lemma gives us a commuting square for
alln > 2

(V*V*wn((y*X)g)): - (V*V*wn((v*Y)Q)):
- -
(X)) T ((Y))),

where the vertical arrows are equivalences and the horizontal arrows are induced
by f. By assumption, the upper arrow is an equivalence, therefore the same
holds for the lower arrow. Since m1(X) and 71 (Y") are abelian, the same proof
works for n = 1. This proves the proposition. o

Remark 4.72. The assumption that 7 should be abelian in Proposition 7Tl
is probably unnecessary, but a proof of this fact is unclear to the author. One
would have to analyze how far Lomi(v*X) € Grp(Disc(Ps(C))) is from be-
ing classical (i.e. in the image of the functor v*: Grp(Disc(Shv,.,(Smy))) —
Grp(Disc(Px(C)))). Note that we cannot use the ”classical mod p“TODO
CHECK-techniques employed in the above proof because of the nonabelian na-
ture of the involved groups.

5 Completions of Motivic Spaces

Let k be a perfect field and denote by Smy, the category of smooth k-schemes.
Let Shvy,is(Smy ) be the co-topos of sheaves on Smy, with respect to the Nisnevich
topology (see e.g. [MV99, Definition 3.1.2]). Note that a family of points of
this co-topos is given by evaluation on henselian local rings S?, i.e. if F €
Shvyuis(Smy), S € Smy, and s € S, then s*F := F(S") := colim LUt F(U) is
the stalk of F at S”, see e.g. [BHI7, Proposition A.3]. For a point S", write Z
for the filtered category of objects s = U <l S. Without loss of generality we
may assume that the scheme S defining a point S” is connected. These points
form a conservative family of points (again [BH17, Proposition A.3]), hence it

54



follows from [Lur09, Remark 6.5.4.7] that Shvy;s(Smy) is hypercomplete. In
fact, the Nisnevich topos is moreover Postnikov-complete. As in the Zariski
case, this is essentially well-known.

Lemma 5.1. Shvy;s(Smy) is Postnikov-complete.

Proof. One argues exactly as in Lemma As geometric input, we use that
for every U € Smy, there is a functor fy: Shvyis(Smyg) — Shvyis(Uet) given by
restriction, where U, is the category of étale U-schemes, with coverings given
by Nisnevich coverings. As in the Zariski case, one argues that this functor com-
mutes with limits and truncations. Then we use that Shvys(Ue:) has homotopy
dimension < dim(U), which was proven in [Lurl8al Theorem 3.7.7.1]. O

5.1 Generalities on Motivic Spaces
Recall the following definitions from [Morl2, Definition 0.7]:

Definition 5.2 (Al-invariance). 1. Let X € Shvy;s(Smg) be a Nisnevich

sheaf. We say that X is Al-invariant if X(S) =2 X (S x Al) is an
equivalence of anima for all S € Smy.

2. Similarly, we say that E € Shvys(Smy, Sp) is Al-invariant if E(S) =5
E(S x A') is an equivalence of spectra for all S.

3. If G € Grp(Disc(Shvyis(Smy))) is a Nisnevich sheaf of groups, we say that
G is strongly A'-invariant if H™ (X, A) 25 H™ (X x A, A) is an iso-

nis nis

morphism for all A and n =0, 1. Write Grps, (k) for the full subcategory
of strongly Al-invariant Nisnevich sheaves of groups.

Definition 5.3. We write Spc(k) C Shvyis(Smy) for the full subcategory of
Al-invariant Nisnevich sheaves, and call this category the category of motivic
spaces (over k).

We denote by SHSI(k:) = Sp(Spc(k)) the stabilization of the category of

motivic spaces, and call this category the category of motivic S'-spectra (over

Lemma 5.4. The inclusion functor tp1: Spc(k) < Shvyis(Smyg) has a left ad-
joint Ly, and Spc(k) is presentable.
We have an induced adjunction

Ly ¢ Shva(Smy, Sp) = SHS (k) : 14,

induced by the adjunction Ly1 = 1y1. The right adjoint vy is fully faithful, with
essential image those sheaves of spectra which are A'-invariant.

Proof. The first statement is an application of [Lur09, Proposition 5.5.4.15],
noting that the Al-invariant sheaves are the local objects for the (small) set of
morphisms { pry: Alx — X | X € Smy }.

95



There is an induced adjunction on stabilizations with fully faithful right
adjoint, see Lemmas[A.Tland [A.2] For the statement about the essential image,
see [Mor(04, Chapter 4.2]. O

Lemma 5.5. There is a t-structure on SHSI(k:) (called the standard (or homo-
topy) t-structure). This t-structure is uniquely characterized by the requirement
that vy SHSl(k) — Shvyis(Smg, Sp) is t-exact (for the standard t-structure on
the second category).

In particular, LXli SHSl(k)@ — Shvpis(Smy, Sp)¥ is an evact fully faithful
functor of abelian categories given by restriction of ty1. Its essential image is the
intersection of SHSl(k) with Shvpis(Smy, Sp)o. We will say that an element of
Shvpis(Smy, Sp)¥ which lies in the essential image of 11 is strictly Al-invariant.

Proof. Since 11 is fully faithful, it is clear that t-exactness of this functor
uniquely determines the t-structure (i.e. the t-structure must be given by the
intersection of SHSl(k) with the standard t-structure on Shvy;s(Smy, Sp)). That
this actually defines a t-structure is [Mor04, Theorem 4.3.4 (2)].

Since 141 is fully faithful, exact and t-exact, it induces an exact embedding
of the hearts [BBD82, Proposition 1.3.17(i)]. The description of the essential
image is clear from the t-exactness of t41. O

Remark 5.6. Let A € Shvyis(Smy,Sp)®¥. Then A is strictly Al-invariant, if
and only if the underlying sheaf of abelian groups I'V(—, A) is strictly A’-
invariant in the sense of [MorI2l Definition 0.7], i.e. the cohomology sheaves
Hi (=, TY(—,A4)) 2 7_;(T(—,A)) are Al-invariant. Note that 7_;(I'(—, A)) is

nis

clearly Al-invariant because A is.

Remark 5.7. Let n > 2. By [Morl2l Corollary 5.2] and Remark [5.6] the func-

tor m, o tp1: Spe(k). — Shvnis(Smk,Sp)O factors over the full subcategory

of Al-invariant sheaves of spectra. Thus, by Lemma it induces a functor
v

mn: Spe(k) — SHS (k)

Remark 5.8. We can also look at the case n = 1: By [Morl2, Corollary 5.2],
the functor m; o t41: Spe(k). — Grp(Disc(Shvyis(Smyg))) factors through the
category Grps, (k). If X is a motivic space with abelian (141 X), then this
group is moreover strictly Al-invariant (see [Mor12, Theorem 4.46]). Therefore,

we get a well-defined functor 7 : Spc(k)* — SHSl(k)@, where Spc(k)? is the
category of motivic spaces with abelian fundamental group.

Definition 5.9. We also define the adjunctions
Lyis: Shv,ar(Smy) & Shvpis(Smg) : tnis,

given by sheafification and inclusion (i.e. induced by the canonical morphism of
sites), and
Lyis ar: Shv,ar(Smy) = Spe(k): tyis at,
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given by Lyis a1 = L1 o Lyjs and the fully faithful functor tyis g1 = tnis © t41.
Note that there are induced adjunctions (see Lemma [A.T))

ms Sthar(Smk; Sp) — Shans(Smk; SP) ¢ lnis,
Lnis,Al : Sthar(Smk, Sp) <:> SHS (k) . Lnis,Alu
where the right adjoints are again fully faithful (see Lemma [A.2)).

We want to show now that tyjs 41 is t-exact for the standard t-structures.
Note that this is rather surprising, as tyjs o1 is defined as the composition of ¢nis
and ¢41, and the former is not t-exact! For this, we need the following general
proposition:

Proposition 5.10. Let D and & be stable categories equipped with t-structures
(D>0,D<0) and (£>0,E<0), and let F: D — & be an exact functor. Assume
moreover that

(1) F preserves limits,

(2) for all X € DY we have that FX € Y,
(3) the t-structure on D is left-complete, and
(4) the t-structure on & is left-complete.

Then F' is right t-exact.

Proof. We first show that F' is t-exact on bounded objects, i.e. we show that
for all m,n € Z and all X € D>, N D<,, we have F.X € £, N E<,. Note that
by shifting, it suffices to consider the case m = 0 (and thus n > 0, for n < 0 the
statement is vacuous).

We proceed by induction on n, the case n = 0 follows from
So suppose the statement is true for n > 0, and let X € D>oND<y41. Consider
the fiber sequence X" m, ;1 X — X — 7<,X. Applying F yields the fiber
sequence E"+1F7rn+1X — FX — F1<,X. By induction, we see that F'r<, X €
520 n 5Sn C 520 n 5Sn+1, and En+1F7Tn+1X € ¥ntlg® 520 N g§n+1 by
lassumption (2)| Thus, since £>¢ and E<p41 are stable under extensions, we get
that FX € E>0NE<ptr.

Now, let X € D> be a general connective object. Then, since the t-structure
on D is left-complete by [assumption (3)} we can write X 2 lim,, 7<, X . Since F
commutes with limits (assumption (1)), we can thus write FX = lim,, F'r<, X

Using [Lur17) Proposition 1.2.1.17 (2)] and the left-completeness of £ (assumption ( M,
it suffices to show that F'7<, X is connective for every n, and that 7<, F'1<p+1 X =
F1<,X; this then implies that lim,, F'7<, X is connective. We have seen above
that F'7<,X is connective for every n.

So suppose that n > 0. Consider the fiber sequence

En+17Tn+1FTSn+1X — FT§n+1X — TSnFT§n+1F.
Note that there is also a fiber sequence

Y1 X = e X = 7<n X,
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which after applying F' yields
FY" " m X — Frep X — Frep, X,

Thus, in order to show that 7<, F'7<, 11X = F1<,X, it suffices to show that
Frp1 X =2 mpp1F1<p1X. This follows immediately from t-exactness on
bounded objects, i.e. we get (since 7<p4+1X is bounded) w41 F7<pi1 X =
7Tn+1TSn+1FXg7Tn+1FX. O

Lemma 5.11. The functor inis a1 15 t-exzact for the standard t-structures.

In particular, L:is Al SHSl(k)QQ — Shv,a, (Smy, Sp)o s an exact fully faithful
functor of abelian categories and given by restriction of Lyis a1 .

Proof. We see that tys 41 is left t-exact as the composition of a t-exact functor
(Lemma [BH) and a left t-exact functor (note that iyis is right adjoint to the
t-exact functor Lyjs (see Lemma for the t-exactness), and use [BBD82]
Proposition 1.3.17 (iii)]). Thus, it suffices to see that the functor is right t-

exact. We first prove the following: If A € SHSl(k)@, then also (i a1 A €
Shv,ar (Smy, Sp)¥. Write H: Ab(Disc(Shvpis(Smy))) 22 Shvyis(Smy, Sp)¥ (and
similar for Zariski sheaves). Since this is an equivalence, we know that there is
an A" € Ab(Disc(Shvpis(Smy))) with HA’ 22 141 A. Note that since 141 A is Al-
invariant, we know that A’ is strictly A'-invariant, see Remark It suffices
to show that tnisHA" 22 HinsA', where tn;s A" € Ab(Disc(Shvyis(Smyg))) is the
application of the underived functor tpis: Shvyis(Smy) — Shv,,, (Smy) with the
induced structure of an abelian group object. In order to prove this equivalence,
by Whitehead’s theorem it suffices to prove that for all n and all U € Smy, the
canonical map 7y, ((tnis HA)(U)) — mn((HinisA')(U)) is an equivalence. But
note that we have equivalences

(s HA)(U)) = 7 (HA)(U)) = Hyl (U, A)

and
Wn((HLnisAl)(U)) = H,.' (U, LnisA/)-

Z

But the right-hand sides agree by [AD09, Theorem 4.5] (The reference uses that
k is an infinite field. If k is a finite field, we can argue as in the above reference,
using the Gabber presentation lemma for finite fields, see [HK20, Theorem 1.1]).

Thus, we can apply Proposition with tpis 410 Note that cy; a1 pre-
serves limits because it is a right adjoint, and that the standard t-structure
on Shv,,,(Smy, Sp) is left-complete because Shv,,, (Smy) is Postnikov-complete,
see Lemma and the proof of [Lurl8al Corollary 1.3.3.11]. Note that also
Shvis(Smyg, Sp) is left-complete with respect to the standard t-structure, be-
cause Shvyis(Smy) is Postnikov-complete, see Lemma [5.l Thus, it follows that
also SHSl(k) C Shvyis(Smyg, Sp) is left-complete, since the functor c¢y: is an
exact and t-exact fully faithful functor which commutes with limits (as a right-

adjoint): Indeed, if X € SHSl(k), then we have

tpr X = limyg T<pepr X =2 0 limy 7<p X
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Since 41 is fully faithful, it is in particular conservative, i.e. X = limj; 7<; X,
which is what we wanted to show. Hence, Proposition .10 implies that ¢nis a1
is right t-exact. O

Lemma 5.12. Let A € SHSl(k)o and n > 0. Then 151 K(A,n) = K(LxlA,n)
and tyis a1 K (A, n) = K(LQ? A n)

nis, Al

Proof. We calculate
K Ayn) = QPS™ A= QPN 0 A= 1 QYA = 10 K(A,n),

where we used that LXIA >~ 1 A (because 141 is t-exact for the standard t-
structures, see Lemma [5.5]), and Lemma [A1]

The same proof works for the second statement, using t-exactness of tys 41
for the standard t-structures, see Lemma [B.111 O

Lemma 5.13. For everyn > 0 the functor 7>, : Shvpis(Smg). — Shvyis(Smy )«
restricts to a functor T>,: Spc(k). — Spe(k)s.

In other words, there is a functor T>, such that the following square com-
mutes:

Spc(k)y —==— Spe(k),

\[LM \[LM

Shvyis (Smy) s —=+ Shvis(Smy)s.

Proof. Let n > 0, and fix a pointed motivic space X € Spc(k).. It suffices to
show that 75,41 X is again Al-invariant.

If n = 0 there is nothing to prove, so we can assume n > 1. Using [Mor12]
Corollary 5.3], it suffices to prove that 71 (7>,t41 X) is strongly Al-invariant and
Tk (To>ntar X) is strictly Al-invariant for all k& > 2. This is clear if n > k, since
0 is strictly Al-invariant. If n < k, we use [Morl12, Corollary 5.2] to conclude
that 7g(T>niar X) = w141 X) is strictly Al-invariant. The same proof works
for m if n =1, again using [Mor12, Corollary 5.2]. O

Lemma 5.14. Let X € Spc(k). be a pointed connected motivic space, i.e. it is
in the image of T>1: Spc(k)s — Spe(k)s from Lemma 53 For alln > 1 there
are equivalences
TSnLnis,AlX = LnisTgnLAlX-
Proof. Let k > 1. Then there is a fiber sequence
K(ﬂ'k(LAlX), k) — TSkLAlX — TgkflLAlX.

Thus, since ¢yis preserves limits (it is a right adjoint), we get a fiber sequence

LniSK(ﬂ'k(LAlX), k) — LniSTgkLAlx — LnisTgkflLAlX.
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By definition, we have tp17(X) = 71 (141 X). Lemma B2 now gives us equiv-
alences

tnis K (g (140 X), k) 2 i ar K (i (X)), ) 22 K (5 00 mr(X), ).

Moreover, limg tnisT<ptat X = inislimyg T<pign X = ipig a1 X, since inis pre-
serves limits and Shvy;s(Smy,) is Postnikov-complete (LemmalB.)). Since tpisT<piar X
is still k-truncated (as the right adjoint of a geometric morphism preserves trun-
cated objects, see [Lur(9, Proposition 6.3.1.9]), and the fibers of tpis7<ktp1 X —
tnisT<k—1ta1 X are Eilenberg-MacLane objects in degree k, we conclude by in-
duction on k that actually (tnisT<gtar X)x is the Postnikov tower of 1,5 41 X, i.e.
LnisT<klpl X = T<plnis a1 X. O

Lemma 5.15. Let X € Spc(k). be a pointed motivic space. Then Tspinis a1 X =
tnisT>nta1 X for all n > 0.

Proof. If n = 0 then there is nothing to prove. So suppose that n > 1.
Write Shv,a, (Smg) >« C Shv,ar(Smy ). for the full subcategory of n-connective
pointed Zariski sheaves. We begin by showing that for every Y € Shvy;s(Smy),
the canonical map T>ptnisT>nY — T>ninisY is an equivalence. Note that there
is a fiber sequence

TZ'n,Y —Y — T§n71Y.

Applying the right adjoint ¢y;s yields the fiber sequence
LnisTZnY — LnisY — LnisTSnfly

Note that if we view 7>, as a functor Shv,a, (Smy ). — Shv,ar(Smp)>np «, then it
preserves limits because it is right adjoint to the inclusion. Therefore, applying
T>p, yields a fiber sequence (in Shvga, (Smy)>n )

TZnLnisTZnY — 7-ZnLnis}/ — TZnLnisTSnfly

Since tpis preserves (n — 1)-truncated objects (this is proven in [Lur09, Propo-
sition 6.3.1.9], since tys is the right adjoint of a geometric morphism), the right
term vanishes. Therefore we have an equivalence T>ptnisT>nY = T>pinisY in
Shv,ar (Smy)>n. «, and therefore also in Shv,a, (Smy ).

Therefore, it suffices to show that tnis7>pnt41X is already n-connective for
every X € Spc(k).. Note first that by Lemma .13} there is a pointed motivic
space Y = 7>, X with 75,000 X = 141Y, and Y is a pointed, n-connective
motivic space. Note that iy 41Y is n-connective if and only if T<ytnisa1Y is
n-connective. We know from Lemma .14l that 7<pinis a1 =2 tnisT<piarY.
Therefore, we may assume that ¢41Y is n-connective and n-truncated, i.e.
tpY =21 K(A,n) for some A € SHSl(k)QQ. But now we have that ¢y 41Y =
tnisat K (A,n) = K (Ll?is) a1,7) by Lemma[5.12) which is in particular n-connective.
This proves the lemma. O
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Corollary 5.16. Let X € Spc(k). be a pointed motivic space, i.e. If n > 2,
there are equivalences

Wn(bnis,AlX) =~ LO

nis

T (tp1 X)) = LI?iS)A17Tn(X)7
and if n =1, we have an isomorphism
1 (Lnis,a1 X ) = tnism (L1 X),
where we view Lyis a$ a functor
Grp(Disc(Shvpis(Smy))) — Grp(Disc(Shv,a, (Smy))).

Proof. From Lemmas [£.14] and we are immediately able to conclude that
T (nis, a1 X) = tnisTn (a1 X). Moreover, by definition 417, (X) = m,(ta1 X),
therefore we also get an equivalence 7y, (tnis a1 X) = tyis,a17n (X ). Since every-
thing is in the heart of the standard t-structure, we get the desired equivalences.

If n = 1, then the same proof works, but we ignore the hearts and view ¢yi5 as
a functor Grp(Disc(Shvyis(Smyg))) — Grp(Disc(Shv ., (Smy))). O

Lemma 5.17. The functor tyig a1 : SHSl(k) — Shv,.(Smyg, Sp) is t-exact for
the p-adic t-structures.
In particular, it induces a fully faithful exact functor

27 41t SHY(R)P? = Shvar (Smy, Sp)*©.

Proof. By Lemmal[5.11] ¢y;5 41 is t-exact for the standard t-structures. Therefore
Lyis a1 is right t-exact for the standard t-structures by [BBDS82, Proposition
1.3.17(iii)]. Now Lemma 2341 applied to L = ty;s a1 implies that cy;s 41 is right
t-exact, whereas the same lemma applied to L = Lyjs 1 and R = tp;5 41 implies
that tnis 41 is left t-exact. This proves the first part of the lemma.

The last part is [BBD82l Proposition 1.3.17(i)]. O

5.2 Al-Invariance of the p-Completion

The category of motivic spaces is not an co-topos. Nonetheless, it is presentable
(see Lemma [B.4). Therefore, Section B.I] applies and gives us a notion of p-
equivalence, and a p-completion functor (—)2: Spc(k) — Spe(k). In this section
we prove that at least for nilpotent motivic spaces, the p-completion of the
underlying Nisnevich sheaf is still Al-invariant, and agrees with the p-completion
of X in the category of pointed connected motivic spaces, see Theorem [5.31]

Remark 5.18. We will also show in Theorem [5.34] that the p-completion of a
nilpotent motivic space agrees with the p-completion of the underlying Zariski
sheaf. This is unclear for arbitrary Nisnevich sheaves, even if we assume nilpo-
tence.

Recall that Asok-Fasel-Hopkins defined in [AFH22| Definition 3.3.1] what a
nilpotent motivic space is.
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Lemma 5.19. A pointed motivic space X € Spc(k). is nilpotent if and only if
tar X is nilpotent as a Nisnevich sheaf in the sense of Definition [A. 10

Proof. One direction is clear from the definitions, since the homotopy groups
(and the action of 1) of a motivic space are the same as the homotopy groups
(and the action of 71) of the underlying Nisnevich sheaf of anima. For the
other direction one uses [AFH22| Proposition 3.2.3] (and its variant for actions
of 1 on m,) to conclude that every nilpotent Nisnevich sheaf of groups which
is strictly Al-invariant is already A'-nilpotent. O

Lemma 5.20. Shv,is(Smy) and Shv,.,(Smg) are locally of finite uniform ho-
motopy dimension.

Proof. Let S be the collection of all points of Shvyis(Smy), and htpydim: S — N
be the function S" ~ dim(S).

Let F' € Shvys(Smy) be k-connective, S" be a point and U € Zs;. Then
U — S is an étale neighborhood of s, and thus dim(U) = dim(S) (by the
assumption on the connectedness of S). Denote by Xy the category of sheaves
on the site of étale morphisms over U with Nisnevich covers. There is a functor
fu: Shvyis(Smy) — Ay given by restriction. Note that F(U) = (fuF)(U).
Since by [Lurl8a, Theorem 3.7.7.1] Xy has homotopy dimension < dim(S5),
we conclude that F(U) is k — htpydim(s)-connective (note that fyF' is still k-
connective, as fy commutes with homotopy objects, to prove this, one argues
exactly as in the Zariski case, see the proof of Lemma [58)).

For the Zariski oo-topos one argues similar, noting that the points of the
Zariski co-topos are given by the local schemes S;. To see that the small Zariski
oo-topos over a smooth scheme U has homotopy dimension < dim(U), one uses
[Lur09, Corollary 7.2.4.17]. O

Corollary 5.21. Let X € Shvyis(Smg). or X € Shv,,,(Smy). be nilpotent.
Then X, = lim, (TSnX);\.

Proof. This is Theorem B.27 together with Lemma 520 Here we use that
the Zariski and Nisnevich topoi are Postnikov-complete, see Lemma [4.58 and
Lemma 5.1 O

Proposition 5.22. Let X € Spc(k). be nilpotent. Then the p-completion
(Lar X)g is an A'-invariant sheaf.

Proof. By Corollary [B.2T] there are equivalences (t51 X)g = (limy, T<ptp X); =
lim,, (T<ptp1 X );\ Since the limit of Al-invariant sheaves is Al-invariant (as the
inclusion 141 is a right adjoint, i.e. commutes with limits), we can assume that
X is n-truncated (i.e. t41 X is n-truncated). We proceed by induction on n, the
case n = 0 being trivial. Using [AFH22| Theorem 3.3.13] the Postnikov tower

of X has a principal refinement consisting of (nilpotent) motivic spaces X, ,
and sheaves of spectra A, y41 € SHSl(k)Qp, such that there are fiber sequences

Xn,kJrl — Xn,k — K(An1k+1, n + 1)
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and equivalences X,, o = 7<, X. Applying t41 to the fiber sequences gives the
fiber sequence

@
LAan,k—i-l — LAan,k — K(LA1An,k+lan + 1),

where we used Lemma [5.121 Note that by Lemma [5.19] all of those sheaves are
nilpotent.

We can thus proceed by induction on 0 < k < m,,. We know that (41 X,,0)
(T<niar X )2 is Al-invariant by induction (on n). Thus suppose we have shown

N ~
P
that (LAanyk);\ is Al-invariant, & < m,,. Using the above fiber sequence, we
can compute the p-completion using Proposition [3.20]

A
(LAan,k-i-l);\ = Tzlﬁb((LAan,k);\ — (K(LX1An,kan + 1)) )

p

Since fibers and connected covers (Lemma[5.13]) of Al-invariant sheaves are A'-

invariant, we can reduce to the case X = K(LglA,n) for some A € SHSl(k)O

and n > 2.
A
But then XQ = 70 ((E"LZ&A) ) Since connected covers of Al-
P

invariant sheaves are Al-invaraint (again by Lemma [(.13), it suffices to show

A
that (LXI A) is Al-invariant. But this is just a limit of Al-invariant sheaves of
P
spectra, and therefore Al-invariant (as 141 is a right adjoint). O

Remark 5.23. We now want to show that the p-completion of a nilpotent mo-
tivic space is the same as the p-completion of the underlying Nisnevich sheaf.
In order to do this, one needs to show that the motivic space LAI((LAlx);\)
is again p-complete. We would like to argue again using the principal refine-
ment of the Postnikov tower, and write this motivic space as a repeated limit
of p-completions of Eilenberg Mac-Lane spaces. Unfortunately, this approach
has a major drawback: By calculating p-completions on the Postnikov tower,
connective covers will appear. This introduces a problem: Since the category of
motivic spaces is not an co-topos, we cannot use the arguments from Section[3.2]
to conclude that the connective cover of a p-complete space is again p-complete,
since it is not at all clear that the p-completion of motivic spaces respects .
We can correct this error by working in the category of connected motivic spaces
(in particular, every nilpotent motivic space is connected). This also leads to
the following conjecture:

Conjecture 5.24. Let X € Spc(k). be a pointed motivic space. If X is p-
complete, then also 71X 1is p-complete.

We now introduce the category of pointed connected motivic spaces:

Definition 5.25. Write Spc(k)>1 . for the category of pointed connected motivic
spaces, i.e. the full subcategory of Spc(k). spanned by objects X such that the
underlying Nisnevich sheaf 141 X is connected (i.e. mp(1p1X) = *).
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Remark 5.26. Note that we have homotopy sheaves 1, : Spc(k)>1.. — SHSl(k)O
for n > 2, and 71 : Spc(k)>1,« — Grpsee (k).

Remark 5.27. Note that Spc(k)>1,+« is presentable: It is stable under all colimits
in Spc(k)«, and is the preimage of the terminal category * under the accessible
functor 7y o tp1: Spe(k). — Disc(Shvpis(Smy)), thus also accessible by [Lur(9,
Proposition 5.4.6.6]. Hence, we can apply Section Bl and get a p-completion
functor on this category.

Using the presentability of Spc(k)>1,« and the observation that the inclu-
sion Spc(k)>1,+ — Spc(k)s preserves colimits (this follows from the fact that
Ly preserves connected objects), the adjoint functor theorem gives us a right
adjoint.

Definition 5.28. Write t>1: Spc(k)>1,+ &= Spc(k).: 7>1 for the canonical ad-
junction. We define as shorthand the following notations:
tar >1 = tp1t>1: Spe(k)>1,« — Shvpis(Smy)., and
lnis, A1, >1 = lnislptl>1: Spc(k)ZL* — Shvzar(smk)*-

Lemma 5.29. We have an equivalence of categories SHSl(k) = Sp(Spc(k)>1,4)-
In particular, we have a commuting diagram

Spc(k)>1,« — Spc(k

5 b

SHS (k).

Thus, if f: X = Y is a morphism of connected pointed motivic spaces, then
it is a p-equivalence if and only if the underlying morphism of pointed motivic
spaces t>1 f 1s a p-equivalence.

Proof. Recall from [Lurl7 Remark 1.4.2.25] that there are equivalences of co-
categories

SHS(k) = 1im (... < Spe(k). 2 Spe(k)s)

and
Sp(Spe(k)s1..) 2 lim (... 2 Spe(k)s1.. 5 Spe(k)s1..).

The result follows by a cofinality argument, using that we have equivalences
Q751X = QX for every pointed motivic space X. O

Using the last lemma, from now on we will identify the stabilization of
1
Spc(k)>1.. with SH (k).

Definition 5.30. Let X € Spc(k)>1,.. We say that X is nilpotent if the
underlying motivic space is nilpotent.
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Theorem 5.31. Let X € Spc(k)>1,« be a nilpotent pointed motivic space

(note that every nilpotent space is connected). We have a canonical equiva-
lence LAI)Zl(X;\) ~ (LAI)ZlX);\. In other words, the p-completion of a nilpotent

pointed connected motivic space can be computed on the underlying Nisnevich
sheaf.

Proof. Let 141 >1X — (LAI)ZlX);\ be the canonical p-equivalence. Applying
Ly yields the p-equivalence (in Spc(k).)

LZlX = LAILAlﬁle — L ((LAlﬁle);\) .

Note that ¢>; X is connected by assumption, and that the right-hand side is
connected because the p-completion in an oo-topos preserves connected ob-
jects (see Lemma [BI2), and the same is true for Lyi, see [Mor04, Corol-
lary 3.2.5]. Thus, this is a morphism in Spc(k)>1,+, and hence we have a p-
equivalence X — TzlLA1((LA121X)2), see Lemma [5.291 It suffices to show
that the right object is p-complete: Then p-completion induces an equivalence
Xﬁ ERPSTIN ((LA121X):). Applying a1 >1 then induces an equivalence

A A
LAY >1 (XZ/)\) = LA1721T21LA1 ((LAl,ZlX)p) = (LAl,ZlX)p 5
where we used in the last equivalence that (141 X )2 is already connected (by the
above discussion) and A'-invariant (see Proposition [5.22).
In order to see that 751 L1 (LAlﬁle);\ is p-complete, we first reduce to the
case that X is truncated: For this, we calculate
A . A
TZlLAl ((LAlyle)p ) = TZlLAlhmn (TgnLAngX)p

TZlLAllimn Lt LAl ((TSnLAl,ZlX) )

A
p

TZlLAl Ll hmn LAl ((TSnLAl,ZlX):)
= TleiInn LAI ((TSHLAI,ZlX);\)

2

. AN
= lim,, TzlLAl((TgnLA1,21X)p)a

where we used Corollary[5.2Tlfor the first equivalence, and that (TgnL At >1 X )2 is

Al-invariant in the second equivalence (see Proposition[5.22] using that 7<,x1 >1X
is nilpotent). The third equivalence holds because ty: commutes with limits,
the fourth equivalence is fully faithfulness of ¢41, and the last equivalence uses
that 7> is a right adjoint. Since limits of p-complete objects are p-complete, it
suffices to prove the statement for truncated nilpotent connected motivic spaces.
Proceeding as in the proof of the last proposition, we choose a principal
refinement of the Postnikov tower (note that all the X, , are automatically
connected since they are nilpotent), and do double induction on n and k (with
notation as in the proof of Proposition [5.22]). Therefore, we assume that the
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statement is true for X, , (i.e. TzlLAl((LA121X):) is p-complete), and that
there is a fiber sequence

0
tar >1Xn k1 = tar >1 X0k = K0 Ap gy, n+ 1),

Using the above fiber sequence, we can compute the p-completion using Propo-
sition B.200 Applying 7>1 L1, we calculate

A
TZlLAl ((LAl,Zan,kJrl)p)

A
= T>1LA17->1ﬁb((LAl,len,k): — (K(L;&An,k,n + 1)) >
p

N
= 7> Lpim>11ib (LAILAI ((LAI)Zanyk):/D\) — a1 Lt <(K(L21Anﬁk,n + 1)) >)

p

AN
TZlLAszlLAlﬁb<LA1 ((LAllemk);\) — L ((K(LXIAH);C,TL—I— 1)) ))

p

A
TZlLA1LA17>1T21ﬁb(LA1 ((LAllemk);\) — LAI ((K(LX1An,kan+ 1)) ))
p
A
= T>1L>1T>1ﬁb<LA1 ((LAan,k);\) — LAI ((K(LglAnyk,n—F 1)) >)
p

7’>1ﬁb<LA1 ((w,zlxn,k):) S Ly ((K(LXIAHJC,TL—I— 1))2))

A
=~ fib (TZlLAl ((LAIyZan)]C);\) — TZlLAl ((K(LX1An,k7n+ 1));0))7

Here, the second equivalence holds because both p-completions on the right are
actually Al-invariant, see again Proposition [5.22 The third, fourth and fifth
equivalences hold because ty1 commutes with limits and the connective cover
(Lemma [B5.13), and is fully faithful. The sixth equivalence is fully faithfulness
of ¢>1, and the last equivalence holds because 7> commutes with limits. By
induction, 7>1L: ((LA%Zan,k):) is p-complete. Since fibers of p-complete
objects are p-complete, we have reduced to the case of an Eilenberg-MacLane
space.

So suppose that n > 2 and A € SHY(k)? is strictly Al-invariant. We
A

need to show that 751 L1 ((K (LXIA,TL)) ) is p-complete (in connected motivic
P
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spaces). We compute

T>1Lp1 (( (LAIA n))i) > 75y Lanm>1805° ((E"LAIA)A)

gTzlLAszlﬂio ( T A

I

»)
%TzlLAN}lQ(:O ( E"A ;\)

A

p

T>1LA1T>1LA19 ( EnA

I

TZlLAlel,leEIQ:O ((EWA);D>
= T21L21T21Q§O ((EHA);\)

210 (27 4)))

2

1%

where we used Corollary 318 in the first equivalence, and t-exactness of tx1
(Lemma [B5) in the second equivalence. The third equivalence holds because
ty1 commutes with limits, the fourth equivalence is Lemma [A 1l and the fifth
is Lemma The last two equivalences use fully faithfulness of ¢41 and ¢>.
The theorem follows because 7>1§25° preserves p-complete objects (as its left

adjoint $°°: Spc(k)s1 .. — SHY 1(k) preserves p-equivalences by definition). O

Remark 5.32. Note that if Conjecture [5.24] is true, then the same reasoning

allows us to prove the following result: If X € Spc(k). is a pointed nilpotent
N ~ A

space, then (LAIX)p =Xy,

The same technique allows us to prove a related result: The p-completion
of the underlying Nisnevich sheaf of a nilpotent motivic space is also the p-
completion of the underlying Zariski sheaf. For this, we need the following
lemma:

Lemma 5.33. Let A € SHSI( k)Y andn > 2.
There is an equivalence tyis(K (LAIA n)p) = K(,

Ayn)p.

nis, Al

Proof. Note that since 141 and iy o1 are t-exact for the standard t-structures
(see Lemmas and [B.TT]), we see that LXIA >~ A, and similarly, r?is mA =

Lnis,ar A. Therefore, we see that K(LxlA,n) QY"1 A, and K( nis, A n) =
QXY 5,41 A. Thus, it suffices to show that there is an equivalence

("1 A))) 2 (UL 15 11 A).

67



We now calculate
Lnis ((Q(:OE”LAIA);\) = LnisQ:oT21 ((EHLAIA);\)

= Q% LnisT>1 ((Z"LAlA)A)

)
n)

= 9?7'21 ( E lnis, AIA ;\)
= (Qioz Lnis,AlA)p

>

= Q lnisT>10lA1 ((EHA)

bS]

> QX T>1lnis, Al ( E"A

”U>

Here, the first and last equivalences are Corollary B.I8 the second equivalence
is Lemmam the third and fifth equivalences follow from Lemma [Z.32 and the
exactness of ty1 and tp;s a1, and the fourth equivalence is Lemma [5.15] O

Theorem 5.34. Let X € Spc(k). be nilpotent. Then Lnis((LAlX)z/)\) ~ (Lnis’AIX);\
In particular, if we regard X as an object of Spc(k)>1,« we get an equivalence
Lnis, Al >1(XA) (Lms Al >1X) by combining this result with Theorem [5.3]l

Proof. First, assume that X is n-truncated for some n. As above, we choose
a principal refinement of the Postnikov tower of X, with X, ; € Spc(k). and

Ani € SHSl(k)O. We proceed by double induction on n and k, the case n = 0
being trivial. As above, we have a fiber sequence

Q
LAan,k+1 — LAan,k — K(LAlAn1k+1, n -+ 1).
Applying tnis, we get a fiber sequence
Q
lnislAl Xn k+1 — LmbLAan k7 K( Lpistar An,k—i—la n+ 1)7

where we used Lemma [5.12] We now compute

(nistat Xn,k+1)2 &~ TZlﬁb((LmbLAan k) — K(¢ nlbLAlAn7k+l7 n—+ 1)2)
= 75 1fib (tnis (141 X)) = tais(K (05 Apesn,m 4+ 1))
o~ Tzlbnisﬁb((wxn D) = KO Ay, n + 1);)
= Lnistlﬁb((LAan k) — K(LAlAn,k+1,n + 1)2)
= Lnis((LAIXn,kH)p)-

Here, the first and last equivalences are Proposition[3.20, the second equivalence
follows from induction and Lemma [5.33] the third equivalence exists because
tnis commutes with limits (as a right adjoint), and the fourth equivalence is
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Lemma 515 (noting that the fiber is Al-invariant as a limit of Al-invariant
sheaves). This proves the claim.

We will now deduce the general case. We have the following chain of equiv-
alences:

nis ((LAIX);\) > nislimy, (TSHLAIX)Z/)\

=~ lim,, tnis ((TSHLAI X)g)

= limy, (bnisT<nlal X)Q
. A
= lim,, (TgnLnisAl X)p
A
= (Lnis,AlX)p .

The first and last equivalences are Corollary[5.2Il The second equivalence holds
because ¢ commutes with limits (as a right adjoint). The third equivalence was
proven above, since 7<, X is n-truncated. The fourth equivalence is Lemmal[5.14]
(note that X is connected because it is nilpotent). This proves the theorem. O

Remark 5.35. Again, if Conjecture (.24 is true, then we/\get the following: If
X € Spc(k). is a pointed nilpotent space, then (LnisyAlX)p = Lpis Al X?.

5.3 A Short Exact Sequence for Motivic Spaces

We want to establish a short exact sequence for the homotopy objects of the
p-completion of motivic spaces, similar to the one for Zariski sheaves from The-
orem i4.69

Lemma 5.36. Let A € SHSl(k)O. Then Lr?is A satisfies Gersten injectivity
(Definition [£.60).
Proof. This is proven in [AD09, Lemma 4.6], if k£ is an infinite field. If & is a

finite field, we can argue as in the above reference, using the Gabber presentation
lemma for finite fields, see [HK20, Theorem 1.1]. O

Lemma 5.37. Let A € SHSl(k)@. Then tyis a1l A = Libx?is A

Proof. Since ty;s a1 is t-exact for the standard t-structures (Lemma B.IT]), we
see that Lr?is arA = i a1 A. Moreover, the same functor is also t-exact for the
p-adic t-structures (Lemma [517). Therefore, we compute

tnis, At Li A = tyis a1 TP A = 13 a1 A = Lo LA

nis, AL
Note that L; is just given by the functor 7? restricted to the standard heart. O

Corollary 5.38. Let X € Spc(k). be a pointed motivic space. We have canon-
ical equivalences L;my, (tnis a1 X ) = tnis a1 Limn (X)) and Ly a1 Limp (tnis a1 X) =
L;mn(X) for all i and n > 2. If m(X) is abelian, then the same is true for
n=1.
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Proof. We have the following sequence of equivalences:
Lt (tnis,a1 X) = Lit g p17n (X) 22 s a1 Limn (X),

where the first equivalence is given by Corollary[5.16l and the second equivalence
by Lemma [5.37 Applying Ly o1 we arrive at the equivalence

Lnis,A1 L;my, (Lnis,Al X) = Lnis,A1 lnis, A1 Limn (X) = Limy, (X)7

where the second equivalence used the fully faithfulness of ¢y 1. If 71 (X) is

abelian, then we can regard it as an object of SHSl(k)@ (see Remark [£.8). In
this case, the same proof works. O

Lemma 5.39. Let X € Spc(k). be a pointed motivic space. Then mp (tpis a1X)/p"
satisfies Gersten injectivity for all k > 1 and n > 2. If m1(X) is abelian, then
the result also holds for n = 1.

Proof. Fix n > 2 and k > 1. We have equivalences
T (tmis, a1 X) /D" 22 (g pa T (X)) /08 22 07 4 (700 (X)) /D%),

where we used Corollary (.16 in the first equivalence and exactness of Ll?is AL
in the second equivalence, see Lemma [5.11} Thus, we conclude by Lemma
that 7, (tnis,a1 X)/p" satisfies Gersten injectivity.

If m(X) is abelian, then we can regard it as an object of SHSl(k)QQ (see
Remark [5.8)). In this case, the same proof works. O

Lemma 5.40. Let A € SHSI( k)Y, Then v.L;v* Lms AlA LleS AlA for all i.
In particular, v,lL;v* L AlA € Shvzar(Smk,Sp) for all i. Moreover, we

have that v, L;v* Lms nAc€ A where A is the subcategory of Shv,.,(Smy, Sp)

from Definition .50,
Proof. By exactness of L oa1 (see Lemma B.IT)), for every k > 1 there are

equivalences (7, nis,Al )/pk = fis Al (A/p*). Thus, by Lemma [5.36] ( Nis, Al A)/pk
satisfies Gersten injectivity for all k. This implies that (L;v* Lms s A))p is
classical, see Corollary @65 Thus, the equivalence is provided by Lemma F.39]
Note that the same lemma shows that also (Lyv* Li?i& a1 A)//p is classical for all

i. Thus, the statement about A follows immediately from Lemma [4.57] O
We will need a non-abelian variant of Lemma [5.12]

Lemma 5.41. Suppose G € Grp(Disc(Shvyis(Smy))) is strongly Al-invariant.
Then BiyisG = 14isBG.

Proof. Since both objects are Zariski sheaves, it suffices to prove that for all
T = Spec(Oy,,,) the spectra of the local rings of a scheme U € Smj, with point
u € U, the canonical map (BnisG)(T) = (tnisBG)(T) is an equivalence. Here,
for a Zariski sheaf F' we define F(T) := (v*F)(T) = colimr_, vy F(V), where
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the colimit runs over all open neighborhoods of T in U. By Whitehead’s theorem
and the fact that both anima are 1-truncated, we can reduce to showing that
the canonical map induces an equivalence 7y ((BtnisG)(T)) = 7 ((tnis BG)(T))
for £ = 0,1 and all choices of basepoints. Note that both sheaves have a
canonical basepoint *, and that we have mx((BinisG)(U), %) = H*“F(U, 1,3sG)
and 7 ((tnis BG)(U), %) = m((BG)(U)) = H'"F(U,G) for all U € Smy, see
IMV99, Proposition 4.1.16]. Note that we have isomorphisms of cohomology
groups H'=*(U, 1,sG) = H**(U, Q) for all k and U by [AD09, Theorem 4.5]
(The reference uses that & is an infinite field. If & is a finite field, we can argue
as in the above reference, using the Gabber presentation lemma for finite fields,
see [HK20, Theorem 1.1]).

In particular, since homotopy groups and cohomology are compatible with
filtered colimits, we get 7o ((BnisG)(T)) =2 HY(T, 1nisG) = 0, since Zariski co-
homology is Zariski-locally trivial.

Thus, we immediately see that both anima in question are connected, and
we have to prove the equivalence on m; only over the canonical basepoint, which
we have seen above. O

Recall the category A from Definition
Lemma 5.42. Let C € SHSl(k)pQ?. Then LiZ,Al € A C Shvyis(Smy, Sp)PY.

Proof. Write C’ := Lflz 11 C = g a1C (see Lemma [5.17 for the equivalence).

We have to show that 77'(v*C’) 22 0. Note that by Lemma 229 there is a short
exact sequence

0 — Lo (V*C/) — Ff(V*C/) — LNTQ(V*C/) — 0.

By Lemma 219 we know that C' € Shv,..(Smy,Sp).o. Thus, m (v*C’) =
v*m1(C’) 2 0. Hence, it suffices to prove that Limo(v*C’) = Liv*me(C’) = 0.
But note that mo(C’') = mo(tnis,a1C) = tyis,arm0(C) by Lemma [E.IIl  Since
Liv*this a1 mo(C) is p-complete (e.g. by Lemma 219), it suffices to show that
(L1 v*tnis a1m0(C)) J/p = 0. Note that this sheaf is classical by Corollary G5l
where we used that (inisa170(C)) /D™ = tyisa1 (mo(C)/p™) satisfies Gersten in-
jectivity (see Lemma [B.IT] for the first equivalence, and Lemma for the
claim about the Gersten injectivity). Thus, we calculate

(L1v™ tnis,a1m0(C)) J/p = v v (L1 v tyis a1 m0(C)) /)

(1™ tyis, a1 m0(C)) [ p)
“(Lyenis,armo(C))/p)
*((La7mo(tnis,ar ©)) [ p),
where we used that the sheaf is classical in the first equivalence, exactness of v,
in the second equivalence, Lemmal£.39in the third equivalence, and Lemma[5.11]

in the last equivalence. Therefore, it suffices to prove that Ly (tyis a1 C) = 0.
Again, Lemma [2.29] supplies us with a short exact sequence

1%

1%

v
v
v
v

o~

0— L()?Tl (Lnis,Al O) — ﬂ-f(Lnis,Al C) — ]Llﬂ-O(Lnis,Al O) — 0.

71



But we have 7 (tnis 41C) = tyis a1 (C) = 0, where we used Lemma 517 in

the first equivalence and the assumption that C' € SHSl(k)po in the second
equivalence. This proves the lemma. O

Lemma 5.43. Let G € Grp(Disc(Shvnis(Smyg))) be a nilpotent sheaf of groups,
which is strongly A'-invariant. Then LiinisG € Shv,a.(Smy, Sp)pv
use Definition [{.40

Proof. Using [AFH22, Proposition 3.2.3], we see that G is in particular Al-
nilpotent, in the sense of [AFH22| Definition 3.2.1 (3)]. Thus, there is a G-
central series G = Gy D G; D --- D G, = 1 (i.e. the G; are sheaves of
normal subgroups and the quotients A; := G;/G;4+1 have trivial G action (via
conjugation)), such that the A; are again strongly Al-invariant. Moreover,
the G; are strongly Al-invariant ([AFH22, Remark 3.2.2 (1)]). Since the A; are
abelian (JAFH22, Remark 3.2.2 (3)]) and strongly Al-invariant, they are strictly
Al-invariant by [Mor12, Theorem 4.46]. Note that we have central extensions
of groups

, where we

1— Ai — G/Gi—i-l — G/Gl — 1,
see [AFH22| Remark 3.2.2 (3)]. This extension is classified by a fiber sequence

B(G/GH_l) — B(G/GZ) — K(LX“‘L', 2),

where A; € SH l(k)v corresponds to the strictly Al-invariant sheaf of abelian
groups A;. Thus, we can proceed by induction. Recall the definition of the full
subcategory A C Shv,..(Smg, Sp)?Y from Definition We will inductively
prove that Li,s(G/G;) € A C Shvzar(Smk,Sp)po, and that Lqunis(G/G;) is
actually an A'-invariant Nisnevich sheaf of spectra living in the p-adic heart,
i.e. there is a B € SHSl(k)pv with 1341 B = Litnis(G/G;). The base case
G/Go = G/G =1 is trivial.

So suppose the statement holds for G/G;. Since tnis preserves limits (as a
right adjoint) and v* preserves finite limits (as the left adjoint of a geometric
morphism), we get a fiber sequence

Vi inisB(G/Git1) = UV tnis B(G/Gy) = v tnisK (171 Ay, 2).

Since all involved groups are strongly Al-invariant and nilpotent, this fiber
sequence is equivalent to the fiber sequence

V' Binis(G/Git1)) = v B(tnis(G/Gi)) = V'K (17 41 A, 2),

see Lemmas [5.12] and 5411 Now Proposition B.19 implies that we have a fiber
sequence

71 (" Bluais (G/Gis)) = (" Blenio( G/Gi)))p = (v K (15 10 41,2)
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But (V*B(Lnis(G/GiH)))g is already connected, see Lemma [I9 Thus, we
arrive at the fiber sequence

- A
(V" Buaio(G/Gi1))) = (v Buaio(G/G2))) — (V K(S, A, 2)) .

P
Thus, using the long exact sequence and the fact that the p-completion of a
k-truncated object is (k + 1)-truncated (see Proposition B21]), we get an exact
sequence in Py (W, Sp)”

A A
0 ms (V K(S) 0 As, 2))p 5 L1t 10is(G /G 1) = L™ inis(G/Gy) — (y K, . A, 2))p,

where we use Definition .25 for L.;. Using Proposition 28] we can identify

~ N

for k = 2,3. Thus, we arrive at the exact sequence in Px (W, Sp)po
0— LlV*Lr?is,AlAi — Lll/*bnis(G/Gi+1) — }Lll/*bnis(G/Gi) — Lol/*bisAlAi.

We want to apply Proposition[£50] to this exact sequence. We first check the
assumptlons on the outer two terms involving A;. We know that v, L,v* LQ? AlA ~

JLk A for all k, and that it lives in A, see Lemma [5.40 Therefore, we also

p@ ~ . % pQ @ ~ *, QO N‘ _
get v }LkLms AlA v v lLpv* Lis, AlA Lyv Lnis,AlAl for all k, see Corol

lary 53] for the second equivalence.

By induction, Liinis(G/G;) = v liv* iis(G/Gi) € A C Shv,,, (Smy, Sp)pv
In particular, P Ly 1his(G/Gy) = v P v Liv* 14is(G/Gy) =2 Liv*inis(G/Gy),
where we also used Corollary 453l for the second equivalence.

Thus, we are left to show that coker(ILytnis(G/Gi) — I[JOLmb Al A) € A:
First note that LOL AlAl & 7f (Lis, A = ALTY P(A;) = LPO Alwg(A ) by
t-exactness for the standard and p-adic t-structures of ;5 41, see Lemmas BT
and 517 By induction, there is a B € SHS( )PY with Lp? AlB Liinis(G/Gy).

Therefore, again by exactness and fully faithfulness of .* Al’ the cokernel is

]']lb
also of the form Lms 51 C for some C' € SHS (k)P¥. Thus, we immediately get
that the cokernel is in A, see Lemma [5

We can now apply Proposition m which allows us to deduce that also
Lanis(G/Gi+1) = I/*Llu*bnis(G/Gi+1) eAcC Shvzar(Smk, Sp)o

Moreover, there is now an exact sequence

0— L]‘LIQ]?iS AI/L' — }lenis(G/Gi—i-l) - K — 0,

where K = ker(LL1tnis(G/G;) — LOL AlA ). We have seen above that Lkb Alfi
is in fact an A'-invariant Nisnevich sheaf of spectra, living in the p-adic heart
(for k = 0,1). By induction, the same is true for Ljinis(G/G;). Exactness of
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Li:Al implies that this also holds for the kernel K. Thus, L1 tnis(G/Gi41) sits in
a short exact sequence where the outer terms are A'-invariant Nisnevich sheaves
of spectra, living in the p-adic heart. From this we deduce immediately that the
same is true for Ljtnis(G/Gi41). This concludes the induction. O

Definition 5.44. Let X € Spc(k). be a pointed motivic space. For every n > 2
we define the p-completed homotopy groups of X via

7T5(X) = Lnis,Alﬂ-g(Lnis,Al X) S SHSl(k),
and for n =1 via
m(X) = Lniswf(LnisAlX) € Grp(Disc(Shvyis(Smg))).
(Recall Definition for the p-completed homotopy groups of ¢p;s 41 X.)

Remark 5.45. Let X € Spc(k). be a pointed space. We will show in Theo-

M
rem [5.49 that if X is nilpotent, then actually 72 (X) € SHSl(k)p ifn > 2.
Thus, the name p-completed homotopy group is justified.

Lemma 5.46. Let X € Spc(k). be nilpotent. Then the canonical map induces
an equivalence 7P (X) — Wﬁ(L21((T21X);\)) for alln > 1.

Proof. We know Lnis’Alﬁzl((TZ]AX);\) = (LnisyAlylele);\ = (Lni&AlX);\ from
Theorem [5.34] and the fact that X is connected because it is nilpotent. There-
fore, the map tyjs 41 X — LnisA121((Tle)2) is a p-equivalence. Thus, we con-
clude from Lemma that 72(X) — ﬂ'ﬁ(LZl((TZlX);\)) is an equivalence
(note that by definition 78 (X) = Lyjs o178 (tnis,a1 X ) and wﬁ(LZl((Tle)g)) =
Lnis)Alﬂ'g(Lnis)Al)Zl((Tle);\)) if n > 2, and similarly for n = 1). O
Proposition 5.47. Let f: X — Y be a morphism in Spc(k). of pointed nilpo-
tent spaces, and n > 1. If f is a p-equivalence, then P (f) is an equivalence.

Proof. Note that we can regard f as a morphism in Spc(k)>1 . since nilpotent
spaces are connected. In particular, it is also a p-equivalence in this category,
see Lemma Thus, we can assume that f is a p-equivalence in Spc(k)>1 «,
and we want to prove that 72 (¢>1(f)) is an equivalence.

By p-completing, we get a commutative square

x 1,y

| ]

A r A
XP YP

where the downwards arrows are the canonical p-equivalences. Applying the
functor 72 (1>1(—)) for n > 1, we arrive at the square

74



Since f is a p-equivalence, we know that fﬁ is an equivalence. In particu-
lar, % (¢>1(f})) is an equivalence. The two vertical maps are equivalences by
Lemma 548 From this we conclude that also 72 (v>1(f)) is an equivalence. O

Definition 5.48. Let G € Grpg(Disc(Shvyis(Smy))) be a strictly Al-invariant
nilpotent sheaf of groups. We define

LIG = LnisHJI LnisG € ShVnis(Smk7 Sp)u
where we use Definition [£.40] and
LoG = LpisLotnisG € ng(ShVnis(Smk)).

Theorem 5.49. Let X € Spc(k)s be a pointed nilpotent motivic space. Then

for every n > 2, there is a canonical short exact sequence in SHSl(k)pQj (or a
short exact sequence in Grps,(Disc(Shvyis(k))) if n=1)

0 = Lomy (X) = 7h(X) = Lim,—1(X) = 0,
where we use Definition [5.78 for L;m1(X). In particular, 72 (X) € SHSl(k)po.

Here we set Lymo(X) =0 since X is connected.
Moreover, for n > 2 the unit map induces an equivalence

Lnis, Al Wﬁ (X) = lnijs,Al? Lnis,A1 7-‘—71; (Lnis,AlX) = 7T}%(Lnis,Al)()u

i.e. T (tnis a1 X) is already an A'-invariant Nisnevich sheaf of spectra. If m(X)
is abelian, the same is true for 7} (ipis a1 X).

Proof. Note that m, (ty;s 41X)/p" satisfies Gersten injectivity for all n > 2 and
all £ > 1, see Lemma [E39 By this lemma, the same is true if m;(X) is
abelian. If not, then we can still conclude by Lemma [5.43] that L1 (¢hi5,41 X ) €

Shv,ar(Smy, Sp)P® (note that (141 X) is strongly Al-invariant by [Morl2,
Corollary 5.2], and that 7 (this a1 X) = tnismi (a1 X) by Corollary G.16]).
Thus, for n > 2 we have a short exact sequence

0— Loﬂ'n(LnisAlX) — Wz(Lnis,AlX) — Llﬂ'nfl(Lnis,AlX) —0
in Shv,,, (Smy, Sp)p@ by Theorem .69 Applying Ly;s a1 we get a fiber sequence
Lnis,A1 Loﬂ—n(Lnis,AlX) — Lnis,A1 ﬂ-ﬁ(Lnis,AlX) — Lnis,A1 I[J17Tn—1 (Lnis,AlX)'

Using Corollary [£.38, we compute that Ly aiLimg(tnisar X) = Lime(X) (if
k =1, then this is just the definition). Moreover, Lyis a17E (tnis01 X) = 78 (X)
by Definition [5.44l Thus, we get a fiber sequence

Loﬂ'n(X) — Wz(X) — Llﬂ'n,l(X).
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Note that the outer terms are in Shvys(Smy, Sp)” v by definition. Thus, using
the long exact sequence, we conclude that also 72 (X) € Shvyis(Smy, Sp)”  and
the fiber sequence yields an exact sequence

0— Lomp(X) = 72(X) = Lim,—1(X) — 0.
The last statement follows since we have (again by Corollary [(.38)
Lim (Lnis,AlX) = Lnis,AlLiﬂ-k (X)v

i.e. the L;my (tpis a1 X ) are Al-invariant Nisnevich sheaves (of spectra), and thus
7P (nis,a1 X ) sits in the middle of an exact sequence, where the outer terms are

in SHSl(k)po C SHSl(k) < Shv,.(Smyg, Sp). Thus, since stable subcategories
are stable under extensions, the result follows. If 71(X) is abelian, the same
proof works.

If n =1, Theorem instead supplies us with a short exact sequence

0 — Lo (tnis,ar X ) = T (tnis,a1 X ) = L17o(tnis,a1 X) — 0
in Grp(Disc(Shv,ar (Smy))), where Ly 7o (tpis a1 X) = 0, i.e. this is an equivalence
Lom1 (tnis,a1 X) = 7 (s, a1 X).
Applying L5, we get an equivalence
LisILom1 (tnis, a1 X)) = Liism (tpis a1 X)

in Grp(Disc(Shvpis(Smy))). Note that by definition, the right-hand side is
7 (X), and the left-hand side is Lom(X). We thus get the required short
exact sequence. O

Corollary 5.50. Let X € Spc(k). be nilpotent. Then for n > 2 there is a
canonical short exact sequence in SHSl(k)po (or in Grp(Shvyis(Smy)) if n=1)

0= Lomn (X) = 7 (11 ((721X);))) = Limp—1(X) = 0.
Proof. This follows immediately from Theorem and Lemma O

Remark 5.51. Let X € Spc(k). be nilpotent and n > 1. If Conjecture 5.24] is
true, then we get moreover a short exact sequence

0 = Lomn(X) = 7b (X)) = Limp—1(X) = 0.
We can now also establish a (partial) converse to Proposition 5.4

Proposition 5.52. Let f: X — Y € Spc(k). be a morphism of pointed nilpo-
tent spaces with abelian fundamental groups. Assume that w2 (f) is an isomor-
phism for allm > 1. Then f is a p-equivalence.
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Proof. Tt follows from Theorem that 72 (tpis,a1 X) and 78 (1h541Y) are al-
ready A'-invariant Nisnevich sheaves for all n > 1. Therefore, we conclude that
7P (tnis,a1 f) is an isomorphism for all n > 1 (note that Ly 17 (tnisar f) =
7P (f) are isomorphisms by assumption).

Note that by the proof of Theorem we conclude that ¢y 41X and
tnis.a1Y satisfy the conditions of Theorem Therefore, Proposition 471
implies that tyis 41 f is a p-equivalence. Hence, also f = Lyig a1inisatf is a p-
equivalence. Here, we used that tps a1 is fully faithful and Lemma BTl This
proves the proposition. O

Remark 5.53. As in the case of Proposition [L71] the assumptions that m(X)
and 71 (Y") are abelian can probably be relaxed, but a proof of this statement is
unclear to the author, see also Remark [4.72]
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A Background Material

A.1 Stabilization

We prove some basic results about the stabilization of adjoint functors of pre-
sentable oo-categories. All the results are well-known, but hard to track down
in the literature.

Lemma A.1. Let f*: X 2 Y: f, be an adjunction of presentable co-categories.
Then f* and f. induce an adjunction

[ Sp(&X) = Sp(Y): [

of exact functors such that the following diagrams of functors commute (up to
homotopy):

Proof. [Lurl7, Propositions 1.4.2.22 and 1.4.4.4] imply the existence of a limit-
preserving exact functor f.: Sp()) — Sp(&) that fits into the right diagram
(see also the proof of [Lurl7, Corollary 1.4.4.5]). Using [Lurl?, Proposition
1.4.4.4 (3)], we see that this functor admits a left adjoint f*. By uniqueness of
adjoints, we conclude that the left diagram is commutative. O

Lemma A.2. In the situation of LemmalA. ]l assume moreover that f.: )Y — X
is fully faithful. Then also fi: Sp(Y) — Sp(X) is fully faithful.

Proof. The category Sp(X) can be defined as the category of excisive functors
from finite anima to X, see [Lurl7, Definition 1.4.2.8]. Note that the functor f.
is given by postcomposing with the functor f.: Y — X'. Thus, the result follows,
since postcomposition with a fully faithful functor is already fully faithful on
functor categories. O

Lemma A.3. In the situation of Lemma A 1], assume moreover that f* is left
exact. Then we have canonical equivalences

JrO(=) = 0% ()
and
FrOE (=) = QA ().
Moreover, if f*: X — Y is conservative, so is f*: Sp(X) — Sp(}).

Proof. The category Sp(X) can be defined as the category of excisive functors
from finite anima to X, see [Lurl7 Definition 1.4.2.8]. Note that the functor
> is given by evaluating at the finite anima S, see [Lurl7, Notation 1.4.2.20].
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In contrast, the functor f* is given by postcomposing excisive functors with
f*: X = Y. It is therefore clear that f*Q°°(—) = Q> f*(-).

Suppose now that f*: X — ) is conservative. Let g: E — F be a mor-
phism in Sp(X) such that f*g is an equivalence. In order to show that g is an
equivalence, it suffices to show that Q2°3>"g is an equivalence for all n. Since
f*: X = Y is conservative, it thus suffices to show that f*Q3°%"g is an equiv-
alence. But we have

[rOTE g = QX N g = QXY g,
which is an equivalence by assumption. o

Lemma A.4. In the situation of LemmalA 1, assume moreover that f*: X — Y
is fully faithful and left exact. Then f*: Sp(X) — Sp(Y) is fully faithful.

Proof. We need to show that f.f* = idg,(xy. So let E € Sp(X). In order to
show that f, f*F = E, it suffices to show that for all n, QX" f, f*E = QX" F.
But we have

~ f, f* QY E
= OCY"E.

The first equivalence is clear because f, and f* are exact. The second equiva-
lence uses Lemma [A.3l The last equivalence follows because f*: X — Y is fully
faithful. O

The stabilization of a presentable co-category X has a canonical t-structure,
which we call the standard t-structure:

Lemma A.5. The category Sp(X) has an accessible t-structure (the standard
(or homotopy) t-structure), given by Sp(X)._, = {E € Sp(X)|Q>®E = x}.
This t-structure is right-separated (i.e. (), Sp(X)., =0).

Proof. The existence of the t-structure is [Lurl7, Proposition 1.4.3.4].

For the other statement, we essentially copy the proof of [LurI8al Proposition
1.3.2.7 (3)]. Let F € ), Sp(X).,,- By definition, this says that Q°X"F == x
for every n. Since the functors Q%" are jointly conservative and preserve final
objects (as they commute with limits), it follows that F' = 0, i.e. the t-structure
is right-separated. O

Lemma A.6. In the situation of LemmalA D, assume moreover that X and Y
are oo-topoi, and that f* is left exact (i.e. (f*, f+) is a geometric morphism,).
Let A € Sp(X)O be in the heart of the standard t-structure. Then f*A = f*YA.
Similarly, if E € Sp(X), then m,(f*E) = f*m,(E).

Proof. [Lurl8al Remark 1.3.2.8] shows that f* is t-exact with respect to the
standard t-structures. O
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Lemma A.7. Let (C,7) be a site. Write Shv.(C,V) for the category of sheaves
on C (in the T-topology) with values in a presentable co-category V. Then there
s an equivalence

Sp(Shv,(C,.An)) = Shv.(C, Sp).

Proof. This is [Lurl8al Remark 1.3.2.2], together with [Luri8a, Proposition
1.3.1.7]. O

A.2 Nilpotent Objects
Let X be a hypercomplete co-topos. Recall the following definition:

Definition A.8. Let G and H be group objects in Disc(X'), with an action of G
on H. A G-central series is a finite decreasing filtration H = Hy D --- D H, =1
such that H; is normal and G-stable, H;/H;1 is abelian and the induced action
of G on H;/H;4q is trivial.

The action of G on H is called nilpotent if there exists a G-central series of
H.

We say that G is nilpotent if the action of G on itself via conjugation is
nilpotent.

Lemma A.9. Let G be a group object in Disc(X). If G is abelian then G is
nilpotent.

Proof. One can choose the G-central series G D 1, since the conjugation action
is trivial. O

Definition A.10. Let X € X, be a pointed object. We say that X is nilpotent
if X is connected, 71 (X) is a nilpotent group object and the action of 71 (X) on
7 (X) is nilpotent for all n > 2.

Lemma A.11. Let X € &, be a pointed object. Then 7>1QX is nilpotent.

Proof. Note that 7>102X = Qr>2X. Since 759X is simply connected, it is
in particular nilpotent. Now note that Q79X = fib(x — 75>2X). Thus, we
conclude by [AFH22, Proposition 2.2.4] that 7>12X is nilpotent. O

Lemma A.12. Let f: X = Y be a morphism of pointed nilpotent objects in
X.. Then m>1fib(f) is nilpotent.

Proof. Following the proof in [AFH22| Proposition 2.2.4], we see that 1 (fib(f))
is a nilpotent group, with a nilpotent action on 7, (fib(f)) for all n > 2. Thus,
7>1fib(f) is nilpotent. O

Lemma A.13. Let X € &, be a pointed object. Suppose that 7<, X is nilpotent
for every n. Then X is nilpotent.

Proof. Since 7<1X is connected, also X is connected. Since the action of m1(X)
on m,(X) is the same as the action of m(7<,X) on m,(7<pX), the lemma
follows. O
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Definition A.14. Let X € X, be a connected space. Consider the Postnikov
tower of X given by

"'—>T§nXp—n>TSn_1X—>'-'—>T§0X:*.

We say that the Postnikov tower of X admits a principal refinement if for each
n > 1 there exists a factorization of p,, as

Pn,mpy, Pn,1

TSnX = Xn,mn —_— Xn,mn—l — Xn,l — Xn,O = TSn—lXu

with m,, > 1, such that each p,,  fits into a fiber sequence

Pn,k

Xn,k —_— Xn1k71 — K(Anyk, n -+ 1)
with A, ; an abelian group object in Disc(X).

Lemma A.15. Let X € X, be a pointed object. Then X is nilpotent if and
only if the Postnikov tower of X admits a principal refinement.

Proof. The proof is analogous to the proof of [AFH22 Theorem 3.3.13], applied
to the morphism f: X — x. O

A.3 Completions of Anima

In this section, we collect some results about the p-completion of anima. Essen-
tially everything in this section already appeared in [BK72].

Definition A.16. Let f: X — Y be a morphism of anima. We say that [ is

an [F,-equivalence if f induces an isomorphism of homology f.: H.(X,F,) =
H,.(Y,F,).

Lemma A.17. Let f: X — Y be a morphism of anima. Then [ is a p-
equivalence if and only if f is an Fp-equivalence.

Proof. See e.g. [BB19, Theorem 2.6]. Note that X° f is a morphism of connec-
tive spectra. O

The following results are from [MP11]. We will use without comment that
a p-equivalence is the same as an Fj,-equivalence, see Lemma [A.17]

Lemma A.18. Let X be an n-connective pointed anima for some n > 0. Then
X is n-connective.

Proof. For n = 0 the result is vacuous, and for n = 1 the result directly follows
from Lemma [3.121 If n > 1 then X is simply connected and thus nilpotent.
We conclude by using the short exact sequence from [MP11, Theorem 11.1.2
(ii)]. O

Lemma A.19. Let F — X — Y be a fiber sequence of pointed anima, with X
and Y nilpotent. Then (Tle)g = 1fib(X) = Y7)).
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Proof. This was proven in [MP11, Proposition 11.2.5], under the additional
assumption that the involved spaces have finitely generated homotopy groups.

The original reference, without the finiteness assumptions, is [BK72, Lemma
4.8]. O

Lemma A.20. Suppose that there is a commutative diagram of fiber sequences
of pointed anima

F X Y
lfF lfx lfy
Fr— X — Y/

such that X,Y, X' and Y’ are nilpotent and fx and fy are p-equivalences. Then

T>1fF ;. .
To1F ——— 7>1F" is a p-equivalence.

Proof. By Lemma [A.19] we conclude that (Tle)Q = 754fib(X) — Y)), and
similarly (Tle’)g > 754fib (X’Q — Y’Q). Since fx and fy are p-equivalences,
it follows that X, = X'/ and Y, =2 Y’/ Thus, we have (Tle);\ = (Tle')%

i.e. 7>1 fr is a p-equivalence.

Definition A.21. For each i write
Li: Ab 20 pzy Bme QI gy 5O gy,

We call these functors the derived p-completion functors on the category of
abelian groups.

Lemma A.22. Recall the p-adic t-structure from Definition [2.13, now applied
to the category of spectra. Then

(1) sp*® c sp,

(2) if E is a p-complete spectrum, then m,(E) = 72 (FE), and

(3) there are canonical isomorphisms L; = L;
Proof. We first prove (1). By definition and Lemma 2.T9] we see that F € Sp? v
if and only if 7;(E) is uniquely p-divisible for all i < —1, 7_1(E) is p-divisible,
mo(E) has bounded p-divisibility, and £ = E = 7<oE. The conditions on the

negative homotopy groups imply that EQ is connective: Indeed, from [BBI19]
Theorem 2.6], we have for every n € Z the following short exact sequence:

0 = Lomn(E) = mn(Ep) = Limn—1(E) — 0.

If 7,1 (F) is uniquely p-divisible, it has in particular no p-torsion. Thus, fol-
lowing [MP11] Corollary 10.1.15] (using that H, = Ly, see [MP11], Proposition
10.1.17]), we see that Lym,—1(E) = 0. On the other hand, if 7, (F) is p-divisible,
we see that Lo(m,(F)) = 0 following (the proof of the abelian case of) [MP11]
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Proposition 10.4.7 (iii)] (using that E, & L, see [MP11l Proposition 10.1.17]).
Thus, E = E} is connective. Hence, E = mo(E) is in Sp”.

In order to prove (2), suppose now that F is p-complete. Let n € Z be
arbitrary. There is a fiber sequence

p p
TZnE — F — TgnilE.

From the discussion directly above, we see that 72 F is in fact n-connective.
On the other hand, it is immediate from Lemma that TﬂnilE is actually
(n — 1)-truncated. Thus, by the uniqueness of a decomposition in n-connective
and (n — 1)-coconnective parts in a t-structure, we see that actually 72 E =
T>nE and 72, | E = 7<, 1 F for all n € Z. This immediately implies that

P (E) 2 m,(E) for all n € Z.

It remains to show (3). This follows directly from the fact that D(Ab) =
Modpgz — Sp is a limit-preserving exact and t-exact functor, and that ;A =
mh(A) = 7h(A)) = 1. (A)) (using (2), since A} is p-complete). O

Definition A.23. Let G be a nilpotent group. We define L;G := 7TZ'+1((BG>2).

Lemma A.24. Let A be an abelian group, and let G be the underlying nilpotent
group (i.e. we forget that A is abelian). Then L;A =2 1;G for all i > 0.

Proof. This follows for example from [MP11l Theorem 10.3.2]. O

Lemma A.25. Let X be a nilpotent, pointed anima. For every n > 1 there is
a short exact sequence (functorial in X )

0— Lomy X — m X)) — Limy 1 X — 0,

where we use Definition [A.23 for ;w1 (X). Note that this distinction does not
matter if m(X) is abelian, see Lemma[A.2]] Note that we use the definition
Llﬂ'oX = 0.

Proof. [MP11], Theorem 11.1.2 (ii)] provides a short exact sequence
0 = Lomn(X) = mp (X)) = Limp—1(X) = 0.

The lemma, follows from Lemma [A:22] and the fact that our definition of ;G is
the same as the definition of L;G in [MP11] Section 10.4] for nilpotent groups
G (note that they use the notation E, and H, for what we call Lo and L4, see
[MP11l, Proposition 10.1.17]). O

Lemma A.26. Let E be a 1-connective spectrum. Then QX (E) = (QE:OE)Q

Proof. Using the short exact sequence from Lemma [A.25 we conclude that the
homotopy groups of (QfOE);\ fit into short exact sequences

0 = Lomn (°E) = m, (Q°E),)) = Lamn 1 (Q°E) — 0.
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By Lemma 2.29] the homotopy groups of EQ fit into a short exact sequence
0 — Lomn (E) = 7h(Ep) — Lymn_1(E) — 0.

Thus, the lemma follows from Whitehead’s theorem and the fact that m, (QX E) &
T (E) and 7k (E) = mn(Ep) = 1, (°(E})) (see Lemma [A.22)). O

Lemma A.27. Let E — F be a p-equivalence of 1-connective spectra. Then
QX E — QX F is a p-equivalence.

Proof. Since E; = F, is an equivalence by assumption, we conclude by the
last Lemma [A26] that also (Q°E)) = (Q°F),), i.c. that QXE — QXF is a

P )
p-equivalence. O
Definition A.28. Let X be an N-indexed inverse system of pointed connected
anima. We say that it is a weak Postnikov tower of anima if 7<; X1 = 1< X},
for all k > 0 (i.e. the maps X411 — X}, are k-connective for all k).

We want to prove that the suspension spectrum commutes with the limit of
weak Postnikov towers. For this, we need the following well-known statement:

Lemma A.29. Let f: X — Y be a morphism of pointed anima. Suppose that
f is k-connective for some k. Then X°f: XX — X*Y is k-connective.

Proof. Let F := fib(f) be the fiber. By assumption, we have that F is k-
connective. Let C := cofib(f) be the cofiber. By the Blakers-Massy Theorem
(see e.g. [tDO8|, Theorem 6.4.1]) that C is (k+1)-connective. Since ¥°° preserves
colimits (as it is a left adjoint), we get a cofiber sequence of spectra ¥°X —
Y — ¥°°C. Again by Blakers-Massey (or it’s corollary, the Freudenthal
Suspension Theorem), we conclude that ¥°C' is (k + 1)-connective. Thus, since
Sp is stable, we see that there is a fiber sequence QX*°C — XX — ¥*°Y.
Note that Q¥X°°C is k-connective. This proves that ¥°° f is k-connective. O

Lemma A.30. Let X}, be a weak Postnikov tower of anima. Then
Y>®limy, Xp = limy, X X,.

Proof. By assumption, each of the morphisms X1 — X}, is k-connective. By
Lemma [A29] we see that ¥ X1 — XX}, is k-connective.

Since by assumption the homotopy groups of the system X} stabilize, we
see by [MP11l, Proposition 2.2.9] that lim,, X,, — X} is k-connective for every
k. Therefore, again by Lemma also the morphism X*°lim, X, — XX}
is k-connective.

Note that the k-connectivity of X*° X1 — XX} implies that the projec-
tion lim,, ¥>*°X,, — 3> X} is k-connective for every k.

Thus, we see that mg(lim, X°X,) = 7(X*°Xg) & m(X°lim, X,,). We
conclude by Whitehead’s theorem. O
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The above statement about weak Postnikov towers now allows us to conclude
that p-equivalences of weak Postnikov towers induce p-equivalences on the limits
of the towers:

Lemma A.31. Suppose there are N-indexed inverse systems of pointed con-
nected anima Xy and Yy, and for any n > 0 there exists a k, > 0 such that
Tn(Xk) =2 7n(Xk,) and 7, (Yy) =2 7, (g, ) for all k > k,,. Suppose further that
there is a morphism of systems fi.: X — Yi such that each fi is a p-equivalence.
Then f: limg X — limy Yy, is a p-equivalence.

Proof. Up to replacing N by a cofinal subset, we may assume that k, = n for
each n. Note that we have equivalences 1<, _1X,, = 7<,,—1X,—1 by assumption.
Thus, the system X}, is a weak Postnikov tower. This allows us to conclude from
Lemma m that Eoohmk Xk = 1irnk ZOOXk and Eoolimk Yk = limk EOOYk.
Thus, X°f & Y*°limy fr = limg X°°fr. We now conclude that f is a p-
equivalence because X°°f /p = (limg X°°fi) /p = limy ((3°°f)/p) is a limit
of equivalences. o

A.4 Conservativity of the Free Sheaf Functor

Let X be a 1-topos, i.e. the category of sheaves of sets on some site (C, 7). Let R
be a ring, this defines a presentable 1-category Modg x of R-modules internal
to X, together with a conservative forgetful functor ¢:: Modgr x — X. This
forgetful functor commutes with limits and filtered colimits, and thus has a left
adjoint R[—]: X — Modpg x by presentability. Note that for X € X, the value
R[X] is given by the sheafification of the presheaf of R-modules U — R[X (U)],
where R[X (U)] is the free R-module on generators X (U). This can be seen
by comparing right adjoints. Our goal in this section is to prove that R[—] is
conservative.

Definition A.32. Let C be a l-category, and f: X — Y a morphism in C.
Then f is called an extremal monomorphism if f is a monomorphism and for
all factorizations f = ¢ op with p an epimorphism, we already have that p is an
isomorphism.

The following is (the dual of) a well-known result in category theory:

Lemma A.33. Let L: C = D: R be an adjunction of 1-categories, and write
n: id — RL for the unit map. Suppose moreover that nx: X — RLX 1is an
extremal monomorphism for all X € C. Then L is conservative.

Proof. Let f: X — Y be a morphism in C such that Lf is an isomorphism. We
have to show that f is an isomorphism. By naturality of n, we get a commutative
square

X RLX

b

y ™, RLY.
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Note that the right vertical map is an isomorphism, and the horizontal maps are
extremal monomorphisms. Thus, by the definition of extremal monomorphism,
it suffices to show that f is an epimorphism.

So suppose that there is T' € C and hy,hs: Y — T such that hy f = hof. We
need to show that hy = he. By functoriality, we have RLhioRLf = RLhooRLf.
Since RLf is an isomorphism, we conclude that RLh; = RLhy. By naturality
of n, we thus get the following equality:

nr ohy = RLhyony = RLhz ony = nr o ha.
We conclude that hy = hy because np is a monomorphism by assumption. O
In order to apply the above, we need the following two lemmas:

Lemma A.34. Suppose that C is a balanced category (i.e. every morphism f
which is both monic and epic is already an isomorphism), and that f: X —Y
in C is a monomorphism. Then f is an extremal monomorphism.

Proof. Suppose that we have a factorization f = i o p with p an epimorphism.
We need to show that p is an isomorphism. Since C is balanced, it suffices to
show that p is a monomorphism, which follows immediately from the assumption
that f is a monomorphism. O

Lemma A.35. For every X € X, the unit X — (R[X] is a monomorphism.

Proof. Write F for the presheaf (of R-modules) U — R[X (U)], such that R[X]
is the sheafification of F'. Note that the map X — F'is clearly a monomorphism,
because on each level it is just the canonical map X (U) — R[X (U)], which maps
an element € X (U) to the corresponding basis element of R[X(U)]. Now
observe that sheafification preserves monomorphisms: Indeed, monomorphisms
f: A — B can be characterized as the existence of pullback squares of the form

A——=A
L
A —— B,

which are preserved because sheafification is left exact. But since X is already
a sheaf by assumption, we conclude that X — R[X] is a monomorphism. O

This allows us to conclude:
Proposition A.36. The functor R[—]: X — Modg, x is conservative.

Proof. Since every 1-topos is a balanced category, it follows from Lemmas [A.34]
and[A.35]that the unit X — ¢R[X] is an extremal monomorphism for all X € X.
Thus, we conclude from Lemma [A:33] that R[—] is conservative. O

86



B The Pro-Zariski Topology

Let k be a field and denote by Smy, the category of quasi-compact smooth k-
schemes. Let Shv,,,(Smy) be the oo-topos of sheaves on Smy, with respect to
the Zariski topology, i.e. covers are given by fpqc covers {U; — U}, such that
each U; — U can be written as U;U; ; — U such that each U; ; — U is an
open immersion. In this section, we develop an analog of the pro-étale topology
from [BS14], adapted for the Zariski topology. We use this pro-Zariski topology
to show that Shv,,, (Smy) can be embedded into a topos of the form Ps (W),
where the category W will be realized by zw-contractible rings, an analog of
w-contractible rings from [BS14]. We will begin with a general discussion with
categories of sheaves on locally weakly contractible sites, and then specialize
this discussion to the pro-Zariski topos.

B.1 Locally Weakly Contractible co-Topoi

The goal of this section is to prove that the topos of hypercomplete sheaves
on a locally weakly contractible site (C,7) (see Definition [B.3)) is always of the
form Ps (W) for a suitable subcategory W C C of weakly contractible objects.
Since we will deal with hypercomplete and non-hypercomplete sheaves, if (C, 7)
is a site, then denote the categories of sheaves on this site (resp. hypercom-
plete sheaves on this site) by Shv™"(C) (resp. Shv?(C)). Moreover, denote the
sheafification adjunction by

Lnn: P(C) = Shv™(C): 1y,
and
Ln: P(C) = Shv™(C): w,

respectively. Note that L;, factors over L, write
Liyp: Shv2™(C) 2 Shv2(C): thy,
for the geometric morphism corresponding to this factorization.

Definition B.1. Let (C,7) be a site which admits finite coproducts. We say
that the topology 7 is a Xi-topology if every finite collection of morphisms {U; —
U}, such that L;U; — U is an isomorphism is a cover in the 7-topology.

Definition B.2. Let (C,7) be a site. We say that an object w € C is weakly
contractible if every cover by a single morphism U — w has a splitting.

Definition B.3. Let (C, 7) be a site. We say that C is locally weakly contractible,
if there is a subcategory W C C such that

(LWC 1) C has finite coproducts, and finite coproducts distribute over all
pullbacks that exist in C, i.e. if (U;); is a family of objects in C,
f+ X — Y a morphism in C, and g;: U; — Y morphisms, then
('—lez) Xy X & |_|Z(U1 Xy X),
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(LWC 2) every object w € W is weakly contractible (Definition [B.2),
(LWC 3) W is closed under finite coproducts in C,

(LWC 4) every object w € W is quasi-compact, i.e. every cover of w can be
refined by a finite cover,

(LWC 5) the topology is a X-topology (Definition [B.T]),

(LWC 6) every object X € C has a cover w — X by a weakly contractible
object w € W, and

(LWC 7) the category W is extensive, see Definition 1Tl

Suppose from now on that (C,7) is a locally weakly contractible site. Since
by assumption [((LWC 7)| the category W is extensive, we see that Px(W) is an
oo-topos, see Lemma 4121 In particular, we have a geometric morphism

LE: P(W) = PE(W) Ly.
The fully faithful inclusion W — C induces an adjunction of presheaf categories
JFrPW) 2 P(C): js,

where j, is given by restriction, and j* is given by left Kan extension (see [Lur(09]
Corollary 4.3.2.14] for the existence of left Kan extensions of presheaves, and
[Lur09, Corollary 4.3.2.16 and Proposition 4.3.2.17] for a proof that the left Kan
extension functor exists and is left adjoint to the restriction functor). Write
mwPre for the homotopy objects in a presheaf category, i.e. the functor given by
postcomposing with the functor =, : An — Set.

Lemma B.4. Let F € Disc(P(C)) be a O-truncated presheaf (i.e. a presheaf of
sets), such that j. F = it Lyj. F € P(W). Then the canonical map Lypj*j F —
L1 F is an equivalence, and for allw € W we have an equivalence (Lnp F')(w) =

Proof. Since everything is O-truncated, this is a statement about sheaves of
sets. In particular, L,,G = G*, where (—)* is the plus construction, see e.g.
[Sta23, [Tag 00W1]. Since the w € W generate the topos Disc(Shv2™(C)) (this
follows from assumption [(LWC 6))), it suffices to prove that (L,pj*j.F)(w) —
(Lpp F)(w) is an equivalence for all w € W. Moreover, since (j*j.F)(w) =2
(4 F)(w) =2 F(w), it suffices to prove that (L,,G)(w) = G(w) for every presheaf
G € Disc(P(C)) with j.G = 1t L5j.G and w € W. Thus, it suffices to show that
Gt (w) = G(w). Let {U; — w}; be a cover of w. We can refine this cover by a
cover {w; — w}; with w; € W, by assumption We may assume that
this cover is finite since w is quasi-compact, see assumption |(LWC 4)| Thus,
by the definition of GT(w) = colimyc jor H*(U, G) (see the discussion right
before [Sta23], [Tag 00W4] for the notation), we can run the colimit only over
covers {w; — w} with w; € W. But now since j.G = 1xLxj.G, we know
that [[, G(w;) = G(U;w;). Thus, since coproducts distribute over pullbacks
in C by assumption we see that the Cech-nerves of {w; — w}; and
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{U;w; — w} agree. Therefore, we may assume that the cover is in fact a
single morphism U = {v — w}, with v = U;w; € W because objects in W are
stable under coproducts by assumption This morphism has a split
by assumption Hence, the Cech nerve is homotopy equivalent to (the
constant simplicial object) w, see (the dual version of) [Sta23| Tag 019Z]. Thus,
H°(U,G) = G(w). Since this is true for a cofinal family of covers, we conclude
Gt (w) = G(w). O

Lemma B.5. Let F' € P(C) be a presheaf, such that j.F = itsLsj.F € P(W).
Then the canonical map Lpj*j.F — Ly F' is an equivalence, and for all w € W,

~

we have an equivalence (Lp F)(w) = F(w).

Proof. Write €: j*j,F — F for the counit of the adjunction j* - j.. For the first
statement, by hypercompleteness it suffices to show that for each n, each U €
Shv?(C) and each morphism z: U — Ljj*j.F (i.e. each choice of basepoint in
the overtopos ShvE(C)/U) the morphism 7, ((Lpj*ju F)|v, x) = mn (Lo F)|u, €0
x) induced by € is an equivalence for all n > 0 (in the case n = 0, we can do
the same calculations as below, but do it without the choice of a basepoint).
But for every presheaf G € P(C) (and object U and basepoint z: U — L,G),
we have a chain of equivalences 7, ((LyG)|v, ) = T ((LnnG)loy,,Us thyp(T)) =
Lopm2¢(G|,,u, thx), where the first equivalence follows since Ly, factors over
Ly, and this factorization is the universal functor out of Shv®(C) that inverts
m«-isomorphisms (i.e. morphisms f such that m;(f) is an isomorphism for all
k). Thus, it suffices to prove that the canonical morphism

Lnly (7% 3 F)uvs th(2)) = Lonh (v, € 0 tn(x))

is an equivalence. We know that m27¢((5*j.F)|, v, tn(x)) =2 7% juml™(F|, U, €0
th(x)), since j* is a geometric morphism and thus commutes with homotopy
objects, and j, is just the restriction of functors. Thus, the result follows from
Lemma B4l if j.7E"¢(F|,,u,€ 0 tn(z)) = 1xLsjenl™(F|,,u, €0 tp(x)). But
this is clear since j 2" (F|,, v, €0 tp(x)) = w87 (ju Flj..,v, Jxtn(2)) (again since
Jx is just the restriction of functors), since j.F = i Lyj.F by assumption
and since the homotopy presheaf 727¢((5..F)|j..,v, Jstn(x)) is the homotopy ob-
ject of (juF)|j.,v in Ps(W) v With respect to the given basepoint, see
Lemma

For the second point, choose again a U and x as above. Note that by the
above and Lemma [B.4] we get

(0 (Ln F)|ws ) (w) = (L (F o0, 6 () (w)
= (m “(Fluus tn(2))) (w)
= T (Flu,v(w), tn () (w))-

On the other hand, since j.m2"°((LpF)|u,z) = itsLyjum?™¢((Ly F)|u, z), we
again conclude by Lemma [B.4] that

(w2 (L), 2))(w) = (L (LnF) v, ) (w) = (w0 ((LnF) |, ) (w).-

[dxtn

2
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Thus, we conclude that for all n, U and x we have an isomorphism

T (Flo,v (w), in(2)(w)) = (0 (LnF)|v, 2)) (w)
= (mp"(LnF)|u, @) (w)
= mn((LnF)|u (w), 2(w)).
By Whitehead’s lemma, we conclude that F(w) 2 L, F(w). O

Lemma B.6. The unit j.tp, — tsLxj«in is an equivalence. In particular, for
every sheaf F € ShVE(C), there is a canonical equivalence juipF = it L jsin F.

Proof. Fix F € Shvi1 (C). Since W is extensive by assumption using
Lemma .12l it suffices to show that j.¢;, F' has descent for disjoint union covers
in W. But those covers are in particular in 7 by assumption Thus,
we conclude since F' is a 7-sheaf. o

Lemma B.7. The adjunction j*: P(W) 2 P(C): j. induces an adjunction
p*: Pa(W) = Shv*(C): p.,

where the left adjoint is given by p* = Lpj*1s, and the right adjoint is given by

Ps = Lxjuty. Moreover, this adjunction is an equivalence.

Proof. We first show that there is an adjunction p* - p,.: We construct the unit
as the composition

id 2 Lty — Lyj«j ts — LyjanLnj s = pap”.

Here, the first arrow is the inverse of the counit of the adjunction Ly - t5, note
that it is invertible because ¢x; is fully faithful. The next two arrows are the units
of the adjunctions j* - j. and Lp - ¢,. The last equality are the definitions of
p* and p,. It is now clear that this defines the unit of an adjunction, because it
is equivalent to the composition of the units of two adjunctions. Thus, we get
the required adjunction via [Lur09, Proposition 5.2.2.8]. We need to show that
the counit and unit maps are equivalences.

So let F € ShVE(C). Then p*p. F' = Lpj*tsLyjs«tn F. Since we know that
JetnF = s Lyjen F from Lemma [B.6] we conclude that Ljj*isLyjonF =2
Lypj*jetnF =2 Ly, F =2 F, where we used Lemma[B.5lfor the middle equivalence.

On the other hand, let F' € Px(W). We want to prove that for all w € W,
we have (p.p*F)(w) = F(w). We compute

(pp" F)(w) = (LsjetnLnj™isF)(w)
= (txLyjetn Lpj*isF)(w)
= (JutnLng s F)(w)
= (Lpj s F)(w)
= (M F)(w)
= (i F)(w)
= F(w)7

where we use the last conclusion from Lemma in the fifth equivalence. O
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In the last part of this section, we want to establish a condition which allows
us to conclude that an inclusion of sites actually induces a fully faithful geometric
morphism of (hypercomplete) co-topoi.

Proposition B.8. Let (C',7") C (C,7) be a full subcategory such that any 7'-
cover {U; — U} is also a T-cover. Suppose that Shv(C) and Shv™ (C’') are
Postnikov-complete. Write

Ly: P(C) = Shv(C): 1y,
Lj,: P(C") = Shv™ (C"): 4},

for the sheafification adjunctions.
Write k: C' < C for the inclusion. This induces an adjoint pair

E*: P(C") = P(C): ku,
where k. is restriction and k* is left Kan extension. Then we have the following:

o These functors then induce an adjoint pair
4*: Shv™ (C") = Shv2(C): 4.,
where j* is given by Lpk*i}, and j. is given by L} kyup.
o This adjoint pair is a geometric morphism of co-topoi.

o We have a natural equivalence t)j. = kit (i.e. the restriction of a 7-
hypersheaf to C' is a 7'-hypersheaf).

Assume moreover that if F € Shv® (C') is n-truncated for some n, then
g *F =2 k* F (i.e. the left Kan extension of an n-truncated 7'-hypersheaf is
already a T-hypersheaf).

Then 7% is fully faithful.

Proof. We first prove that there is an equivalence ¢}, j. = kytp,. This follows im-
mediately from the fact that every 7/-hypercover is in particular a 7-hypercover,
thus every T-hypersheaf is automatically a 7/-hypersheaf.

We now prove that there is an adjunction j* - j.: We construct the unit as
the composition

id 2 Lpep — Lpkok™ i — Lkt Lpk™on = jij™.

Here, the first arrow is the inverse of the counit of the adjunction Ly = ¢4/, note
that it is invertible because ¢y is fully faithful. The next two arrows are the
units of the adjunctions k* 4 k, and Ly, - ;. The last equality is the definition
of j. and j*. It is now clear that this defines the unit of an adjunction, because
it is equivalent to the composition of the units of two adjunctions. Thus, we get
the required adjunction via [Lur09, Proposition 5.2.2.8].

In particular, we see that j* is (the left adjoint of) a geometric morphism,
because it has a right adjoint and preserves finite limits (since ¢j, preserves limits
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as a right adjoint, and £* and Lj preserve finite limits as the left adjoints of
geometric morphisms).

Assume from now on that if F € Shv,(C’) is n-truncated for some n, then
thy*F = k*i) F. In order to show that j* is fully faithful, we first show that it is
fully faithful on n-truncated objects. For this, it suffices to show that for every
n-truncated F € Shv® (C’), the natural map F — j,j*F is an equivalence. But
we compute

Ju*F = Ly kyinj*F = L ko™, F = L F ~ F,

where we used for the first equivalence the definition of j,, in the second equiv-
alence that ¢, j*F = k*(), F since F' is n-truncated, in the third equivalence that
k* is fully faithful, and in the last equivalence that ¢, is fully faithful.

We now want to show that j* is fully faithful. Again, it therefore suffices
that the canonical morphism F' — j,5*F is an equivalence for all F' € Shvﬁ, (.
We have a chain of equivalences

Jeg " F = g limg, < F
= limy, joj T<n F'
= lim,, 7<, F
=

Here, the first equivalence uses Postnikov-completeness of Shv?, (C’), the second
equivalence uses that j, commutes with limits (it is right adjoint to j*) and
that j* commutes with truncations (see [Lur09, Proposition 6.3.1.9]), the third
equivalence holds because we have seen that j* is fully faithful on n-truncated
objects, and the last equivalence uses Postnikov-completeness of Shv}; (C). This
finishes the proposition. O

B.2 The Pro-Zariski Topos
Recall the following definition from [Sta23l [Tag 0965):

Definition B.9. Let f: A — B be a ring map. We say that

(1) f is a local isomorphism if for every prime g C B there exists a g € B,
g ¢ q such that A — B, induces an open immersion Spec(B,;) — Spec(4),
(2) f is an ind-Zariski map if f is a filtered colimit of local isomorphisms,
(3) f is an ind-Zariski cover if f is a faithfully flat ind-Zariski map.
Definition B.10. A ring A is called zw-contractible if it satisfies the equivalent

conditions from [Sta23| Tag 09AZ], i.e. if any faithfully flat ind-Zariski map
A — B has a retraction.

Lemma B.11. Let A be a ring. Then there exists an ind-Zariski cover A — A
such that A is zw-contractible.
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Proof. This is [Sta23], Tag 09B0]. O

Definition B.12. Let f: X — Y be a morphism of schemes. We say that f
is a Zariski localization if f is isomorphic to II;c;U; — Y with I a finite set
and U; — Y open immersions. We say that f is a pro-Zariski localization if
f is isomorphic to a cofiltered limit lim; f;: lim; X; — Y such that each f; is
a Zariski localization (and hence all transition maps X; — X; are also Zariski
localizations).

Definition B.13. Write ProZar(Smy,) for the full subcategory of schemes over
k consisting of pro-Zariski schemes over Smy, i.e. morphisms X — Spec(k)
such that X can be written as a cofiltered limit X = lim; X; with X; — Spec(k)
smooth such that all transition morphisms X; — X; are Zariski localizations.
Write ProZarAff(Smy) C ProZar(Smy) for the full subcategory consisting of
affine schemes.

Lemma B.14. The category ProZar(Smy) has finite coproducts and the inclu-
ston into Schy preserves them.

Similarly, ProZar(Smy) has pullbacks along pro-Zariski localization and the
inclusion into Schy, preserves those pullbacks.

Proof. For the first part, let I be a finite set, and (X;);es be a family of schemes
X, € ProZar(Smy). Write X; = limje s, X, ; as a cofiltered limit with X; ; —
Spec(k) smooth such that the transition morphisms are Zariski localizations.
We get

Ui X = Uilimge g, X5 = limg,erq, g, Ui Xi g

where the second isomorphism exists because cofiltered limits commute with
finite colimits and a cofinality argument. Hence, the coproduct is again in
ProZar(Smy).

We now prove the second part. So suppose that X, U and V are in ProZar(Smy,),
and that there are morphisms f: X — U and g: V — U with g a pro-Zariski
morphism. Since all limits are cofiltered, we can choose a common filtered
category I and presentations X = lim; X;, U = lim; U; and V = lim; V,
with X;, U; and V; in Smy, with Zariski localizations as transition maps,
and such that g;: V; — U; is a Zariski localization, i.e. g¢; is of the form
HesVi; — U; for some finite set J, such that V; ; — U; is an open immer-
sion. Then X; xy, V; € Smy: Indeed, it suffices to show that X; xy, V;; is
smooth for every j € J, but this is just an open subscheme of X;. Note that the
transition morphisms X; xy, Vi — X Xy, V; are Zariski localizations (as a com-
position of basechanges of Zariski localizations). Thus, X xy V 2 lim; X; Xy, V;
is again in ProZar(Smy). O

Definition B.15. Let U = {f;: U; — U};cr be a family of morphisms in
ProZar(Smy). We say that U is a pro-Zariski cover if and only if f; is pro-
Zariski for all ¢ and the f; form an fpqc-cover.
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Remark B.16. Let Spec(f): Spec(B) — Spec(A) be a morphism of schemes in
ProZarAff(Smy). Then {Spec(f)} is a pro-Zariski cover if and only if f: A — B
is an ind-Zariski cover. To see this, it suffices to show that Spec(f) is a Zariski-
localization if and only if f is a local isomorphism. This follows from [Sta23|
Tag 096J].

Lemma B.17. The categories ProZar(Smy,) and ProZarAff(Smy,) together with
the class of pro-Zariski covers form sites in the sense of [Sta23, |Tag 00VH].
Moreover, the natural inclusion ProZarAff(Smy) C ProZar(Smyg) is a morphism
of sites in the sense of [Sta23, | Tag 00X1].

Proof. For the first statement, the only nontrivial part is the existence of pull-
backs of covers, which was proven in Lemma [B.14l The last assertion is clear
from [Sta23| [Tag 00X6], since the inclusion commutes with limits (as limits of
affine schemes are affine). O

Definition B.18. Let (ProZar(Smy), prozar) and (ProZarAff(Smy), prozar) be
the sites from Lemma [B.I7

Lemma B.19. The geometric morphisms

Shv™!  (ProZarAff(Smy)) = Shv™® _ (ProZar(Smy))

prozar prozar

and

Shv® .. (ProZarAff(Smy)) = Shv® . (ProZar(Smy))

prozar prozar

induced by the morphism of sites are equivalences.

Proof. The first morphism is an equivalence by [Hoy15 Lemma C.3]. Thus, it
also induces an equivalence after hypercompletion. O

Definition B.20. Let W C ProZarAff(Smy) be the full subcategory spanned
by the (spectra of) zw-contractible rings (see Definition [B.10]).

Lemma B.21. W is an extensive category and Ps (W) is an co-topos given by
sheaves on W with respect to the disjoint union topology.

Proof. The category of schemes is extensive, and W is a full subcategory stable
under summands and finite products. From this we immediately conclude that
W is extensive. The last statement is Lemma [4.12] O

Lemma B.22. The site (ProZarAff(Smy), prozar) is locally weakly contractible.

Proof. The pro-Zariski topology is a ¥-topology, since a clopen immersion is in
particular a pro-Zariski morphism. The pro-Zariski topology on ProZarAff(Smy,)
is finitary (cf. [Lurl8al Definition A.3.1.1]) by definition, so every object is quasi-
compact. The category W is exactly the subcategory of weakly contractible ob-
jects by definition. Every element in ProZarAff(Smy) has a cover by a weakly
contractible object, this is the content of Lemma [BI1l We have seen that W
is extensive, see Lemma [B:21l This proves the lemma. O
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Theorem B.23. We have an equivalence of categories

Shv® . (ProZar(Smy)) = Px(W).

prozar

Proof. There is a chain of equivalences

Shy!

prozar(

ProZar(Smy)) & Shv®  (ProZarAff(Smy)) & Px(W),

prozar

where the equivalences are supplied by Lemmas[B. [ and[B.19 Here we used that
the affine pro-Zariski site is locally weakly contractible, see Lemma [B.221 O

We now want to embed the category of Zariski sheaves on Smy into the
category of hypercomplete pro-Zariski sheaves on ProZar(Smy).

Theorem B.24. There is a geometric morphism

v*: Shvl (Smy) = Shvgmzar(PrOZar(Smk)) =Pu(W): vy,
where the right adjoint is given by restriction, and the left adjoint is fully faithful.

Moreover, an n-truncated sheaf F € Shvgrozar(PrOZar(Smk)) is in the es-
sential image of v* (i.e. it is classical in the notation of Definition [{.39) if and
only if for all U € ProZar(Smy) and all presentations of U as cofiltered limit
U 2 lim; U; (with the U; € Smy, such that the transition morphisms U; — U;

are Zariski) the canonical map colim; F(U;) — F(U) is an equivalence.

Proof. We want to apply Proposition [B:8 with C = ProZar(Smy,) with the pro-
Zariski topology and C' = Smy with the Zariski topology, where we use the
notation from Proposition [B.8

We have seen in Lemma B8 that Shv®, (Smy) 2 Shv2? (Smy,) is Postnikov-
complete. Note that Shvgrozar(ProZar(Smk)) & Py (W) by Theorem [B:23] thus
this co-topos is also Postnikov-complete, see Lemma

It remains to prove that ¢, j*F = k*1j F' for every n-truncated Zariski sheaf
F € Shv, (Smy), i.e. we have to show that the presheaf k*¢} F is already a pro-

Zariski hypersheaf. But note that Shv®, (Smy)<, = Shv2!

zar zar(Smk)gn (SinCe every
co-connective object in Shyv22

e (Smy) which is also n-truncated is automatically
0), so it suffices to proof that k*¢) F is a pro-Zariski sheaf. Note that by definition
if U € ProZar(Smyg) is a scheme with presentation as a cofiltered limit U =

Using Lemma [B19] it suffices to show that k*.), F has descent for all pro-
Zariski covers {V; — V'}; with V; and V in ProZarAff(Smy), i.e. all schemes are
affine. First note that k*ij I is a Zariski sheaf: If Spec(B) = |J; U; is a finite
union of affine open subschemes, and B is a filtered colimit of smooth algebras
B; (where the transition maps are Zariski), then this union is pulled back from
some B; (since open immersions are of finite presentation). But F' is a Zariski
sheaf on Smy, by assumption. Now let {V; — V'}, be some pro-Zariski cover.
Note that {V; — UiVi} is a Zariski cover. Thus, since k*i, F' satisfies Zariski
descent, we can reduce to the case that the cover is of the form {Spec(f)} for
a single ind-Zariski cover f: B — C. Write C = colim; C; as a filtered colimit
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of Zariski covers B — C;. Again, since k*¢) F' satisfies Zariski descent, we have
descent for these covers. Thus, the claim follows by taking filtered colimits (note
that filtered colimits commute with finite limits, and since k*i}, F' is n-truncated,
the sheaf axiom is actually a finite limit). This proves the theorem. o

Corollary B.25. Let A € Shvprozar(ProZar(Smk),Sp)v. Then A is in the es-
sential image of v* if and only if for all U € ProZar(Smy) and all presentations
of U as cofiltered limit U = lim; U; (with the U; € Smy, such that the transi-
tion morphisms U; — U; are Zariski) the canonical map colim; TV (U;, A) —
I'Y(U, A) is an equivalence.

Proof. Recall that the equivalence of abelian categories
Shv prozar (ProZar(Smy), sp)¥ = Ab(Disc(Shvprozar (ProZar(Smyg))))

is given by A+ I'Y(—, A). Note that the sheaf I'¥(—, A) is O-truncated. Thus,
the result follows immediately from Theorem [B.24] O
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