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Abstract

We define unstable p-completion in general ∞-topoi and the unstable
motivic homotopy category, and prove that the p-completion of a nilpotent
sheaf or motivic space can be computed on its Postnikov tower. We then
show that the (p-completed) homotopy groups of the p-completion of a
nilpotent motivic space X fit into short exact sequences 0 → L0πn(X) →
πp
n(X

∧

p ) → L1πn−1(X) → 0, where the Li are (versions of) the derived
p-completion functors, analogous to the classical situation.
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1 Introduction

In their seminal paper [BK72], Bousfield and Kan defined the p-completion
functor on (nilpotent) spaces/anima. This process associates to every nilpotent
anima X another anima X∧

p , together with a map X → X∧
p , which is univer-

sal among Fp-equivalences, i.e. maps f : X → Y which induce isomorphisms
on Fp-homology. Roughly, the p-completion functor “derived p-completes the
homotopy groups of X”, in the following sense: Write Li : Ab → Ab for the
derived p-completion functors on abelian groups, i.e. the composition

Ab →֒ D(Ab)
limn (−)//pn

−−−−−−−−→ D(Ab)
Hi−−→ Ab,

where the map in the middle is understood to be the derived limit of the cofibers
(or cones) of the multiplication-by-pn-maps. Then, one has the following theo-
rem:

Theorem 1.1 (Bousfield-Kan). Let X be a nilpotent pointed anima (resp. a
spectrum). Then for every n ≥ 1 (resp. any n ∈ Z) there is a short exact
sequence

0→ L0πn(X)→ πn(X
∧
p )→ L1πn−1(X)→ 0.

In this paper, we want to show that there is an analogous functor in unstable
motivic homotopy theory over a perfect field, which behaves similar to the
classical situation.

Let k be a perfect field. Recall that Spc(k) ⊂ P(Smk) is the full sub-
category of presheaves of anima on Smk (the category of smooth quasi-compact
k-schemes) consisting of those presheaves which are A1-invariant and satisfy Nis-

nevich descent, called the category of motivic spaces. Similarly, write SHS1

(k) ⊂
P(Smk, Sp) for the full subcategory of presheaves of spectra, consisting of the
A1-invariant Nisnevich sheaves, called the category of S1-spectra. There is an

adjunction Σ∞
+ : Spc(k) ⇄ SHS1

(k) : Ω∞. We regard SHS1

(k) as equipped with

the homotopy t-structure (SHS1

(k)≥0, SH
S1

(k)≤0), with heart SHS1

(k)♥. Write

(−)∧p : SHS1

(k) → SHS1

(k) for the p-adic completion functor, i.e. the functor

E 7→ limk E//p
k, and

(

SHS1

(k)
)∧

p
for its essential image.

Note that in this setting, classical theorems cannot be true on the nose: For

example, one cannot expect that for every A ∈ SHS1

(k)♥ there are short exact
sequences

0→ L0πn(A)→ πn(A
∧
p )→ L1πn−1(A)→ 0,

(where the Li are defined analogously to the case of abelian groups), since it
is unreasonable to expect that A∧

p has no negative homotopy groups (although
the negative homotopy groups are always uniquely p-divisible, see Lemma 2.9).
These negative homotopy groups appear since infinite products are not t-exact

in SHS1

(k).
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Luckily, there is a new t-structure (the p-adic t-structure) one can asso-

ciate to SHS1

(k) which solves those problems. Our main theorem can now be
summarized as follows:

Theorem 1.2. There is a localization functor (−)∧p : Spc(k) → Spc(k) which
inverts p-equivalences, i.e. morphisms f : X → Y in Spc(k), such that (Σ∞

+ f)//p
is an equivalence.

One can define the p-adic t-structure (SHS1

(k)
p

≥0, SH
S1

(k)
p

≤0) on SHS1

(k) with

heart SHS1

(k)p♥, and derived p-completion functors

Li : SHS1

(k)♥ → SHS1

(k)p♥,

A 7→ πp
i (A) := Ωiτp≤iτ

p
≥iA.

For every X ∈ Spc(k)∗, there is a functorial sequence of p-completed homo-

topy groups πp
n(X) ∈ SHS1

(k)p♥ for n ≥ 2. There is a simliar construction if
n = 1.

These constructions satisfy the following:

(1) The p-adic t-structure is not left-separated. Write

SHS1

(k)
p

≥∞
:=

⋂

n

SHS1

(k)
p

≥n.

Then there is a canonical equivalence

SHS1

(k)/SHS1

(k)
p

≥∞
∼=

(

SHS1

(k)
)∧

p
.

(2) A morphism f : A → B is a p-equivalence in SHS1

(k)♥ (i.e. f//p is an
equivalence) if and only if Li(f) is an equivalence for all i.

More generally, a morphism f : E → F in SHS1

(k) is a p-equivalence if
and only if πp

n(f) is an equivalence for all n ∈ Z.

(3) An object E ∈ SHS1

(k) lives inside the p-adic heart SHS1

(k)p♥ if and only

if E//p ∈ SHS1

(k)≥0, E ∈ SHS1

(k)≤0, E
∼= E∧

p and π0(E) is of bounded

p-divisibility (i.e. has no map from a p-divisible object A ∈ SHS1

(k)♥).

(4) If E ∈ SHS1

(k), then there are functorial short exact sequences

0→ L0πn(E)→ πp
n(E

∧
p )→ L1πn−1(E)→ 0.

(5) If f : X → Y is a p-equivalence of pointed nilpotent motivic spaces, then
πp
n(f) is an isomorphism for all n ≥ 1.

The converse holds if moreover π1(X) and π1(Y ) are abelian.
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(6) Moreover, if X ∈ Spc(k)∗ is a pointed nilpotent motivic space, then for

every n ≥ 2 there is a functorial short exact sequence in SHS1

(k)p♥

0→ L0πn(X)→ πp
n(X)→ L1πn−1(X)→ 0.

(and there is also a similar sequence for n = 1).

Proof. The p-completion functor is constructed in Lemma 3.7. The p-adic t-
structure is defined in Definition 2.13, and the derived p-completion functors
are constructed in Definition 2.22. The definition of the p-completed homotopy
groups is Definition 5.44. For proofs of the other statements, see:

(1) Remark 2.17,

(2) Corollary 2.21,

(3) Lemmas 2.15 and 2.19,

(4) Lemma 2.29,

(5) Propositions 5.47 and 5.52, and

(6) Theorem 5.49.

Remark 1.3. The results about the p-adic t-structure are very general: One can
associate a p-adic t-structure with the same properties to any presentable stable
∞-category which is equipped with a (right-separated) t-structure.

The situation is somewhat more complicated than the classical situation,
for the following reasons: First, as already remarked above, if we have an S1-

spectrum A ∈ SHS1

(k)♥, then (contrary to the classical situation) A∧
p is no

longer concentrated in degrees 0 and 1, since there are no connectivity bounds on
sequential limits of connective S1-spectra. Nonetheless, we can fix this problem
by introducing the p-adic t-structure and the derived p-completion functors Li.
In this t-structure, the p-completion A∧

p is concentrated in degrees 0 and 1.
It follows that the derived p-completion functors vanish for all i 6= 0, 1, see
Proposition 2.26.

In particular, the p-adic heart SHS1

(k)p♥ does not live inside the standard

heart SHS1

(k)♥. Therefore, in order for the short exact sequence (6) to make
sense, we cannot use the homotopy groups πn(X

∧
p ), but need a more elaborate

construction.
Note that in the classical situation, our constructions give the same results as

before, because here the heart of the p-adic t-structure on Sp (the ∞-category
of spectra) actually lives inside the normal heart, and the (new) derived p-
completion functors Li agree with the classical derived p-completion functors
Li. A proof of this fact can be found in Lemma A.22.

In order to prove the above theorem, we introduce a notion of p-completion
on a general∞-topos X , and then use this in the special case of the ∞-topos of
Nisnevich sheaves on smooth k-schemes. In particular, we obtain the following:

5



Lemma 1.4. Let X be an ∞-topos (or more generally any presentable ∞-
category). Then there is a localization functor (−)∧p : X → X , which inverts
p-equivalences (i.e. maps f such that (Σ∞

+ f)//p is an equivalence).

Proof. The construction can be found in Lemma 3.7.

Note that the short exact sequence (4) in Theorem 1.2 is unsatisfying: It
relates the p-completed homotopy groups of X to the derived p-completions of
the homotopy groups of X . But this does (a priori) not say anything about
the (p-completed) homotopy groups of X∧

p ! In particular, note that we cannot
use that the canonical p-equivalence X → X∧

p induces an equivalence πp
n(X)→

πp
n(X

∧
p ) via (5) of Theorem 1.2, since it is not clear (and probably wrong) that

X∧
p is nilpotent even if X is. But we are nonetheless able to say more: By the

above lemma, we get p-completion functors in the categories of Zariski sheaves,
Nisnevich sheaves, motivic spaces and connected motivic spaces, denote them
by Lp

zar, L
p
nis, L

p
A1 and Lp

A1,≥1, respectively. We can relate the different functors:

Proposition 1.5. Let X ∈ Spc(k)∗ be a nilpotent motivic space, it is in par-
ticular connected. Then there are equivalences

Lp
zar(X) ∼= Lp

nis(X) ∼= Lp
A1,≥1(X).

In particular, the p-completion of X as a Nisnevich or Zariski sheaf is again an
A1-invariant Nisnevich sheaf!

If Conjecture 5.24 is true (i.e. if the p-completion Lp
A1(Y ) is connected for

every nilpotent motivic space Y ), then we also get an equivalence Lp
nis(X) ∼=

Lp
A1(X).

Proof. The equivalences can be found in Theorems 5.31 and 5.34.

Note that here a small problem arises: Currently we do not know whether the
p-completion of a nilpotent motivic spaces is still connected. The corresponding
fact in an∞-topos is true, see Lemma 3.12. This introduces some complications,
but at least for Lp

zar, L
p
nis and L

p
A1,≥1 we have the following:

Theorem 1.6. Let X ∈ Spc(k)∗ be a nilpotent motivic space. We have equiv-
alences

πp
n(X) ∼= πp

n(L
p
zar(X)) ∼= πp

n(L
p
nis(X)) ∼= πp

n(L
p
A1,≥1(X))

for all n. In particular, we get a short exact sequence

0→ L0πn(X)→ πp
n(X

∧
p )→ L1πn−1(X)→ 0,

where X∧
p is any of Lp

zar(X) ∼= Lp
nis(X) ∼= Lp

A1,≥1(X).

Proof. See Lemma 5.46 together with the above Proposition 1.5 for the first
claim. For the short exact sequence, see Corollary 5.50.

In order to be able to compute p-completions of nilpotent sheaves, we will
be using the following theorem:
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Theorem 1.7. If X is locally of finite uniform homotopy dimension (see Def-
inition 3.22, this is a mild generalization of the notion of being of homotopy
dimension ≤ n, which is in particular satisfied by the Nisnevich and Zariski
topoi), then the p-completion of a nilpotent sheaf X ∈ X (see Definition A.10
for the definition of nilpotence in an ∞-topos) can be computed on its Postnikov
tower, i.e. there is an equivalence

X∧
p
∼= limk (τ≤kX)

∧

p .

Proof. This can be found in Theorem 3.27.

The above result about the Postnikov tower is extremely useful in computing
the p-completions of nilpotent sheaves: LetX ∈ X be a nilpotent sheaf, where X
is an∞-topos locally of finite uniform homotopy dimension. Then the Postnikov
tower has a principal refinement (see Definition A.14), i.e. there are positive inte-
gers mn, n-truncated spaces Xn,k, abelian group objects An,k ∈ Ab(Disc(X )) in
the associated 1-topos of discrete objects for all n and all 0 ≤ k ≤ mn, and fiber

sequencesXn,k+1
pn,k

−−−→ Xn,k → K(An,k+1, n+1) that refine the Postnikov tower
(in the sense that Xn,0 = τ≤nX and that the truncation map τ≤nX → τ≤n−1X
can be factored as pn,mn−1 ◦ · · · ◦ pn,0). Now we have the following proposition:

Proposition 1.8. For every n and k we have an equivalence

(Xn,k+1)
∧

p
∼= τ≥1fib

(

(Xn,k)
∧

p → (K(An,k, n+ 1))
∧

p

)

.

Moreover, there is an equivalence

(K(A, n))
∧

p
∼= τ≥1Ω

∞
∗ ((ΣnHA)

∧

p )

for every abelian group object A ∈ Ab(Disc(X )).

Proof. See Corollary 3.18 and Proposition 3.20.

The above proposition, together with Theorem 1.7 about the Postnikov
tower, allows us to compute the p-completion of nilpotent sheaves by reduc-
ing to the much easier case of the p-completion of sheaves of spectra, which is
just given by the p-adic limit E 7→ E∧

p
∼= limk E//p

k. This computational tool
will power almost all of our results.

Outline

We will start with the construction of and some basic results about the sta-
ble p-completion functor on a stable ∞-category in Section 2. We will then
construct the p-adic t-structure on a stable ∞-category, which is a t-structure
which behaves exceptionally well with respect to p-completion. In particular,
we will show that this t-structure admits an analog of the fundamental short
exact sequence for the (stable) p-completion of spectra in Lemma 2.29.

7



In Section 3, we will first construct the unstable p-completion functor on an
arbitrary presentable ∞-category X , and then show that if X is moreover an
∞-topos, then this functor is very well-behaved. In particular, we prove our
fundamental computational result, that we can calculate the p-completion of a
nilpotent sheaf by reducing to its Postnikov tower; and then to the much easier
case of Eilenberg MacLane spaces, see Theorem 1.7 and Proposition 1.8.

In order to show that there is a short exact sequence as in Theorem 1.2, we
will use the following diagram of right adjoints:

P(W ) PΣ(W ) Shvprozar(ProZar(Smk))

Spc(k) Shvnis(Smk) Shvzar(Smk).

ιΣ

∼=

ν∗

ι
A1 ιnis

First, we will show that there is a short exact sequence for objects in P(W )
in Section 4.1, by using the classical short exact sequence on each level. Then,
we will show in Section 4.2 that this also gives short exact sequences on the
nonabelian derived category PΣ(W ) for suitable W . We will then show in
Section 4.3 that if we have an embedding of∞-topoi ν∗ : X ⇄ PΣ(W ) : ν∗, then
(at least in good cases), we also get a short exact sequence for objects in X . An
example of such an embedding of∞-topoi is the embedding of the Zariski topos
into the pro-Zariski topos, constructed in Appendix B. Thus, we get a short
exact sequence for (certain) objects in Shvzar(Smk). Then, in Section 5, we will
show that the sequence on the Zariski topos actually induces a sequence for
objects in the Nisnevich topos, and then, finally, for nilpotent motivic spaces.

Note that in Shvzar(Smk), the short exact sequence only exists for a nilpotent
Zariski sheaf X if the following technical condition is satisfied: (L1(πnν

∗X))//p
must be classical (i.e. in the essential image of ν∗). Therefore, we will spend
some time in Section 4.5 to find a geometric condition that will always imply
this technical statement: Gersten injectivity of πn(X)/pk, see Definition 4.60.
If X is a motivic space, then we will deduce Gersten injectivity of πn(X)/pk

from the Gabber presentation lemma in Section 5.
In the remainder of Section 5 we will compare the various different notions of

p-completion (we can p-complete as a (connected) motivic space, as a Nisnevich
sheaf or as a Zariski sheaf), see Proposition 1.5.

Notation

We will write An for the ∞-category of anima/homotopy types/spaces, and
Sp for the stable ∞-category of spectra. More generally, if V is a presentable
∞-category, we write Sp(V) for the stabilization of V .

Conventions

We will adhere to the following derived convention:

8



If D and E are stable∞-categories equipped with t-structures and F : D → E
is an exact functor, we will also write F for the composition

D♥ →֒ D
F
−→ E .

In contrast, we write F♥ for the functor

D♥ →֒ D
F
−→ E

π0−→ E♥.

Note that in particular limits inD♥ are calculated as limI
♥(−) = π0(limI (−)),

and similar for colimits. To avoid awkward notation, if f : X → Y ∈ D♥

is a morphism, we will write ker(f) for the kernel of f in the abelian cate-
gory D♥ (instead of e.g. fib♥(f)), whereas fib(f) refers to the fiber of f in
the stable ∞-category D, and similar for coker(f) and cofib(f). If n ∈ Z

is an integer, then n induces an endomorphism n : X → X . We will write

X/n := coker(X
n
−→ X) ∈ D♥ and X//n := cofib

(

X
n
−→ X

)

∈ D.

Moreover, suppose that X and Y are ∞-topoi, and that F : X → Y is a
functor that respects n-truncated objects for every n ≥ 0 and finite limits (e.g.
the left adjoint or the right adjoint of a geometric morphism). Then F in-
duces a functor on the stabilizations Sp(X ) → Sp(Y), which we also denote
by F . Note that there is a standard t-structure on Sp(X ), and an equivalence

Ab(Disc(X )) ∼= Sp(X )♥, where the left-hand side denotes the abelian group ob-
jects in the underlying 1-topos of discrete objects in X . Using this equivalence,
we will identify the homotopy object functors πn with functors

πn : X → Sp(X )♥

for n ≥ 2. Since F commutes with finite products, it also induces a functor

Ab(Disc(X ))→ Ab(Disc(Y)).

Under the above identifications, we will refer to this functor as

F♥ : Sp(X )♥ → Sp(Y)♥.

Note that this coincides with the earlier use of the symbol F♥ from above. If
F is the left adjoint of a geometric morphism, it induces a t-exact functor on
the stabilization. Therefore, the functors F♥ and F (restricted to the heart)
are equivalent, and we will usually omit the heart. However, if F is the right
adjoint of a geometric morphism, this is usually not the case, and we will always
write F♥ if we refer to the functor on the hearts. (Although, in many of our
cases, the right adjoint will actually be t-exact.)

Let (C, τ) is a site and X := Shvτ (C) is the associated ∞-topos. Suppose
that A ∈ Sp(X )♥ ∼= Shvτ (C, Sp)♥. For U ∈ C, we will write Γ(U,A) ∈ Sp for
the value of A at U (note that this spectrum knows about the τ -cohomology of
A at U !). In contrast, Γ♥(U,A) = π0(Γ(U,A)) are the global sections of A ∈
Ab(Disc(X )). Note that in particular, the equivalence Sp(X )♥ → Ab(Disc(X ))
is realized by the functor A 7→ Γ♥(−, A).

9
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2 Stable p-Completion

Let D be a presentable stable ∞-category [Lur17, Definition 1.1.1.9]. Suppose
that D is equipped with an accessible t-structure (D≥0,D≤0) [Lur17, Defini-
tion 1.2.1.4 and Definition 1.4.4.12]. Suppose moreover that this t-structure is
right-separated (i.e.

⋂

nD≤n = 0). We will call this t-structure the standard t-
structure (on D). Let D♥ := D≥0∩D≤0 be the heart of the standard t-structure.
This is an abelian category, see [Lur17, Remark 1.2.1.12]. We write τ≤n and τ≥n

for the truncation functors, and πn : D → D♥ for the n-th homotopy object. We
say that an object E ∈ D is k-connective (resp. k-coconnective or k-truncated)
for some k ∈ Z if E ∈ D≥k (resp. E ∈ D≤k).

2.1 Properties of the Stable p-Completion Functor

In this section, we define the stable p-completion functor and prove some basic
properties. Most of the results are well-known, see for example [MNN17, Section
2.2] or [Bac21, Section 2.1].

Definition 2.1. Let (−)//p be the endofunctor on D given on objects by E 7→

cofib
(

E
p
−→ E

)

.

We say that a morphism f : E → F in D is a p-equivalence if f//p is an
equivalence. We say that an object E ∈ D is p-complete if for all p-equivalences
F → F ′ the induced map on mapping spaces MapD(F

′, E) → MapD(F,E) is
an equivalence.

Write D∧
p for the subcategory of p-complete objects.

Remark 2.2. If D is equipped with a symmetric monoidal structure ⊗ that is
exact in each variable, then the endofunctor (−)//p is equivalent to the functor
− ⊗ (S//p), where S is the unit of the symmetric monoidal structure. This
follows immediately from the assumption that the tensor product is exact in
each variable.

Lemma 2.3. The class S of p-equivalences in D is strongly saturated and of
small generation.

Proof. Using [Lur09, Proposition 5.5.4.16], it suffices to show that S = f−1(S′)
for some colimit-preserving functor f and a strongly saturated class S′ of small
generation. This holds for f = (−//p) and S′ the collection of equivalences
in D. S′ is of small generation because it is the smallest saturated class of
morphisms in D, see [Lur09, Example 5.5.4.9], and therefore generated by the
empty collection.
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Lemma 2.4. The category D∧
p is presentable, and the inclusion D∧

p → D has

a left adjoint (−)∧p : D → D
∧
p . In other words, (−)∧p is a localization functor.

Proof. This is an application of [Lur09, Proposition 5.5.4.15], using that the
class S of p-equivalences in D is of small generation, see Lemma 2.3.

This localization functor is called the (stable) p-completion functor. By
abuse of notation, we will also write (−)∧p : D → D for the composition of the
localization functor with the inclusion. The p-completion functor has an easy
description:

Lemma 2.5. There is a natural isomorphism of functors (−)∧p
∼= limn (−//pn).

Proof. Suppose that D is equipped with a symmetric monoidal structure ⊗ that
is exact in each variable. Then this follows from the discussion before [MNN17,
Proposition 2.23].

We also give a second proof, which does not require the existence of a stably
symmetric monoidal structure: Let Lp : D → D be the functor given by E 7→
limn (E//p

n). It suffices to show that Lp(E) is p-complete for every E and
that the canonical map αE : E → Lp(E) induced by the maps E → E//pn is a
p-equivalence.

Since the inclusion of p-complete objects is a right adjoint, it commutes with
limits. In particular, in order to show that limnE//p

n is p-complete, it suffices
to show that E//pn is p-complete for all n.

First, let f : X → Y be a p-equivalence, i.e. f//p is an equivalence. For every
n, there is a fiber sequence (in the stable category Fun(∆1,D))

f//p→ f//pn → f//pn−1.

By induction, we deduce that if f//p is an equivalence, so is f//pn for all n.
We now show that E//pn is p-complete for all n. For this, let f : X → Y be

a p-equivalence. We have the following chain of natural equivalences:

MapD(f, E//p
n) ∼= MapD

(

f, fib
(

ΣE
pn

−→ ΣE
))

∼= fib
(

MapD(f,ΣE)
pn

−→ MapD(f,ΣE)
)

∼= MapD (f//pn,ΣE) .

Here, we use that the mapping space functor is left exact in both variables, and
that cofib(g) = fib(Σg) for every morphism g in a stable category. Thus, since
f//pn is an equivalence by the above, we conclude that MapD(f, E//p

n) is an
equivalence. In other words, E//pn is p-complete.

Thus, we are left to show that for every E, αE//p : E//p → (limnE//p
n)//p

is an equivalence. Indeed, we can write

(limnE//p
n)//p ∼= limn ((E//p

n)//p)
∼= limn ((E//p)//p

n)
∼= limn (E//p⊕ ΣE//p)
∼= E//p.

11



The first equivalence holds because D is stable, and thus the cofiber (−//p) is
also a (suspension of) a limit, and limits commute with limits. The last equality
holds, because in the limit, the transition maps on the left part are the identity,
and are multiplication by p on the right part.

From now on we will use the equivalence from Lemma 2.5 without reference.

Lemma 2.6. Let f : E → F be a morphism in D. The following are equivalent:

(1) f is a p-equivalence,

(2) (f)∧p is an equivalence,

(3) MapD(f, T ) is an equivalence of anima for every T ∈ D∧
p .

In particular, for any object E the unit E → E∧
p is a p-equivalence, and E

is p-complete if and only if E ∼= E∧
p .

Proof. This follows immediately from the fact that (−)∧p is a localization functor,
and that the class of p-equivalences is strongly saturated by Lemma 2.3. See
[Lur09, Proposition 5.5.4.2 and Proposition 5.5.4.15 (4)].

Lemma 2.7. Let E ∈ D be k-truncated. Then E∧
p is (k + 1)-truncated.

Proof. For each n, we see that E//pn = cofib
(

E
pn

−→ E
)

∼= Σfib
(

E
pn

−→ E
)

.

Since D≤k is stable under limits (see [Lur17, Corollary 1.2.1.6]), we conclude
that E//pn ∈ D≤k+1. By the same corollary we now get that E∧

p = limn (E//p
n)

is (k + 1)-truncated.

Definition 2.8. Let A be an abelian category, and let A ∈ A. We say that A

is uniquely p-divisible, if A
p
−→ A is an isomorphism. Similarly, we say that A is

p-divisible, if coker(A
p
−→ A) = 0.

Lemma 2.9. Let f : F → E be a p-equivalence in D such that F is k-connective
for some k. Then πnE is uniquely p-divisible for all n < k.

Proof. Since f is a p-equivalence, it induces an equivalence F//p → E//p. We

have a cofiber sequence E
p
−→ E → E//p, and thus a cofiber sequence E

p
−→ E →

F//p. This induces a long exact sequence on homotopy objects, which gives us

πi+1(F//p)→ πi(E)
p
−→ πi(E)→ πi(F//p)

for all i.
If i ≤ k− 2, then the outer terms vanish (F//p is k-connective). Thus, πi(E)

is uniquely p-divisible.
If i = k − 1, we get

πk(E//p) πk−1(E) πk−1(E) πk−1(F//p) = 0

πk(F//p) πk−1(F ) = 0

α p

∼=

12



Commutativity of the square implies that α = 0. Thus, also πk−1(E) is uniquely
p-divisible.

Lemma 2.10. Let E ∈ D. Consider the following statements:

(1) E∧
p = 0,

(2) πn(E
∧
p ) = 0 for all n,

(3) πn(E//p) = 0 for all n, and

(4) πn(E) is uniquely p-divisible for all n.

Then (1) =⇒ (2) =⇒ (3) ⇐⇒ (4). If D≥∞ :=
⋂

nD≥n is stable under
sequential limits, then also (2) ⇐⇒ (3). If the t-structure is moreover left-
separated, then also (1) ⇐⇒ (2).

Note that if the t-structure is left-separated, then D≥∞ = 0 is in particular
stable under sequential limits (i.e. in this case, all four statements are equiva-
lent).

Proof. It is clear that (1) =⇒ (2). Moreover, if the t-structure is left-separated,
then it follows directly that (2) =⇒ (1) (note that the t-structure is assumed
to be right-separated).

We now show (2) =⇒ (3). Since E → E∧
p is a p-equivalence, we have

E//p ∼= E∧
p //p. In other words, there is a cofiber sequence

E∧
p

p
−→ E∧

p → E//p.

This induces the following long exact sequence on homotopy:

· · · πn(E
∧
p ) πn(E//p) πn−1(E

∧
p ) · · · .

p p

We conclude that πn(E//p) = 0 for all n.
The equivalence (3) ⇐⇒ (4) follows immediately from the long exact

sequence associated to the fiber sequence E
p
−→ E → E//p, similar to the proof

of Lemma 2.9.
We are left to show that (4) =⇒ (2) if we assume that D≥∞ is stable under

sequential limits. Using the cofiber sequence E
pk

−→ E → E//pk we conclude
as above that πn(E//p

k) = 0 for all k ≥ 1 and all n. In particular, since the
standard t-structure is right-separated, we see that E//pk ∈ D≥∞. But now we
conclude that E∧

p = limk E//p
k ∈ D≥∞. This implies that πn(E

∧
p )
∼= 0 for all

n.

Corollary 2.11. Let f : E → F be a morphism in D. Consider the following
statements:

(1) f is a p-equivalence,

(2) (fib(f))∧p = 0,

(3) (cofib(f))
∧

p = 0,

13



(4) fib(f) has uniquely p-divisible homotopy objects,

(5) cofib(f) has uniquely p-divisible homotopy objects.

Then (1) ⇐⇒ (2) ⇐⇒ (3) =⇒ (4) ⇐⇒ (5). If moreover the standard
t-structure is left-separated, then also (4) =⇒ (3).

Proof. The equivalence of (1) and (2) follows from the fiber sequence fib(f)→
E → F . That (2) implies (4) was proven in Lemma 2.10. If the t-structure is
left-separated, then also (4) implies (2), again by Lemma 2.10. The other equiv-
alences follow because D is stable and thus there is an equivalence cofib(f) ∼=
Σfib(f).

Lemma 2.12. Suppose that D is equipped with a symmetric monoidal structure
⊗ that is exact in each variable.

Let fi : Ei → Fi be a p-equivalence in D for i = 1, . . . , n. Then also
⊗

i fi :
⊗

iEi →
⊗

i Fi is a p-equivalence, i.e. p-completion is compatible with
the symmetric monoidal structure in the language of [Lur17, Definition 2.2.1.6].

Proof. Note that by [Lur17, Example 2.2.1.7], it suffices to show that for every
p-equivalence f : E → F , and any object Z ∈ D, also f ⊗ Z : E ⊗ Z → F ⊗ Z
is a p-equivalence. We thus have to show that (f ⊗ Z)//p is an equivalence.
Since the symmetric monoidal structure is exact in each variable, we can write
(f ⊗ Z)//p ∼= (f//p)⊗ Z, which is an equivalence by assumption.

2.2 The p-adic t-structure

The aim of this section is to define a t-structure on D which is suited for p-
completions.

Definition 2.13. For i ∈ Z, let Dp
≥i be the full subcategory of D given by

objects

{E ∈ D |πj(E) uniquely p-divisible ∀j < i− 1, πi−1(E) p-divisible } .

Let Dp
≤i be the right orthogonal complement of Dp

≥i+1, i.e. E ∈ Dp
≤i if and

only if for all F ∈ Dp
≥i+1 the mapping space Map(F,E) is contractible. We

will show below in Lemma 2.16 that this defines a t-structure (Dp
≥0,D

p
≤0) on

D. We will call this t-structure the p-adic t-structure on D. Denote by πp
n the

n-th homotopy object and by τp≤n and τp≥n the truncations of this t-structure.

Moreover, denote by Dp♥ := Dp
≥0 ∩ D

p
≤0 ⊂ D the heart.

Remark 2.14. Note that the p-adic t-structure (Dp
≥0,D

p
≤0) depends on the t-

structure (D≥0,D≤0). This is suppressed in our notation. Later, D will be the
stabilization of a presentable∞-category, which admits a canonical t-structure,
so this slight abuse of notation will not be a problem.

In order to prove that the p-adic t-structure is a t-structure, we will need
the following lemma:

14



Lemma 2.15. Let E ∈ D. The following are equivalent:

(1) E ∈ Dp
≥0,

(2) E//pn ∈ D≥0 for all n and

(3) E//p ∈ D≥0.

Proof. The fiber sequence E
pn

−→ E → E//pn yields the long exact sequence

· · · → πk+1(E//p
n)→ πk(E)

pn

−→ πk(E)→ πk(E//p
n)→ · · · .

We conclude that πk(E//p
n) = 0 for all k < 0 if and only if πk(E) is uniquely

pn-divisible for all k < −1 and π−1(E) is pn-divisible. But being (uniquely)
pn-divisible is the same as being (uniquely) p-divisible. Since the standard t-
structure is right-separated by assumption, we see that πk(E//p

n) = 0 for all
k < 0 is equivalent to E//pn ∈ D≥0.

Lemma 2.16. The pair (Dp
≥0,D

p
≤0) from Definition 2.13 defines an accessible

t-structure on D.

Proof. Using [Lur17, Proposition 1.4.4.11], it suffices to show that Dp
≥0 is pre-

sentable and closed under colimits and extensions. Note that by Lemma 2.15,
we see that Dp

≥0 = {E ∈ D |E//p ∈ D≥0 }.

We first show that Dp
≥0 is presentable. Note that by assumption, the stan-

dard t-structure is accessible, i.e. D≥0 is presentable. Using Lemma 2.15, we
see that there is a cartesian diagram of ∞-categories

Dp
≥0 D≥0

D D.
(−)//p

The inclusion D≥0 →֒ D and the functor (−)//p commute with colimits (by
[Lur17, Corollary 1.2.1.6], and since colimits commute with colimits). By as-
sumption, D and D≥0 are presentable. Thus, the limit of the above diagram
can be computed in the∞-category of presentable∞-catgories PrL (see [Lur09,
Proposition 5.5.3.13]), and we conclude that Dp

≥0 is presentable. In particular,

we see that the functor Dp
≥0 →֒ D commutes with colimits, i.e. the subcategory

Dp
≥0 is closed under colimits.

We are left to show that Dp
≥0 is closed under extensions. This follows im-

mediately from the fact that D≥0 is closed under extensions (this is true for the
connective part of any t-structure), and that (−)//p : D → D commutes with
extensions (because it is an exact functor).

Remark 2.17. We quickly explain why we made those choices. We will see in
Lemma 2.20 that the p-adic t-structure is not left-separated, with

⋂

n

Dp
≥n = {E ∈ D |πn(E) uniquely p-divisible for all n } .
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Note that this is exactly the kernel of the p-completion functor (−)∧p , hence the

left-seperation of this t-structure (i.e. the Verdier quotient D/
⋂

nD
p
≥n) is given

by D∧
p . There is another t-structure with the same property:

Let C := {E ∈ D |πj(E) uniquely p-divisible ∀j < 0 }. Then we could define
a t-structure by declaring the −1-coconnective objects to be the right orthog-
onal complement of C, and the connective objects to be the left orthogonal
complement of the −1-coconnective objects. (Note that C itself cannot be the
subcategory of connective objects of a t-structure since it is not closed un-
der extensions). If D = Sp is the category of spectra (or more generally the
stabilization of an ∞-topos locally of homotopy dimension 0), then these two
t-structures agree. But in general, this is not true: Let X be the ∞-topos of
étale sheaves (of anima) on the small étale site of Spec(Q). Let µp∞ be the
sheaf of p-power roots of unity, i.e. µp∞(Spec(k)) =

{

x ∈ k
∣

∣ ∃n, xp
n

= 1
}

. The
associated Eilenberg-MacLane spectrum Hµp∞ lies inside Sp(X )p≥1 (since µp∞

is p-divisible), but is only 0-connective in this second t-structure. If one views
µp∞ as an étale version of the (ordinary) spectrumH(Z[p−1]/Z), then one would
expect this shift.

Definition 2.18. Let A be an abelian category. Let A ∈ A. We say that A
has bounded p-divisibility if for all p-divisible B ∈ A we have Map(B,A) = 0.

Lemma 2.19. Let E ∈ D. Then E ∈ Dp
≤0 if and only if E = τ≤0E, E = E∧

p

and π0(E) has bounded p-divisibility.

Proof. Suppose first that E ∈ Dp
≤0. Note that D≥1 ⊆ D

p
≥1 since the zero object

0 ∈ D♥ is (uniquely) p-divisible. Thus, D≤0 ⊇ D
p
≤0. Hence, E = τ≤0E. In

order to show that E is p-complete, it suffices to show that Map(A,E) = 0 for
all A with A∧

p = 0. So let A∧
p = 0. Hence, by Lemma 2.10, πn(A) is uniquely

p-divisible for all n. Thus, A ∈ Dp
≥1. Thus, by definition of Dp

≤0 we know that
Map(A,E) = 0. For the bounded p-divisibility, suppose that B is a p-divisible
object of D♥. Then B ∈ Dp

≥1. Hence, Map(B, π0(E)) ∼= Map(B,E) = 0, where
we used that E ∈ D≤0 and thus π0(E) ∼= τ≥0E in the first equivalence, and that
E ∈ Dp

≤0 in the second.
For the other direction, assume that E = τ≤0E, E = E∧

p and that π0(E)
has bounded p-divisiblity. Let F ∈ Dp

≥1. We need to show that Map(F,E) = 0.
But by assumption on F , τ≥0F → F is a p-equivalence (see e.g. Corollary 2.11)
and π0(F ) is p-divisible. Thus,

Map(F,E) ∼= Map(τ≥0F,E)
∼= Map(π0(F ), E)
∼= Map(π0(F ), π0(E)) = 0.

The first equivalence holds because E is p-complete and the second exists be-
cause E is coconnective. The third follows because π0(F ) is connective. The
last equality holds because π0(E) has bounded p-divisibility and F ∈ Dp

≥1.

16



Lemma 2.20. We have
⋂

n

Dp
≤n = 0

and
⋂

n

Dp
≥n = {E ∈ D |πn(E) uniquely p-divisible for all n } .

In particular, we have that πp
n(E) = 0 for all n if and only if πn(E) is uniquely

p-divisible for all n.

Proof. Note that Dp
≤n ⊂ D≤n by Lemma 2.19. Hence,

⋂

nD
p
≤n ⊂

⋂

nD≤n = 0
since (D≥0,D≤0) is right-separated. The second statement is clear since uniquely
p-divisible abelian group objects are in particular p-divisible. For the last part,
note that πp

n(E) = 0 for all n if and only if E lives in the stable subcategory
of D generated by

⋂

nD
p
≥n and

⋂

nD
p
≤n. But by the above, the latter is zero,

and the former consists of exactly those spectra which have uniquely p-divisible
homotopy objects.

Corollary 2.21. Suppose that the standard t-structure is left-separated. Let
f : E → F be a morphism in D. Then f is a p-equivalence if and only if
πp
n(E)→ πp

n(F ) is an isomorphism for all n.

Proof. From Corollary 2.11 we see that f is a p-equivalence if and only if fib(f)
has uniquely p-divisible homotopy objects. Using Lemma 2.20, this is equivalent
to fib(f) ∈

⋂

nD
p
≥n. The long exact sequence now implies that this is the case

if and only if πp
n(f) is an equivalence for all n.

Definition 2.22. For every n ∈ Z define a functor Ln : D♥ → Dp♥ via A 7→
πp
n(A), i.e. the restriction of πp

n to the heart.

Definition 2.23. Let A be an abelian category. Let A ∈ A, and n ∈ N. Denote

by A[pn] := ker(A
pn

−→ A) the pn-torsion of A.

Lemma 2.24. Let A ∈ D≤0. Then π1(A
∧
p )
∼= lim♥

n π0(A)[p
n] is of bounded

p-divisibility. Here, the transition maps in the limit are multiplication by p.

Proof. Let E := A∧
p
∼= limnA//p

n. Note that A//pn is 1-truncated, with
π1(A//p

n) ∼= π0(A)[p
n]. (This can be seen from the long exact sequence as-

sociated to the fiber sequence A
pn

−→ A → A//pn.) Since τ≥1 is a right adjoint,
it commutes with limits. We now compute

π1(E) ∼= π1(τ≥1E)
∼= π1(limn τ≥1(A//p

n))
∼= π1(limn Σ(π0(A)[p

n]))
∼= π0(limn π0(A)[p

n])

= lim♥
n π0(A)[p

n].

17



In order to show that π1(E) has bounded p-divisibility, let B ∈ D♥ be p-
divisible. We need to show that Map(B, π1(E)) = 0. By pulling out the limit
(note that lim♥

n is the categorical limit in D♥) we get

MapD♥(B, π1(E)) ∼= limn MapD♥(B, π0(A)[p
n]).

Thus, it suffices to show that for every n we have Map(B, π0(A)[p
n]) = 0. So

fix n ≥ 1 and a map φ : B → π0(A)[p
n]. Since pn : B → B is an epimorphism

(B is p-divisible), in order to show that φ = 0, it suffices show that φ ◦ pn = 0.
But φ ◦ pn = pn ◦ φ. Now we conclude by noting that the endomorphism
pn : π0(A)[p

n]→ π0(A)[p
n] is zero.

Lemma 2.25. Let A ∈ D♥. If A is uniquely p-divisible, then LnA = 0 for all
n.

Proof. If A is uniquely p-divisible, then A ∈ Dp
≥k for all k. Hence, LnA =

πp
n(A) = 0 for all n.

Proposition 2.26. Let E ∈ D. We have the following:

(1) If E ∈ D≤0, then E
∧
p ∈ D

p
≤1,

(2) if E//p ∈ D≥0, then E
∧
p ∈ D

p
≥0,

(3) if E ∈ D≥0, then E
∧
p ∈ D

p
≥0, and

(4) if E ∈ D♥, then E∧
p ∈ D

p
≥0 ∩D

p
≤1.

In particular, if E ∈ D♥, then LnE = 0 for all n 6= 0, 1.

Proof. We start with (1): We have seen in Lemma 2.7 that πk(E
∧
p ) = 0 for all

k > 1. E∧
p is p-complete by definition. By Lemma 2.24, we get that π1(E

∧
p ) is

of bounded p-divisibility. Thus, E∧
p ∈ D

p
≤1 by Lemma 2.19.

We now prove (2): By Lemma 2.15 we see that E∧
p ∈ D

p
≥0 if and only if

E∧
p //p ∈ D≥0. But E

∧
p //p

∼= E//p ∈ D≥0.
Part (3) follows from (2), noting that E ∈ D≥0 implies that E//p ∈ D≥0,

since D≥0 is stable under colimits, see [Lur17, Corollary 1.2.1.6].
Part (4) is an immediate consequence of (1) and (3). The last statement

follows immediately from (4): Corollary 2.21 implies that LnE = πp
n(E) ∼=

πp
n(E

∧
p ), thus Ln(E) = 0 for all n 6= 0, 1. This proves the lemma.

Lemma 2.27. Let A ∈ D♥. Then there is a canonical fiber sequence

ΣL1A→ A∧
p → L0A.

Proof. Proposition 2.26 shows that A∧
p ∈ D

p
≥0∩D

p
≤1. Thus, using Corollary 2.21,

we conclude L0A ∼= πp
0(A

∧
p )
∼= τp≤0(A

∧
p ). Similar, we see ΣL1(A) ∼= Σπp

1(A
∧
p )
∼=

τp≥1(A
∧
p ). The lemma now immediately follows since we have a canonical fiber

sequence
τp≥1(A

∧
p )→ A∧

p → τp≤0(A
∧
p ).
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Lemma 2.28. Let A ∈ D♥. Then (L1A)//p ∈ D♥ and there is a short exact
sequence in D♥

0→ (L1A)//p→ A[p]→ π1((L0A)//p)→ 0,

coming from the fiber sequence of Lemma 2.27.

Proof. Consider the fiber sequence

ΣL1A→ A∧
p → L0A

from Lemma 2.27. Applying (−)//p yields the fiber sequence

Σ(L1A)//p→ A∧
p //p→ (L0A)//p.

Note that A∧
p //p

∼= A//p is concentrated in degrees 0 and 1. Using Lemma 2.15
we know that LiA//p ∈ D≥0 for i = 0, 1. Since L0A ∈ D

p
≤0 ⊂ D≤0, we conclude

that (L0A)//p ∈ D≤1. Now the long exact sequence in homotopy associated to
the above fiber sequence yields that πi((L1A)//p) = 0 for all i ≥ 1. We therefore
conclude that (L1A)//p ∈ D♥. The long exact sequence also gives us

0→ π1(Σ(L1A)//p)→ π1(A//p)→ π1((L0A)//p)→ 0.

We conclude by noting that π1(Σ(L1A)//p) = π0((L1A)//p) = (L1A)//p and that
π1(A//p) ∼= A[p].

Lemma 2.29. Let E ∈ D and n ∈ Z. Then there is a short exact sequence

0→ L0πn(E)→ πp
n(E)→ L1πn−1(E)→ 0

natural in E.

Proof. Note that for any spectrum F we have the following: If F is k-connective,
then πp

n(F ) = 0 for all n < k (D≥k ⊆ D
p
≥k), and if F is k-truncated, then

πp
n(F ) = 0 for all n > k + 1 (Lemma 2.7).
Consider the fiber sequence

τ≥nE → E → τ≤n−1E.

This gives the following long exact sequence in Dp♥:

πp
n+1(τ≤n−1E)→ πp

n(τ≥nE)→ πp
n(E)→ πp

n(τ≤n−1E)→ πp
n−1(τ≥nE).

Since τ≤n−1E is n − 1-truncated, we get that πp
n+1(τ≤n−1E) = 0. Similarly,

since τ≥nE is n-connective, we get that πp
n−1(τ≥nE) = 0. Thus, we arrive at a

short exact sequence

0→ πp
n(τ≥nE)→ πp

n(E)→ πp
n(τ≤n−1E)→ 0.

Now consider the fiber sequence

Σn−1πn−1E → τ≤n−1E → τ≤n−2E,
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which induces the following long exact sequence in Dp♥:

πp
n+1(τ≤n−2E)→ πp

n(Σ
n−1πn−1E)→ πp

n(τ≤n−1E)→ πp
n(τ≤n−2E).

Again, since τ≤n−2E is n − 2-truncated, the outer terms vanish, and we are
left with an isomorphism πp

n(τ≤n−1E) ∼= πp
n(Σ

n−1πn−1E) ∼= πp
1(πn−1E) =

L1(πn−1E).
Similarly, we can consider the fiber sequence

τ≥n+1E → τ≥nE → Σnπn(E),

which induces the following long exact sequence in Dp♥:

πp
n(τ≥n+1E)→ πp

n(τ≥nE)→ πp
n(Σ

nπn(E))→ πp
n−1(τ≥n+1E).

Now τ≥n+1E is n+1-connective, so the outer terms vanish, and we are left with
and isomorphism πp

n(τ≥nE) ∼= πp
n(Σ

nπn(E)) = πp
0(πn(E)) = L0(πn(E)).

Plugging those isomorphisms into the short exact sequence from the begin-
ning, we get a short exact sequence

0→ L0πn(E)→ πp
n(E)→ L1πn−1(E)→ 0.

Corollary 2.30. Let E ∈ D and n ∈ Z. We have equivalences πp
n(E) ∼=

πp
n(τ≥kE) ∼= πp

n(τ≤lE) for all k ≤ n− 1 and all l ≥ n.

Proof. This follows immediately from Lemma 2.29.

Corollary 2.31. Suppose that the standard t-structure is left-separated. Let
f : E → F be a map in D. If f induces isomorphisms Liπn(E) → Liπn(F ) for
all n and i = 0, 1, then f is a p-equivalence.

Proof. Combine Lemma 2.29 and Corollary 2.21.

2.3 Comparison Results

In this section, we will compare the p-adic t-structures on different stable
categories. For this suppose that D and E are two presentable stable cate-
gories, satisfying the assumptions from the beginning of the section, i.e. they
both come equipped with accessible right-separated t-structures (D≥0,D≤0) and
(E≥0, E≤0). We again call those t-structures the standard t-structures, in con-
trast to the p-adic t-structures.

Lemma 2.32. Let F : D → E be an exact functor. Then F preserves p-
equivalences.

If moreover F commutes with sequential limits (e.g. if F is a right adjoint
functor), then F commutes with p-completion, and in particular preserves p-
complete objects.
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Proof. Since F is exact, it commutes with cofib
(

−
p
−→ −

)

. Thus, since F sends

equivalences to equivalences, it follows that F preserves p-equivalences.
Suppose now that F commutes with sequential limits. Let X ∈ D. Then

we compute (FX)
∧

p
∼= limn (FX)//pn ∼= limn F (X//p

n) ∼= F (limnX//p
n) ∼=

F (X∧
p ).

Lemma 2.33. Let F : D → E be an exact conservative functor. Then F detects
p-equivalences, i.e. for every f : E → F in D the following holds: If F (f) is a
p-equivalence, then f is a p-equivalence.

Proof. Let f : E → F in D a morphism such that F (f) is a p-equivalence,
i.e. F (f)//p is an equivalence. Note that since F is exact, we have F (f)//p ∼=
F (f//p). Now since F is conservative, we conclude that f//p is an equivalence,
i.e. f is a p-equivalence.

Lemma 2.34. Let L : D → E be an exact functor which is right t-exact for the
standard t-structures. Then L is right t-exact for the p-adic t-structures. If L
has a right adjoint R, then R is left t-exact for the p-adic t-structures.

Proof. Suppose that X ∈ Dp
≥0. Lemma 2.15 implies that X//p ∈ D≥0. Since L

is exact and right t-exact for the standard t-structures, we also have LX//p ∼=
L(X//p) ∈ E≥0. But this now implies that LX ∈ Ep≥0, again by Lemma 2.15.

The last statement is a general fact about t-structures, see e.g. [BBD82,
Proposition 1.3.17 (iii)] (note that in the reference, cohomological indexing is
used).

Lemma 2.35. Let L : D → E be an exact conservative functor which is t-exact
for the standard t-structures. Suppose that X ∈ D such that LX ∈ Ep≥n for some

n. Then X ∈ Dp
≥n.

Proof. Suppose X ∈ D such that LX ∈ Ep≥n for some n. Lemma 2.15 implies
that L(X//p) ∼= LX//p ∈ E≥n. Using the same lemma, it suffices to show that
X//p ∈ D≥n. Therefore, the lemma follows from the following more general
statement, that any Y ∈ D with LY ∈ E≥n already lives in D≥n. So suppose
that we have such a Y ∈ D. Then the map τ≥nLY → LY is an equivalence.
By t-exactness of L for the standard t-structures, L commutes with connective
covers, i.e. Lτ≥nY ∼= τ≥nLY . Conservativity of L implies that τ≥nY → Y is an
equivalence, i.e. Y ∈ D≥n.

3 Unstable p-Completion in ∞-Topoi

Let X be a presentable ∞-category [Lur09, Definition 5.5.0.1]. We will have to
deal with pointed and unpointed objects. Write X∗ for the category of pointed
objects, i.e. the category X∗/ of objects under the terminal object ∗. The for-
getful functor X∗ → X has a left adjoint (−)+ : X → X∗ given on objects by the
formula X 7→ X ⊔ ∗.
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Let Sp(X ) be the stabilization of X . See [Lur17, Section 1.4.2] for a discus-
sion of the stabilization of ∞-categories. We have an adjoint pair of functors

Σ∞ : X∗ ⇄ Sp(X ) : Ω∞
∗ .

Write Σ∞
+ : X → Sp(X ) for the composition Σ∞ ◦ (−)+. Hence, this is left

adjoint to Ω∞ : Sp(X ) → X , which forgets about the basepoint of the infinite
loop space.

There is an accessible right-separated t-structure (Sp(X )≥0, Sp(X )≤0) on
Sp(X ), given by Sp(X )≤−1 = {E ∈ Sp(X ) |Ω∞

∗ E
∼= ∗ }, see Lemma A.5. We

will call this t-structure the standard t-structure on Sp(X ). Therefore we can
apply the results from Section 2.

Remark 3.1. Later in this section, we will only work in the situation where X
is an ∞-topos. But since the category of motivic spaces is not an ∞-topos, we
have to make some definitions in this more general setting.

Later, we will reduce statements about the p-completion of motivic spaces
to the easier case of p-completion in suitable ∞-topoi.

3.1 Definition of the p-Completion Functor

In this section, X will always be a presentable ∞-category. We will define the
unstable p-completion functor on the category X . As in the stable case, the
p-completion functor is a localization along a suitable class of p-equivalences:

Definition 3.2. Let g : X → Y be a morphism in X∗. We say that g is a
p-equivalence (of pointed objects) if Σ∞g is a p-equivalence.

Similarly, if g : X → Y is a morphism in X , we say that g is a p-equivalence
(of unpointed objects) if g+ : X+ → Y+ is a p-equivalence of pointed objects, i.e.
if Σ∞

+ g is a p-equivalence.

As the next lemma shows, the distinction between pointed and unpointed
p-equivalences does not matter:

Lemma 3.3. Let g : X → Y be a morphism in X∗. Then g is a p-equivalence
of pointed objects if and only if g is a p-equivalence of the underlying unpointed
objects.

Proof. We need to prove that Σ∞g is a p-equivalence if and only if Σ∞
+ g is a

p-equivalence.
Note that we have natural cofiber sequences in X∗ for every X ∈ X∗: First

we have the inclusion of the basepoint ηX : ∗ → X . This induces a morphism
ηX,+ : ∗+ → X+. Second, we have the counit cX : X+ → X . Both constructions

are natural in X∗. We claim that ∗+
ηX,+
−−−→ X+

cX−−→ X is a cofiber sequence.
Consider the following diagram:

∗ ∗+ ∗

X X+ X.

ηX

c∗

ηX,+ ηX

cX
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The left horizontal arrows are the natural inclusions. The left square is clearly
cocartesian. Since this is a retract diagram, the outer rectangle is also cocarte-
sian. Thus, also the right square is cocartesian, see [Lur09, Lemma 4.4.2.1]. In
other words, the above sequence is a cofiber sequence.

Since the sequence is natural in X∗, we get a morphism of cofiber sequences
in X∗:

∗+ X+ X

∗+ Y+ Y.

ηX,+ cX

f+ f

ηY,+ cY

Since Σ∞ and (−)//p commute with colimits (as Σ∞ is left adjoint to Ω∞
∗ ), and

since Σ∞
+ = Σ∞ ◦ (−)+, we get a morphism of cofiber sequences

Σ∞
+ ∗ //p Σ∞

+X//p Σ∞X//p

Σ∞
+ ∗ //p Σ∞

+ Y//p Σ∞Y//p.

ηX,+ cX

Σ∞
+ f//p Σ∞f//p

ηY,+ cY

Taking cofibers of the vertical maps, we get a cofiber sequence

0→ cofib
(

Σ∞
+ f//p

)

→ cofib(Σ∞f//p).

Hence, cofib
(

Σ∞
+ f//p

)

∼= cofib(Σ∞f//p). Thus, cofib
(

Σ∞
+ f//p

)

= 0 if and only if
cofib(Σ∞f//p) = 0. This proves that Σ∞

+ f is a p-equivalence if and only if Σ∞f
is a p-equivalence.

Definition 3.4. We say that X ∈ X is (unpointed) p-complete if every p-
equivalence of unpointed objects f : Y → Y ′ induces on mapping spaces an
equivalence MapX (Y ′, X)→ MapX (Y,X). Denote by X∧

p the full subcategory
of p-complete objects.

Similarly, we say that a pointed object X ∈ X∗ is (pointed) p-complete
if every p-equivalence of pointed objects f : Y → Y ′ induces an equivalence
MapX∗

(Y ′, X) → MapX∗
(Y,X). We write X∗

∧
p for the full subcategory of p-

complete objects.

Again, this distinction between pointed and unpointed objects does not mat-
ter:

Lemma 3.5. Let X ∈ X∗. Then X is pointed p-complete if and only if the
underlying unpointed object is unpointed p-complete.

Proof. Suppose that the underlying unpointed object is unpointed p-complete.
Let f : Z → Z ′ be a p-equivalence of pointed objects. Consider the following
commutative cube:
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MapX∗
(Z ′, X) ∗

MapX∗
(Z,X) ∗

MapX (Z ′, X) MapX (∗, X)

MapX (Z,X) MapX (∗, X).

f∗

f∗

Here, the vertical maps ∗ → MapX (∗, X) select the map ∗ → X given by the
pointing of X . The horizontal map MapX (Z,X) → MapX (∗, X) is given by
precomposition with the basepoint ∗ → Z, and similarly for Z ′. Note that
the front and back squares are cartesian by definition of X∗. Thus, since
f∗ : MapX (Z ′, X) → MapX (Z,X) is an equivalence by assumption, also the
map f∗ : MapX∗

(Z ′, X)→ MapX∗
(Z,X) is an equivalence. This proves that X

is pointed p-complete.
For the other direction, we have to show that a p-equivalence of unpointed

objects g : Z → Z ′ induces an equivalence MapX (Z ′, X) → MapX (Z,X). By
definition, g+ is a p-equivalence of pointed objects. This implies that the induced
map MapX∗

(Z ′
+, X)→ MapX∗

(Z+, X) is an equivalence, since X was assumed
to be pointed p-complete. But this gives

MapX (Z ′, X) ∼= MapX∗
(Z ′

+, X) ∼= MapX∗
(Z+, X) ∼= MapX (Z,X),

using that (−)+ is left adjoint to the forgetful functor. In other words, X is
unpointed p-complete.

In view of the last lemmas, being a p-equivalences or being p-complete is
independent of a choice of basepoint. Below, we will use this without reference.

Lemma 3.6. The collection of p-equivalences in X (resp. in X∗) is strongly
saturated and of small generation.

Proof. Write S for the class of p-equivalences in X . Using [Lur09, Proposition
5.5.4.16], it suffices to show that S = f−1(S′) for some colimit-preserving functor
f and a strongly saturated class S′ of small generation. Then let f = Σ∞

+ (−),
and S′ be the collection of p-equivalences in Sp(X ). S′ is strongly saturated
and of small generation by Lemma 2.3.

In the pointed case, on argues in the same way, using the functor f =
Σ∞

+ .

Lemma 3.7. The inclusion X∧
p → X has a left adjoint (−)∧p : X → X

∧
p . We

call this functor the p-completion functor.
Similarly, the inclusion X∗

∧
p → X∗ has a left adjoint, which we also denote

by (−)∧p .
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Proof. This is an application of [Lur09, Proposition 5.5.4.15], using Lemma 3.6.

As in the stable case, the theory of Bousfield localizations gives us the fol-
lowing characterization of p-equivalences:

Lemma 3.8. Let f : X → Y be a morphism in X (resp. X∗). Then f is a
p-equivalence if and only if f∧

p is an equivalence.

Proof. This follows from [Lur09, Proposition 5.5.4.15 (4)], where we use that
the class of p-equivalences is strongly saturated, see Lemma 3.6.

Lemma 3.9. Let I be a small ∞-category and (Xi)i an I-indexed diagram in
X . Suppose that Xi is p-complete for each i ∈ I. Then limi∈I Xi is p-complete.
In particular, ∗ ∈ X is p-complete.

The same is true for limits in X∗.

Proof. The inclusion X∧
p → X is a right adjoint by Lemma 3.7, hence it com-

mutes with limits. The final object ∗ is the limit over the empty diagram, hence
it is p-complete.

For the pointed case, we can use the same proof, or note that X∗ is pre-
sentable by [Lur09, Proposition 5.5.3.11]. Thus, we can apply the above result
to the presentable ∞-category X∗.

Corollary 3.10. Let X ∈ X∗ be p-complete. Then ΩX is p-complete.

Proof. ΩX is the limit of the diagram ∗ → X ← ∗. Since X is p-complete
by assumption, and ∗ is p-complete by Lemma 3.9, we conclude that ΩX is
p-complete as a limit of p-complete objects (again by Lemma 3.9).

Lemma 3.11. Let Yi be a collection of presentable ∞-categories. Suppose
s∗i : X ⇄ Yi : si,∗ are adjunctions. Let f : X → X ′ be a morphism in X . If
f is a p-equivalence, so is s∗i f for every i. The converse holds if the s∗i form
a conservative family of functors, and all of the s∗i are left-exact (i.e. commute
with finite limits).

In particular, if X is an∞-topos with enough points, then f is a p-equivalence
if and only if it is a p-equivalence on stalks.

Proof. Using Lemma A.1, we see that the s∗i ⊣ si,∗ induce exact functors on the
stabilizations, such that the following diagram of functors commutes:

Sp(X ) Sp(Yi)

X∗ Yi,∗

s∗i

Σ∞

s∗i

Σ∞

If the s∗i are left-exact, then the functors on stabilizations are jointly conservative
if the corresponding family of functors on X is, see Lemma A.3. The lemma
follows from Lemmas 2.32 and 2.33.
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3.2 Basic Properties of Unstable p-Completion

From now on, we will assume that X is actually an ∞-topos [Lur09, Defini-
tion 6.1.0.4], it is in particular presentable [Lur09, Theorem 6.1.0.6]. If X is
hypercomplete (see the discussion directly before [Lur09, Remark 6.5.2.11]),
then the standard t-structure is left-separated: If E ∈ Sp(X ) is ∞-connective,
then Ω∞

∗ ΣnE is ∞-connective for every n. By hypercompleteness, we conclude
Ω∞

∗ ΣnE ∼= ∗ for all n. But this implies that E ∼= 0, in other words, the t-
structure is left-separated.

Write Disc(X ) for the category of discrete objects in X , i.e. the essential
image of the truncation functor τ≤0 : X → X . This is an ordinary 1-topos.
Write Ab(Disc(X )) for the category of abelian group objects in Disc(X ). Note

that there is an equivalence Sp(X )♥ ∼= Ab(Disc(X )) from the heart of the t-
structure to the category of abelian group objects in X , see [Lur18a, Proposition
1.3.2.7 (4)]. We will identify these two categories. In particular, for n ≥ 2 we
will regard the homotopy object functors πn : X → Ab(Disc(X )) as functors

πn : X → Sp(X )♥.
There is a symmetric monoidal structure ⊗ on Sp(X ), see [Lur18a, Proposi-

tion 1.3.4.6]. Moreover,⊗ is exact (and moreover cocontinuous) in each variable.
Note that Σ∞

+ admits the structure of a symmetric monoidal functor from X
with the cartesian structure to Sp(X ) with ⊗, see again [Lur18a, Proposition
1.3.4.6].

Lemma 3.12. Let f : X → Y be a p-equivalence in X . Then π0(f) : π0(X)→
π0(Y ) is an equivalence.

Proof. Consider the following diagram:

X Sp(X ) Sp(X )≥0

Disc(X ) Ab(Disc(X )) Sp(X )♥,

Σ∞
+

π0

τ≥0

τ≤0

Z[−] ∼=

where Z[−] is the left adjoint to the forgetful functor Ab(Disc(X ))→ Disc(X ).
This functor exists since all categories are presentable, and the forgetful functor
commutes with limits and filtered colimits. The diagram commutes: We can see
this by uniqueness of adjoints: Note that Z[π0(−)] is left adjoint to the forgetful

functor Ab(Disc(X ))→ X , and τ≤0τ≥0Σ
∞
+ is left adjoint to Ω∞ : Sp(X )♥ → X

(note that Σ∞
+ actually factors over Sp(X )≥0). But these two right adjoint

functors agree under the identification Ab(Disc(X )) ∼= Sp(X )♥.
We can enlarge the diagram to the following:

X Sp(X )≥0 Sp(X )≥0

Disc(X ) Sp(X )♥ Sp(X )♥,

Σ∞
+

π0 τ≤0

(−)//p

τ≤0

Z[−] (−)/p
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Here, (−)/p is the functor given by X 7→ coker(X
p
−→ X). We have seen above

that the left square commutes. The commutativity of the right hand side can
be easily seen from the long exact sequence.

Since f is a p-equivalence, (Σ∞
+ f)//p is an equivalence. This implies that

Z[π0(f)]/p is an isomorphism. Note that the functor (Z[−])/p can be identified
with Fp[−]. Here, Fp[−] is the left adjoint to the forgetful functor from p-torsion
abelian group objects (i.e. sheaves of Fp-vectorspaces) in Disc(X ) to Disc(X ).
Note that this functor is conservative, see Proposition A.36. This implies that
π0(f) : π0(X)→ π0(Y ) is an isomorphism.

Lemma 3.13. Let D ∈ X a discrete space. Then D is p-complete.

Proof. We need to show that Map(Y,D)→ Map(X,D) is an equivalence for all
p-equivalences f : X → Y . But sinceD is discrete, Map(Y,D) ∼= Map(π0(Y ), D)
and Map(X,D) ∼= Map(π0(X), D). Thus, it suffices to show that π0(X) →
π0(Y ) is an equivalence, which was proven in Lemma 3.12.

Corollary 3.14. Let X ∈ X∗ be p-complete. Then τ≥1X is p-complete.

Proof. There is a fiber sequence τ≥1X → X → τ≤0X . But X is p-complete
by assumption, and τ≤0X is p-complete because it is discrete, see Lemma 3.13.
Thus, τ≥1X is p-complete as a limit of p-complete objects, see Lemma 3.9.

Lemma 3.15. Let fi : Xi → Yi be p-equivalences in X for i = 1, . . . , n. Then
∏

i fi :
∏

iXi →
∏

i Yi is a p-equivalence, and hence (
∏

iXi)
∧

p
∼=

∏

iXi
∧
p .

Proof. We need to show that Σ∞
+ (

∏

i fi)
∼=

⊗

i(Σ
∞
+ fi) is a p-equivalence of

spectra. This follows immediately from Lemma 2.12. For the last point, it
suffices to note that the canonical maps Xi → Xi

∧
p are p-equivalences, and that

∏

iXi
∧
p is p-complete as a limit of p-complete objects, see Lemma 3.9.

3.3 Completions via Postnikov-towers

Suppose from now on that X has enough points, see [Lur09, Remark 6.5.4.7].
In particular, X is hypercomplete (again [Lur09, Remark 6.5.4.7]).

Lemma 3.16. Let f : E → F be a p-equivalence in Sp(X ), with E and F
1-connective. Then Ω∞

∗ f : Ω
∞
∗ E → Ω∞

∗ F is a p-equivalence.

Proof. Since X has enough points and Ω∞
∗ commutes with points (see Lemma A.3),

this statement can be checked on stalks, see Lemma 3.11. Thus, the lemma fol-
lows from the corresponding statement about anima, see Lemma A.27.

Lemma 3.17. Let E ∈ Sp(X ) such that E is k-connective for some k ≥ 1. Then
Ω∞

∗ E → Ω∞
∗ τ≥k(E

∧
p ) is a p-equivalence. Moreover, (Ω∞

∗ E)∧p
∼= Ω∞

∗ τ≥1(E
∧
p ).

Proof. By the last Lemma 3.16, it is enough to show that E → τ≥kE
∧
p is a

p-equivalence. But E → E∧
p is a p-quivalence, and since E is k-connective,

we conclude that πn(E
∧
p ) is uniquely p-divisible for all n < k, see Lemma 2.9.
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Thus, τ<kE
∧
p has uniquely p-divisible homotopy objects, and it follows that

τ≥kE
∧
p → E∧

p is a p-equivalence, see Corollary 2.11. Since E → E∧
p is a p-

equivalence, we conclude by 2-out-of-3 (the class of p-equivalences is strongly
saturated by Lemma 3.6).

For the last part, note that Ω∞
∗ E → Ω∞

∗ τ≥1(E
∧
p ) is a p-equivalence by the

first part(since a k-connective spectrum is in particular 1-connective). Thus, it
suffices to show that Ω∞

∗ τ≥1(E
∧
p ) is p-complete. But we have an equivalence

Ω∞
∗ τ≥1(E

∧
p )
∼= τ≥1Ω

∞
∗ (E∧

p ). Since Ω∞
∗ preserves p-complete objects (as a right

adjoint to Σ∞, which preserves p-equivalences), we conclude by Corollary 3.14.

Corollary 3.18. Let K = K(A, n) be an Eilenberg-MacLane object in X∗ with

n ≥ 1 and A ∈ Sp(X )♥. Then K∧
p
∼= Ω∞

∗ τ≥1((Σ
nA)

∧

p )
∼= τ≥1Ω

∞
∗ ((ΣnA)

∧

p ).
In particular, K∧

p is connected and n+ 1-truncated, and πi(K
∧
p ) is abelian and

uniquely p-divisible for all 1 ≤ i < n.

Proof. Note that K = Ω∞
∗ ΣnA. Thus, the result follows immediately from

Lemmas 2.7, 2.9 and 3.17.

In Appendix A.2 (in particular in Definition A.10), we will define what a
nilpotent object X ∈ X∗ is. Nilpotent objects have the property, that their
Postnikov tower can be built by repeatedly building in an Eilenberg-MacLane
space K(A, n), see Definition A.14 and Lemma A.15. This allows one to prove
statements about nilpotent objects by induction over the (refined) Postnikov
tower, and from the corresponding statement about Eilenberg-MacLane objects.

Proposition 3.19. Let f : X → Y ∈ X∗ be a morphism of pointed nilpotent
spaces, such that X∧

p and Y ∧
p are also nilpotent. Then

(

τ≥1fib
(

X
f
−→ Y

))∧

p

∼= τ≥1fib

(

X∧
p

f∧
p

−−→ Y ∧
p

)

.

Proof. The right-hand side is p-complete as the connected cover of a limit of
p-complete spaces, see Corollary 3.14. Thus, it suffices to show that the map
τ≥1fib(f) → τ≥1fib

(

f∧
p

)

is a p-equivalence. This can be checked on stalks, see
Lemma 3.11. Since stalks preserve connected covers, nilpotent spaces, fibers
and p-equivalences, this immediately follows from Lemma A.20, applied to the
following diagram of fiber sequences of pointed anima (where s is a point of X )

s∗fib(f) = fib(s∗f) s∗X s∗Y

s∗fib
(

f∧
p

)

= fib
(

s∗(f∧
p )
)

s∗(X∧
p ) s∗(Y ∧

p ),

where the middle and right vertical maps are p-equivalences.
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Proposition 3.20. Let X ∈ X∗ be nilpotent and choose a principal refinement
of the Postnikov tower as in Lemma A.15. Then for all n ≥ 1 and all 1 ≤ k ≤
mn, (Xn,k)

∧

p is nilpotent and there is an equivalence

(Xn,k)
∧

p
∼= τ≥1fib

(

(Xn,k−1)
∧

p → K(An,k, n+ 1)∧p

)

.

Proof. We prove the lemma by induction on n and k, note thatXn,0
∼= Xn−1,mn

.
Also note that X1,0 = ∗ = ∗∧p = (X1,0)

∧

p is nilpotent.
Xn,k is connected and fits into a fiber sequence of pointed spaces

Xn,k → Xn,k−1 → K(An,k, n+ 1).

K(An,k, n+1) is nilpotent by Lemma A.11 and (Xn,k−1)
∧

p is nilpotent by induc-

tion. Moreover, by Corollary 3.18 there is an equivalence (K(An,k, n+ 1))∧p
∼=

Ω∞
∗ (τ≥1

(

Σn+1An,k

)∧

p
), which is thus also nilpotent by Lemma A.11. We con-

clude by Proposition 3.19 that (Xn,k)
∧

p
∼= τ≥1fib

(

(Xn,k−1)
∧

p → K(An,k, n+ 1)∧p

)

.

Note that (Xn,k)
∧

p is now nilpotent as the connected cover of a fiber of nilpotent
spaces, see Lemma A.12.

Proposition 3.21. Let X ∈ X∗ be nilpotent and n-truncated for some n ∈ Z.
Then X∧

p is (n+ 1)-truncated.

Proof. Choose a principal refinement Xm,k of the Postnikov tower, which is
possible by Lemma A.15. Since X is n-truncated, we see that X = Xn,0. We
proceed by induction on m and k as in the proof of Proposition 3.20. Note that
(X1,0)

∧

p = (∗)∧p = ∗ is clearly (n + 1)-truncated. So suppose that 1 ≤ m < n

and 1 ≤ k ≤ mm and that (Xm,k−1)
∧

p is (n+1)-truncated. Now we have a fiber
sequence

(Xm,k)
∧

p
∼= τ≥1fib

(

(Xm,k−1)
∧

p → K(Am,k,m+ 1)∧p

)

from Proposition 3.20. Since (n + 1)-truncated objects are closed under limits
(see [Lur09, Proposition 5.5.6.5]), we conclude from the induction hypothesis
and Corollary 3.18 that (Xm,k)

∧

p is (n + 1)-truncated. If m = n, then the

Postnikov tower stabilizes, and we conclude that X∧
p = (Xn,0)

∧

p = (Xn−1,mn
)
∧

p

is (n+ 1)-truncated.

Suppose now that X = Shv(T ) is the category of hypercomplete sheaves on
T where T is a Grothendieck site.

Definition 3.22. We say that X is locally of finite uniform homotopy dimension
if there is

• a conservative family of points S of X ,

• for every s ∈ S a pro-object Is in T such that s∗F ∼= colimU∈Is
F (U) for

every F ∈ X , and
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• a function htpydim: S → N,

such that for all s ∈ S every object U ∈ Is has homotopy dimension htpydim(s),
i.e. if F ∈ X is k-connective, then F (U) is (k-htpydim(s))-connective.

Suppose from now on that X is locally of finite uniform homotopy dimension,
and choose S, Is and htpydim as in Definition 3.22. In the rest of this section
we show that then p-completion of nilpotent spaces can be computed on the
Postnikov tower.

Lemma 3.23. Let s ∈ S, U ∈ Is and E ∈ Sp(X ). Suppose that E is m-
connective. Then E∧

p (U) is (m-htpydim(s)-1)-connective.

Proof. We may assume m = 0. Since E//pn = cofib
(

E
pn

−→ E
)

is also connec-

tive, it suffices to prove the more general fact that a sequential limit F = limn Fn

of connective spectra Fn has the property that (limn Fn)(U) is (-htpydim(s)-1)-
connective for all U ∈ Is. By assumption, Fn(U) is (-htpydim(s))-connective
for all n. But then (limn Fn)(U) = limn Fn(U) is (-htpydim(s)-1)-connective as
a sequential limit of (-htpydim(s))-connective spectra (see e.g. [MP11, Proposi-
tion 2.2.9] for the corresponding fact about anima, then shift the Fn such that
they are (htpydim(s) + l)-connective for some l ≥ 1, and use that Ω∞

∗ commutes
with limits, and with homotopy objects in non-negative degrees).

Lemma 3.24. Let Xk be an N-indexed inverse system of connected anima.
Suppose that for all n ≥ 0, there exists a kn > 0 such that πn(Xk) = πn(Xkn

)
for all k ≥ kn. Then πn(limkXk) ∼= limk

♥πn(Xk) ∼= πn(Xkn
) for all n.

Proof. See e.g. [MP11, Proposition 2.2.9]. Note that the lim1 -term vanishes

because the homotopy groups get eventually constant, and hence satisfy the
Mittag-Leffler property. The last equivalence holds because the limit is eventu-
ally constant.

Lemma 3.25. Let Xk be an N-indexed inverse system of connected objects in
X∗. Suppose that for all n, d ≥ 0 there exists a kd,n > 0 such that πn(Xk(U)) ∼=
πn(Xkhtpydim(s),n

(U)) for all s ∈ S, k ≥ khtpydim(s),n and U ∈ Is. Then
s∗limkXk

∼= limk s
∗Xk for all point s ∈ S.

Proof. Fix a point s ∈ S. Note that for k ≥ khtpydim(s),n and n ≥ 0 we have

πns
∗Xk

∼= colim
U∈Is

πn(Xk(U)) ∼= colim
U∈Is

πn(Xkhtpydim(s),n
(U)) ∼= πns

∗Xkhtpydim(s),n
.

Lemma 3.24 implies (use kn = khtpydim(s),n) that for every n and U ∈ Is we
have isomorphisms

πn(limkXk(U)) ∼= πn(Xkhtpydim(s),n
(U))

πn(limk s
∗Xk) ∼= πn(s

∗Xkhtpydim(s),n
).
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We now compute

πn(s
∗limkXk) ∼= s∗πn(limkXk)

∼= colimU∈Is
πn(limkXk(U))

∼= colimU∈Is
πn(Xkhtpydim(s),n

(U))

∼= πn(s
∗Xkhtpydim(s),n

)

∼= πn(limk s
∗Xk).

Since n was arbitrary, we conclude that s∗limkXk
∼= limk s

∗Xk, using White-
head’s theorem.

Lemma 3.26. Let X ∈ X∗ be nilpotent, s ∈ S be a point and n ∈ N. De-
fine khtpydim(s),n := n + htpydim(s) + 2. Then for all U ∈ Is we have that

πn((τ≤kX)
∧

p (U)) is independent of k for k ≥ khtpydim(s),n.

Proof. Fix n ∈ N and U ∈ Is. We proceed by induction on k, the case
k = khtpydim(s),n holds tautologically. Using Lemma A.15, we find a princi-
pal refinement of the Postnikov tower. For every 1 ≤ l ≤ mk, there is an
equivalence

(Xk,l)
∧

p
∼= τ≥1fib

(

(Xk,l−1)
∧

p → (K(Ak,l, k + 1))∧p

)

,

see Proposition 3.20. Thus, it is enough to show that (K(Ak,l, k + 1))
∧

p (U) is n+

2-connective. Using Corollary 3.18, it suffices to prove that
(

Σk+1Ak,l

)∧

p
(U) is

n+2-connective. Note that the connectivity of Σk+1Ak,l is at least khtpydim(s),n+
1 = n+ htpydim(s) + 3. Using Lemma 3.23, we conclude that the connectivity

of
(

Σk+1Ak,l

)∧

p
(U) is at least n+htpydim(s) + 3− htpydim(s)− 1 = n+2.

Theorem 3.27. Let X ∈ X∗ be nilpotent. Then X∧
p
∼= limk (τ≤kX)∧p .

Proof. The right-hand side is p-complete because it is a limit of p-complete
objects. Hence, it suffices to show that X → limk (τ≤kX)∧p is a p-equivalence.
This can be checked on stalks. So let s ∈ S be a point, we need to show that
s∗X → s∗limk (τ≤kX)

∧

p is a p-equivalence. Using Lemma 3.25 and Lemma 3.26,

we conclude that s∗limk (τ≤kX)
∧

p
∼= limk s

∗((τ≤kX)
∧

p ). The left-hand side is
s∗X = limk τ≤ks

∗X ∼= limk s
∗τ≤kX , using that An is Postnikov-complete and

that s∗ commutes with truncations, see [Lur09, Proposition 5.5.6.28]. Note that
s∗τ≤kX → s∗((τ≤kX)

∧

p ) is a p-equivalence for each k. Hence, the result follows
from Lemma A.31.

4 Completions via Embeddings

4.1 Completions of Presheaves

Let C be a small ∞-category. For every ∞-category D, denote by P(C,D) :=
Fun(Cop,D) the category of presheaves with values in D. Denote by P(C) :=
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P(C,An) the category of presheaves (of anima) on C. Recall that there is a
canonical equivalence of categories Sp(P(C)) ∼= P(C, Sp), see [Lur17, Remark
1.4.2.9].

Lemma 4.1. P(C) is locally of homotopy dimension 0, and thus in particular

of cohomological dimension 0. In particular, if F ∈ P(C, Sp)♥ and U ∈ C,
then Γ♥(U, F ) ∼= Γ(U, F ) (i.e. there is no sheaf cohomology on presheaf topoi).
Therefore, we will just write F (U) for the abelian group Γ♥(U, F ).

Moreover, P(C) is Postnikov-complete.

Proof. This follows from [Lur09, Example 7.2.1.9, Corollary 7.2.2.30 and Propo-
sition 7.2.1.10].

Proposition 4.2. Let f : X → Y ∈ P(C) be a morphism of presheaves. Then
f is a p-equivalence if and only if f(U) : X(U) → Y (U) is a p-equivalence for
all U ∈ C. Moreover, X is p-complete if and only if X(U) is p-complete for all
U ∈ C. Thus, we have X∧

p (U) = (X(U))
∧

p for all U ∈ C.

Proof. By definition, f is a p-equivalence if and only if Σ∞
+ (f)//p is an equiv-

alence. Using the equivalence Sp(P(C)) ∼= P(C, Sp), we see that this can be
checked on sections.

For the second point, suppose first that X is p-complete. Let U ∈ C an
arbitrary object. Let A → A′ be a p-equivalence of pointed anima. Denote
by cA and cA′ the presheaves on C given by jU ⊗ A and jU ⊗ A′, respectively
(where jU denotes the Yoneda embedding of U), i.e. cA is the presheaf such that
cA(V ) = jU (V )×A = ⊔Hom(V,U)A for all V , and similar for cA′ . By the above,
cA → cA′ is a p-equivalence. Thus, we get a chain of equivalences

Map(A′, X(U)) ∼= Map(A′,Map(jU , X))
∼= Map(cA′ , X)
∼= Map(cA, X)
∼= Map(A,Map(jU , X))
∼= Map(A,X(U)),

where the first and last equivalences follow from the Yoneda lemma, the second
and fourth equivalences follow because ⊗ exhibits P(C) as tensored over An
(note that An is the tensor unit of the Lurie tensor product of presentable ∞-
categories, see [Lur17, Example 4.8.1.20], and hence P(C) is a module over An),
and the middle map is an equivalence because X is p-complete. Thus, since
A→ A′ was arbitrary, we conclude that X(U) is p-complete.

Suppose now that X(U) is p-complete for all U ∈ C. We need to show
that the p-equivalence X → X∧

p is an equivalence. Note that for every U ,
X(U)→ X∧

p (U) is a p-equivalence. But sinceX∧
p is p-complete, we have already

seen that X∧
p (U) is p-complete. Since X(U) is p-complete by assumption, we

conclude that X(U)→ X∧
p (U) is an equivalence.

For the last point, let F be the presheaf (−)∧p ◦X . Then by the above, the
canonical morphism X → F is a p-equivalence, and F is p-complete. This shows
that F is the p-completion of X .
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Lemma 4.3. Let F ∈ P(C) be a presheaf. If F is n-connective, then F∧
p is

n-connective.

Proof. Since connectivity and p-completions can be computed on sections (see
Proposition 4.2 for the statement about p-completions), the result follows from
the analogous result in the category of anima, see Lemma A.18.

Recall the p-adic t-structure from Definition 2.13.

Lemma 4.4. Let U ∈ C be an object. Then the functor evU : P(C, Sp) → Sp
(given by precomposition with the functor ∆0 → C, ∗ 7→ U) is t-exact for the
standard t-structures and t-exact for the p-adic t-structures.

Moreover, a presheaf of spectra E ∈ P(C, Sp) is connective or coconnective
for the standard t-structure (resp. the p-adic t-structure) if and only if evU (E)
is connective or coconnective for the standard t-structure on Sp (resp. the p-adic
t-structure on Sp) for all U ∈ C.

Proof. The claim about the standard t-structures follows immediately from the
fact that Ω∞

∗ is computed on section, and that the evU are jointly conservative.
Thus, evU is also right t-exact for the p-adic t-structures by Lemma 2.34

(applied to L = evU ). The last part about connective objects follows from
Lemma 2.35.

So let E ∈ P(C, Sp). We need to show that E ∈ P(C, Sp)p≤0 if and only if

E(U) ∈ Spp≤0 for all U . By Lemma 2.19, it thus suffices to show that

(1) E = τ≤0E if and only if E(U) = (τ≤0E)(U) for all U ,

(2) π0(E) has bounded p-divisibility if and only if π0(E)(U) has bounded
p-divisiblity for all U and

(3) E is p-complete if and only if E(U) is p-complete for all U .

the first point follows because everything can be computed on sections. The
third point is Proposition 4.2,

For the second point, assume first that π0(E)(U) has bounded p-divisibility

for all U . Let B ∈ P(C, Sp)♥ be p-divisible. Then B(U) is p-divisible for all
U . In particular, Map(B, π0(E)) ⊂

∏

U Map(B(U), π0(E)(U)) ∼= 0. On the
other hand, suppose that π0(E) has bounded p-divisibility, and suppose that
U ∈ C. We have to show that π0(E)(U) has bounded p-divisibility. So let
B ∈ Sp♥ ∼= Ab be p-divisible. As in the proof of Proposition 4.2, let cB be the
presheaf jU⊗B. Then we have Map(B, π0(E)(U)) ∼= Map(cB , π0(E)). Since cB
is clearly p-divisible, the right mapping space is 0. Thus, π0(E)(U) has bounded
p-divisibility.

Lemma 4.5. Let E ∈ P(C, Sp) be a presheaf of spectra. Then there are natural
equivalences (πp

n(E))(U) ∼= πp
n(E(U)) for all U ∈ C. In particular, πp

n(E) ∈

P(C, Sp)♥.

If A ∈ P(C, Sp)♥ be a presheaf of abelian groups, then there are natural equiv-

alences (LiA)(U) ∼= Li(A(U)) for all U ∈ C. In particular, LiA ∈ P(C, Sp)
♥
.
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Proof. The second part is a special case of the first (note that LiA = πp
iA).

The lemma follows from t-exactness of the evaluation functors for the p-adic
t-structures, see Lemma 4.4. For the last statement, note that πp

n(E(U)) ∈ Sp♥

by Lemma A.22.

In presheaf categories, the p-adic heart is particularly simple: it lives inside
the normal heart, and consists exactly of the p-complete objects therein:

Lemma 4.6. We have P(C, Sp)p♥ ⊂ P(C, Sp)♥, consisting exactly of the p-
complete objects in the standard heart.

In particular, for every p-complete E ∈ P(C, Sp), we have πn(E) ∼= πp
n(E).

Proof. The inclusion is an immediate consequence of Lemma 4.5. Suppose that
E ∈ P(C, Sp)♥ is p-complete. We now note that by Lemma A.22 E(U) ∼=
π0(E(U)) ∼= πp

0(E(U)) for all U (note that E(U) is p-complete since evaluation
commutes with limits), and thus πp

0(E) ∼= E, again by Lemma 4.5.

Definition 4.7. Let G ∈ Grp(Disc(P(C))) be a nilpotent presheaf of groups
(i.e. the conjugation action of G on itself is nilpotent, see Definition A.8). We
define

LiG := πi+1((BG)
∧

p )

for i ≥ 0.

Remark 4.8. Since the p-completion of a 1-truncated nilpotent object is 2-
truncated (see Proposition 3.21), we see that LiG = 0 for all i ≥ 2.

Lemma 4.9. Let A ∈ P(C, Sp)♥ ∼= Ab(Disc(P(C))). Denote by G the un-
derlying nilpotent presheaf of groups (i.e. we forget that A is abelian). Then
LiA ∼= LiG for all i ≥ 0.

Proof. Note first that G is actually nilpotent, see Lemma A.9. Let U ∈ C. We
have the following chain of natural equivalences

(LiA)(U) ∼= Li(A(U))
∼= Li(G(U))

∼= πi+1((B(G(U)))
∧

p )

∼= πi+1((BG)
∧

p )(U)

∼= (LiG)(U).

Here, the first equivalence is Lemma 4.5, the second is Lemma A.24, the third
and fifth equivalences hold by definition and the fourth equivalence exists be-
cause homotopy groups, Eilenberg-MacLane objects and p-completions can be
computed on sections (see Proposition 4.2 for the claim about p-completions).
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Proposition 4.10. Let F ∈ P(C)∗ be a pointed nilpotent presheaf. Then for

every n ≥ 2 there exists a canonical short exact sequence in P(C, Sp)♥ (or a
short exact sequence in Grp(Disc(P(C))) if n = 1)

0→ L0πn(F )→ πn(F
∧
p )→ L1πn−1(F )→ 0,

where we use Definition 4.7 for Liπ1(X). Note that this distinction does not
matter if π1(X) is abelian, see Lemma 4.9. Here we define L1π0(F ) := 0, since
F is connected.

Proof. By Lemma A.25, for every U there are functorial short exact sequences

0→ L0πn(F (U))→ πn(F (U)∧p )→ L1πn−1(F (U))→ 0.

But by Proposition 4.2 and Lemma 4.5, this is equivalently a short exact se-
quence

0→ (L0πn(F ))(U)→ (πn(F
∧
p ))(U)→ (L1πn−1(F ))(U)→ 0

for every U ∈ C. These sequences thus give

0→ L0πn(F )→ πn(F
∧
p )→ L1πn−1(F )→ 0.

4.2 Completions in the Nonabelian Derived Category

Let C be an (essentially) small category with finite coproducts. Recall that
PΣ(C) ⊂ P(C) is the full subcategory of presheaves that transform finite coprod-
ucts into finite products. It is the category freely generated by C under sifted
colimits. Write ι : PΣ(C)→ P(C) for the inclusion, and LΣ : P(C)→ PΣ(C) for
the left adjoint.

Definition 4.11. Recall from [BH17, Definition 2.3] that a category is called
extensive if it admits finite coproducts, coproducts are disjoint (i.e. for objects
X,Y ∈ C, the pullback X ×X⊔Y Y exists and is an initial object), and finite
coproduct decompositions are stable under pullbacks.

Lemma 4.12. Suppose that C is extensive. Then PΣ(C) = Shv⊔(C), where
we write ⊔ for the Grothendieck topology on C generated by covers of the form
{Ui → U}i∈I with I a finite set such that ⊔iUi → U is an equivalence. In
particular, PΣ(C) is a topos and LΣ is left exact.

Proof. This is [BH17, Lemma 2.4].

Suppose from now on that C is extensive, so that PΣ(C) is a topos, and LΣ

is the left adjoint of a geometric morphism PΣ(C)→ P(C).

Lemma 4.13. PΣ(C) is Postnikov-complete.
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Proof. See [BH17, Lemma 2.6].

Lemma 4.14. We have a canonical equivalence Sp(PΣ(C)) ∼= PΣ(C, Sp).

Proof. This is proven in [Lur18b, Remark 1.2].

Lemma 4.15. Let X ∈ PΣ(C)∗ be a pointed sheaf. Then for every U ∈ C and
n ≥ 0 we have πn(X)(U) = πn(X(U)).

Proof. It suffices to show that the homotopy presheaf U 7→ πn(X(U)) is actually
a sheaf. This is immediate since homotopy groups of anima preserve finite
products.

Lemma 4.16. Let G ∈ Grp(PΣ(C)) be a sheaf of groups. Then the classifying
space can be computed on sections, i.e. for every U ∈ C we have BG(U) ∼=
B(G(U)).

Proof. Using Lemma 4.15, it suffices to show that the classifying presheaf U 7→
B(G(U)) is actually a sheaf. This is clear since the classifying space of a product
of two groups is the product of the classifying spaces.

Proposition 4.17. A morphism f : F → G in PΣ(C) is a p-equivalence (in
PΣ(C)) if and only if ι(f) is a p-equivalence in P(C).

Proof. One direction is immediate: If ιf is a p-equivalence, so is f = LΣ(ιf).
For this, note that LΣ is the left adjoint of a geometric morphism P(C) ⇄ PΣ(C),
and use Lemma 3.11.

So suppose that f is a p-equivalence. Write ModFp,gr for the category of
graded Fp-vectorspaces, and

CoAlg(ModFp,gr) := CAlg(ModFp,gr
op)

op

for the category of cocommutative graded coalgebras in Fp-vectorspaces. Note
that the categorical product of coalgebras is given by the tensor-product of the
underlying graded Fp-vectorspaces, i.e. the forgetful functor

U : CoAlg(ModFp,gr) = CAlg(ModFp,gr
op)

op → (ModFp,gr
op)

op
= ModFp,gr

is symmetric monoidal where we equip CoAlg(ModFp,gr) with the categorical
product, and ModFp,gr with the tensor product of graded Fp-vectorspaces. Note
that for every F ∈ P(C), the presheaf H∗(F (−),Fp) : C

op → ModFp,gr can be
promoted to a presheaf of cocommutative graded coalgebras in Fp-vectorspaces
(see e.g. [tD08, 19.6.2]). By abuse of notation, write againH∗(F (−),Fp) : Cop →
CoAlg(ModFp,gr) for this presheaf. If F ∈ PΣ(C) is in the nonabelian derived
category, then also H∗(F (−),Fp) ∈ PΣ(C,CoAlg(ModFp,gr)): This is clear since
the product of anima yields the tensor product on homology (by the Künneth
formula, using that we take the homology with coefficients in a field), which
is the categorical product in CoAlg(ModFp,gr). Now note that since f is a
p-equivalence, we know that s∗f is a p-equivalence for all points s. This im-
plies (using Lemma A.17) that H∗(s

∗f,Fp) is an equivalence for all s. Since
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homology commutes with filtered colimits, it commutes with stalks, thus we
get that s∗H∗(f,Fp) is an equivalence for all s (here we implicitly use that
H∗(F (−),Fp) ∈ PΣ(C,CoAlg(ModFp,gr))). Thus, using e.g. [Hai21, Example
2.13] and the fact that CoAlg(ModFp,gr) is compactly generated (this is the fun-
damental theorem of coalgebras, see [Swe69, II.2.2.1]), already H∗(f,Fp) is an
equivalence. But this means, on every section U ∈ C we have an isomorphism

H∗(F (U),Fp)
≃
−→ H∗(G(U),Fp). Using Lemma A.17 again, we conclude that

fU : F (U) → G(U) is a p-equivalence for all U . Thus, ιf is a p-equivalence by
Proposition 4.2.

Proposition 4.18. Write temporarily Lp := (−)∧p ◦ ι : PΣ(C) → P(C). If F ∈
PΣ(C), then Lp(F ) ∈ PΣ(C) and Lp(F ) = F∧

p .

Proof. Let F ∈ PΣ(C). We need to prove that Lp(F ) transforms finite coprod-
ucts into finite products. Thus let U, V ∈ C. Then

Lp(F )(U ∐ V ) = (ιF )
∧

p (U ∐ V )

∼= (F (U ∐ V ))∧p
∼= (F (U)× F (V ))

∧

p

∼= (F (U))∧p × (F (V ))∧p
∼= (ιF )

∧

p (U)× (ιF )
∧

p (V )

= Lp(F )(U)× Lp(F )(V ),

where the second and fifth equivalence are Proposition 4.2, the third equiva-
lence exists because F ∈ PΣ(C), and the fourth equivalence holds because p-
completion commutes with products, see Lemma 3.15. Thus, Lp(F ) ∼= LΣ(Lp(F )).
Since LΣ preserves p-equivalences, we get that F → Lp(F ) is a p-equivalence.
Thus, we are left to show that Lp(F ) is p-complete in PΣ(C). Let f : G→ G′ be
a p-equivalence in PΣ(C). Then MapPΣ(C)(f, Lp(F )) ∼= MapP(C)(ιf, ιLp(F )) ∼=

MapP(C)(ιf, (ιF )
∧

p ) is an equivalence because ιf is a p-equivalence by Proposi-
tion 4.17. We conclude that Lp(F ) is p-complete.

Lemma 4.19. Let F ∈ PΣ(C) be n-connective. Then F∧
p is n-connective.

Proof. By Proposition 4.18 we can compute the p-completion on the underlying
presheaf. Then the result follows from Lemmas 4.3 and 4.15.

Lemma 4.20. PΣ(C) is locally of homotopy dimension 0. In particular, it

is locally of cohomological dimension 0, and thus for every A ∈ PΣ(C, Sp)
♥,

Γ(U,A) ∈ Sp♥ for all U ∈ C (i.e. there is no sheaf cohomology).

Proof. Since the elements of C generate PΣ(C) under colimits, it suffices to show
that for every C ∈ C the topos PΣ(C)/C is of homotopy dimension 0. Note that

PΣ(C)/C
∼= PΣ(C/C). Therefore, we may assume that C has a final element, and

we want to prove that PΣ(C) has homotopy dimension 0.
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Note that there is a unique geometric morphism const: An ⇄ PΣ(C) : Γ.
Since C has a final object ∗, the functor Γ is given by evaluating at the final
object. By [Lur09, Lemma 7.2.1.7], it suffices to show that Γ preserves effective
epimorphisms. By Lemma 4.15, the homotopy sheaves can be calculated as
the underlying homotopy presheaves. Therefore, we see that for an effective
epimorphism f : X → Y , that Γ(f) is still surjective on π0, i.e. Γ(f) is an
effective epimorphism. (Note that in the disjoint union topology a surjective
map of sheaves of sets is already surjective on sections).

The last part is [Lur09, Corollary 7.2.2.30].

Lemma 4.21. Let F ∈ PΣ(C) be nilpotent. Then F∧
p = (limn τ≤nF )

∧

p
∼=

limn (τ≤nF )
∧

p .

Proof. Using Theorem 3.27, it suffices to show that PΣ(C) is locally of finite
uniform homotopy dimension. This is clear, since PΣ(C) is locally of homotopy
dimension 0, see Lemma 4.20.

Recall the p-adic t-structure from Definition 2.13.

Lemma 4.22. The inclusion functor ιΣ : PΣ(C, Sp) → P(C, Sp) is t-exact for
the standard t-structures and t-exact for the p-adic t-structures.

Proof. The claim about the standard t-structures is immediate as homotopy
objects can be computed on the level of presheaves.

Using Lemma 4.4, it suffices to show that E ∈ PΣ(C, Sp) is connective (resp.
coconnective) for the p-adic t-structure if and only if E(U) is connective (resp.
coconnective) for the p-adic t-structure on Sp for all U ∈ C. Here, one ar-
gues as in the proof of Lemma 4.4, noting that the homotopy objects of E
are calculated as the homotopy objects of the underlying presheaves, and using
Proposition 4.18.

Lemma 4.23. Let A ∈ PΣ(C, Sp)
♥
. Then (LiA)(U) ∼= Li(A(U)) for every

U ∈ C. In particular, LiA ∈ PΣ(C, Sp)
♥.

Proof. First note that A(U) ∈ Sp♥ by Lemma 4.20, so the statement makes
sense. Note that the presheaf U 7→ Li(A(U)) is actually a sheaf. This is clear
since Li is additive and thus preserves finite products.

Thus, the lemma follows from the t-exactness of ιΣ for the p-adic t-structures
(Lemma 4.22) and Lemma 4.4. The last claim follows, because ιΣ is fully faithful
and t-exact for the standard t-structures (by the same lemma) and the corre-
sponding claim about presheaves.

As in the case of presheaves, the heart of the p-adic t-structure has a very
simple description:

Lemma 4.24. We have PΣ(C, Sp)
p♥ ⊂ PΣ(C, Sp)

♥
, consisting exactly of the

p-complete objects in the standard heart.
In particular, if E ∈ PΣ(C, Sp) is p-complete, then πn(E) ∼= πp

n(E).
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Proof. The inclusion ιΣ is fully faithful and t-exact for the standard t-structures
and t-exact for the p-adic t-structures by Lemma 4.22. Thus, the lemma follows
from Lemma 4.6 (note that ιΣ preserves p-complete objects, see Lemma 2.32).

Definition 4.25. Let G ∈ Grp(Disc(PΣ(C))) be a nilpotent sheaf of groups (i.e.
the conjugation action of G on itself is nilpotent). We define

LiG := πi+1((BG)
∧

p )

for i ≥ 0.

Remark 4.26. Since the p-completion of a 1-truncated nilpotent object is 2-
truncated (see Proposition 3.21), we see that LiG = 0 for all i ≥ 2.

Lemma 4.27. Let A ∈ PΣ(C, Sp)
♥ ∼= Ab(Disc(PΣ(C))). Denote by G the

underlying nilpotent presheaf of groups (i.e. we forget that A is abelian). Then
LiA ∼= LiG for all i ≥ 0.

Proof. Since homotopy sheaves (Lemma 4.15), classifying spaces (Lemma 4.16)
and p-completions (Proposition 4.18) in PΣ(C) can be computed in P(C), we
conclude that also LiG can be computed in P(C). Also, LiA can be computed
in P(C) by Lemmas 4.5 and 4.23. Thus, the lemma follows immediately from
the corresponding Lemma 4.9.

Proposition 4.28. Let X ∈ PΣ(C)∗ be a pointed nilpotent sheaf. Then for

every n ≥ 2 there exists a short exact sequence in PΣ(C, Sp)
p♥ (or a short exact

sequence in Grp(Disc(PΣ(C))) if n = 1)

0→ L0πn(X)→ πn(X
∧
p )→ L1πn−1(X)→ 0,

where we use Definition 4.25 for Liπ1(X). Note that this distinction does not
matter if π1(X) is abelian, see Lemma 4.27. Here we define L1π0(X) := 0,
since X is connected by assumption.

Proof. Note that everything can be computed on the underlying presheaves
(Lemmas 4.15, 4.16 and 4.23 and Proposition 4.18), thus the lemma follows
immediately from Proposition 4.10.

4.3 Completions via Embeddings

Let X be an∞-topos. Suppose moreover that there is a small extensive category
C and a geometric morphism

ν∗ : X ⇄ PΣ(C) : ν∗,

such that the left adjoint ν∗ is fully faithful. We will freely use that ν∗ and
ν∗ induce an adjoint pair on stabilizations, see Lemma A.1. Note that since ν∗

is fully faithful, also the induced functor on stabilizations is fully faithful (see
Lemma A.4).
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Lemma 4.29. In this situation X is Postnikov-completete. In particular, X is
hypercomplete.

Proof. We need to show that for everyX ∈ X the canonical mapX → limn τ≤nX
is an equivalence. Lemma 4.13 shows that PΣ(C) is Postnikov-complete. Hence,
the canonical map ν∗X → limn τ≤nν

∗X is an equivalence. We now compute

X ∼= ν∗ν
∗X

∼= ν∗limn τ≤nν
∗X

∼= limn ν∗ν
∗τ≤nX

∼= limn τ≤nX.

Here, we used in the first and last equivalence that ν∗ is fully faithful. The third
equivalence holds because ν∗ commutes with limits (as a right adjoint), and ν∗

commutes with truncations, see [Lur09, Proposition 5.5.6.28].
The last part follows from the first, see the proof of [Lur09, Corollary

7.2.1.12], where only Postnikov-completeness of X is used.

Lemma 4.30. Let E ∈ Sp(X ). Then E∧
p
∼= ν∗((ν

∗E)
∧
p ).

Proof. We have ν∗((ν
∗E)

∧

p )
∼= ν∗limn (ν

∗E)//pn ∼= limn (ν∗ν
∗E)//pn = E∧

p ,
where we used that ν∗ commutes with limits and cofibers, and that ν∗ is fully
faithful, i.e. ν∗ν

∗ ∼= id.

Lemma 4.31. Let A ∈ Sp(X )♥ and n ≥ 1. Then K(A, n)∧p
∼= τ≥1ν∗(K(ν∗A, n)∧p ).

Proof. The statement makes sense: Note that ν∗A is in the heart of the standard
t-structure, see Lemma A.6. Therefore, the Eilenberg-MacLane spaceK(ν∗A, n)
is defined.

We have the following chain of equivalences

K(A, n)∧p
∼= Ω∞

∗ (τ≥1(Σ
nA)∧p )

∼= Ω∞
∗ (τ≥1ν∗(ν

∗ΣnA)
∧

p )

∼= τ≥1ν∗Ω
∞
∗ ((Σn(ν∗A))∧p )

∼= τ≥1ν∗(K(ν∗A, n)∧p ).

The first and fourth equivalences are Corollary 3.18, noting that (Σn(ν∗A))
∧

p is
already n-connective, see Lemma 4.19. The second equivalence is Lemma 4.30.
The third equivalence follows from the definition of the standard t-structure on
Sp(X ) and Lemma A.1.

We will repeatedly use the following fact about the interaction of connective
covers with limits and geometric morphisms:

Lemma 4.32. Fix n ≥ 0. Let X ∈ PΣ(C)∗ be a pointed space. We have an
equivalence

τ≥nν∗X ∼= τ≥nν∗τ≥nX.
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Similar, if Xi is an I-indexed system in X∗ for some ∞-category I, then
there is an equivalence

τ≥nlimkXk
∼= τ≥nlimk τ≥nXk.

Proof. Since ν∗ commutes with limits, we have a canonical fiber sequence

ν∗τ≥nX → ν∗X → ν∗τ≤n−1X.

Since ν∗τ≤n−1X is (n − 1)-truncated (see [Lur09, Proposition 5.5.6.16]), we
conclude from the long exact sequence that for k ≥ n we have isomorphisms
πk(ν∗τ≥nX) ∼= πk(ν∗X). Thus, using hypercompleteness of X (Lemma 4.29),
the induced map

τ≥nν∗X ∼= τ≥nν∗τ≥nX

is an equivalence.
In the case of limits one argues as above, and uses that a limit of fiber

sequences is again a fiber sequence (as limits commute with limits), and that
limits preserve (n− 1)-truncated objects (see [Lur09, Proposition 5.5.6.5]).

Lemma 4.33. Let F ∈ X∗ be nilpotent and n-truncated. Then τ≥1ν∗((ν
∗F )∧p ) =

F∧
p .

Proof. We do a proof by induction on n, the case n = 0 being trivial. So suppose
we have proven the statement for n ≥ 0. Since F is nilpotent, its Postnikov
tower has a principal refinement, see Lemma A.15. So assume by induction
that the statement holds for τ≤n−1F = Fn,0. We proceed by induction on
1 ≤ k ≤ mn. From Proposition 3.20 we know that

(ν∗Fn,k)
∧

p = τ≥1fib
(

(ν∗Fn,k−1)
∧

p → K(ν∗An,k, n+ 1)∧p

)

and therefore by applying τ≥1ν∗(−) we get

τ≥1ν∗((ν
∗Fn,k)

∧

p )
∼= τ≥1ν∗τ≥1fib

(

(ν∗Fn,k−1)
∧

p → K(ν∗An,k, n+ 1)∧p

)

∼= τ≥1ν∗fib
(

(ν∗Fn,k−1)
∧

p → K(ν∗An,k, n+ 1)∧p

)

∼= τ≥1fib
(

ν∗(ν
∗Fn,k−1)

∧

p → ν∗K(ν∗An,k, n+ 1)∧p

)

∼= τ≥1fib
(

τ≥1ν∗(ν
∗Fn,k−1)

∧

p → τ≥1ν∗K(ν∗An,k, n+ 1)∧p

)

∼= τ≥1fib
(

(Fn,k−1)
∧

p → K(An,k−1, n+ 1)∧p

)

∼= (Fn,k)
∧

p .

The second and fourth equivalences are Lemma 4.32. The third equivalence
holds because ν∗ preserves limits (as a right adjoint). The fifth equivalence holds
by induction and Lemma 4.31. The sixth equivalence is again Proposition 3.20.
Thus, by induction, we conclude that the statement holds for Fn,mn

= Fn+1,0 =
τ≤nF = F .
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Lemma 4.34. Assume that X is locally of finite uniform homotopy dimension.
Let F ∈ X∗ be nilpotent. Then τ≥1ν∗((ν

∗F )
∧

p ) = F∧
p .

Proof. We will freely use that X and PΣ(C) are Postnikov-complete (Lem-
mas 4.13 and 4.29). Note that ν∗ commutes with truncations, see [Lur09,
Proposition 5.5.6.28]. Using Lemma 4.21, we get

(ν∗F )
∧

p
∼= limn (ν

∗τ≤nF )
∧

p .

Applying ν∗, we conclude

ν∗((ν
∗F )

∧

p )
∼= ν∗limn (ν

∗τ≤nF )
∧

p
∼= limn ν∗(ν

∗τ≤nF )
∧

p ,

where we use that ν∗ is a right adjoint for the second equivalence. Thus,

τ≥1ν∗((ν
∗F )

∧

p )
∼= τ≥1limn ν∗((ν

∗τ≤nF )
∧

p )

∼= τ≥1limn τ≥1ν∗((ν
∗τ≤nF )

∧

p )

∼= τ≥1limn (τ≤nF )
∧

p

∼= τ≥1F
∧
p

∼= F∧
p .

The second equivalence is Lemma 4.32. The third equivalence was proven in
Lemma 4.33. The fourth equivalence holds because p-completions can be com-
puted on the Postnikov tower, see Theorem 3.27 (here we use the assump-
tion that X is locally of finite uniform homotopy dimension). The last equiv-
alence follows because p-completions of connected spaces are connected, see
Lemma 3.12.

Definition 4.35. Let E ∈ PΣ(C, Sp). We say that E is classical if E is in the
essential image of ν∗.

Remark 4.36. Note that since ν∗ is fully faithful, an E ∈ PΣ(C, Sp) is classical
if and only if E ∼= ν∗ν∗E. Indeed, suppose that E ∼= ν∗F for some F ∈ Sp(X ).
But then ν∗ν∗E ∼= ν∗ν∗ν

∗F ∼= ν∗F ∼= E using that ν∗ is fully faithful.

Lemma 4.37. Suppose that A ∈ PΣ(C, Sp)
p♥

and that A//p is classical. Then

ν∗A ∈ Sp(X )p♥.

Proof. Lemma 2.34 shows that ν∗ is left t-exact with respect to the p-adic t-
structure, therefore we get ν∗A ∈ Sp(X )p≤0. Thus, it suffices to show that ν∗A ∈

Sp(X )p≥0. By assumption there is an X ∈ Sp(X ) such that ν∗X ∼= A//p. Note

that since A ∈ PΣ(C, Sp)
p♥

we know that A//p ∈ PΣ(C, Sp)≥0 (see Lemma 2.15).
But this implies that X ∈ Sp(X )≥0 (ν∗πkX ∼= πkν

∗X ∼= πk(A//p) = 0 for all
k < 0 and ν∗ is fully faithful). Now we have equivalences X ∼= ν∗ν

∗X ∼=
ν∗(A//p) ∼= (ν∗A)//p, hence (ν∗A)//p ∈ Sp(X )≥0. Now we conclude again by

Lemma 2.15 that ν∗A ∈ Sp(X )p≥0.
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Corollary 4.38. Suppose that we have a short exact sequence

0→ A→ B → C → 0

in PΣ(C, Sp)
p♥

such that two out of A//p, B//p and C//p are classical. Then
also the third is classical, and we get a short exact sequence

0→ ν∗A→ ν∗B → ν∗C → 0

in Sp(X )p♥.

Proof. First note that we have a morphism of fiber sequences given by the counit
of the adjunction ν∗ ⊣ ν∗:

ν∗ν∗(A//p) ν∗ν∗(B//p) ν∗ν∗(C//p)

A//p B//p C//p.

By assumption, two of the vertical morphisms are isomorphisms, hence so is
the third. Thus, we conclude that all of A//p, B//p and C//p are classical. The
claim now follows immediately from Lemma 4.37.

Lemma 4.39. Let A ∈ Sp(X )♥. Suppose that (L1ν
∗A)//p is classical. Then

(Liν
∗A)//p is classical, and we have LiA ∼= ν∗Liν

∗A for all i ∈ Z.

Proof. Since Li = 0 for all i 6= 0, 1 (see Proposition 2.26), the claim needs only
be checked for i = 0, 1. Note that by Lemma 2.27 we have a fiber sequence

ΣL1ν
∗A→ (ν∗A)∧p → L0ν

∗A.

Applying (−)//p we get a fiber sequence

Σ(L1ν
∗A)//p→ (ν∗A)∧p //p→ (L0ν

∗A)//p.

Note that the left term is classical by assumption. For the middle term we have
equivalences (ν∗A)

∧
p //p

∼= (ν∗A)//p ∼= ν∗(A//p), i.e. it is also classical. Thus, we
conclude that (L0ν

∗A)//p is also classical by (a proof similar to) Corollary 4.38.
Applying ν∗(−) to the first fiber sequence, and noting that ν∗(ν

∗A)
∧

p
∼= A∧

p

by Lemma 4.30, we arrive at the fiber sequence

Σν∗L1ν
∗A→ A∧

p → ν∗L0ν
∗A.

Now by Lemma 4.37 and since (Liν
∗A)//p is classical, we know that ν∗Liν

∗A ∈

Sp(X )p♥. Note that we also have a fiber sequence

ΣL1A→ A∧
p → L0A,

see again Lemma 2.27. Now the lemma follows from the uniqueness of fiber
sequences

X → A∧
p → Y

with X ∈ Sp(X )p≥1 and Y ∈ Sp(X )p≤0 by the definition of a t-structure.

43



Definition 4.40. Let G ∈ Grp(Disc(X )) be a nilpotent sheaf of groups. We
define

LiG := ν∗Liν
∗G = ν∗πi+1((Bν

∗G)∧p ) ∈ Sp(X )

for i ≥ 1, using Definition 4.25. Similarly, we define

L0G := ν∗L0ν
∗G = ν∗π1((Bν

∗G)∧p ) ∈ Grp(Disc(X )),

where we view ν∗ as a functor Grp(Disc(PΣ(C)))→ Grp(Disc(X )).

Remark 4.41. Note that LiG ∼= 0 for all i ≥ 2 since (Bν∗G)
∧

p is 2-truncated by
Proposition 3.21.

Remark 4.42. If A ∈ Sp(X )♥ ∼= Ab(Disc(X )), then there are two conflicting
notions of LiA: We could use Definition 2.22 or Definition 4.40 for the underlying
sheaf of groups. Those two definitions are equivalent if (L1ν

∗A)//p is classical,
see Lemma 4.43 (where we use Definition 2.22). Otherwise, it is not clear if the
two notions agree. In the following, we always try to emphasize which definition
we use, and whether the distinction does matter.

Lemma 4.43. Let A ∈ Sp(X )♥ ∼= Ab(Disc(X )) be an abelian sheaf of groups.
Denote by G the underlying nilpotent sheaf of groups. Suppose that (L1ν

∗A)//p
is classical. Then LiG ∼= LiA for all i ≥ 0.

Proof. Using Lemma 4.39, it suffices to show that πi+1((Bν
∗G)

∧

p ) = Liν
∗A.

This was shown in Lemma 4.27.

Theorem 4.44. Let X ∈ X∗ be pointed and nilpotent such that (L1ν
∗πnX)//p

is classical for every n ≥ 2. Suppose further that either

• π1X is abelian and (L1ν
∗π1X)//p is classical (where we use Definition 2.22),

or

• that L1π1X ∈ Sp(X )p♥ (where we use Definition 4.40).

Then for every n ≥ 2 there is a short exact sequence in Sp(X )p♥ (or a short
exact sequence in Grp(Disc(X )) if n = 1)

0→ L0πnX → ν∗πn((ν
∗X)

∧

p )→ L1πn−1X → 0,

where we use Definition 4.40 for Liπ1(X). Note that this distinction does not
matter if π1(X) is abelian, see Lemma 4.43. Here, we define L1π0X = 0 (since
X is connected by assumption).

Moreover, we get that πn((ν
∗X)∧p )//p is classical for all n ≥ 2.

Proof. We first prove the case n ≥ 2. Using Lemma 4.39 we conclude that also
(Liν

∗πnX)//p is classical for all n ≥ 2 and all i. Proposition 4.28 gives us a

short exact sequence in PΣ(C, Sp)
p♥

0→ L0πnν
∗X → πn((ν

∗X)
∧

p )→ L1πn−1ν
∗X → 0.
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This induces a fiber sequence

(L0πnν
∗X)//p→ (πn((ν

∗X)
∧

p ))//p→ (L1πn−1ν
∗X)//p,

where the outer to parts are classical. Thus, the same is true for the middle,
which proves the last statement. Using Corollary 4.38 (using the assumptions on
(Liν

∗πnX)//p), the above short exact sequence induces a short exact sequence

in Sp(X )p♥

0→ ν∗L0πnν
∗X → ν∗πn((ν

∗X)∧p )→ ν∗L1πn−1ν
∗X → 0.

We conclude by noting that ν∗Liπnν
∗X ∼= ν∗Liν

∗πnX ∼= LiπnX where the last
equivalence is supplied by Lemma 4.39.

For the case n = 1, we get a canonical equivalence in Grp(Disc(PΣ(C))) from
Proposition 4.28

L0π1ν
∗X ∼= π1((ν

∗X)
∧
p ).

Applying ν∗, this induces an equivalence in Grp(Disc(X ))

L0π1X = ν∗L0π1ν
∗X ∼= ν∗π1((ν

∗X)
∧

p ),

which is what we wanted to show.

4.4 Comparison of the p-adic Hearts

We keep the notation from Section 4.3. In this section, we prove a technical
result about the functors on the hearts of the p-adic t-structures induced by the
functors ν∗ ⊣ ν∗.

Definition 4.45. Let ν∗,p♥ : Sp(X )p♥ → PΣ(C, Sp)
p♥

be defined as the functor

πp
0 ◦ ν

∗ restricted to the heart. Similarly, let νp♥∗ : PΣ(C, Sp)
p♥ → Sp(X )p♥ be

defined as the functor πp
0 ◦ ν∗ restricted to the heart.

Lemma 4.46. The functor ν∗,p♥ is left adjoint to νp♥∗ . Moreover, ν∗,p♥ is
right-exact and νp♥∗ is left-exact as functors of abelian categories.

Proof. Note that ν∗ is right t-exact and ν∗ is left t-exact for the p-adic t-
structures, see Lemma 2.34. Now the statements are [BBD82, Proposition 1.3.17
(i) and (iii)].

Lemma 4.47. Let E ∈ Sp(X )p♥. Suppose that ν∗,p♥E ∼= 0. Then E ∼= 0.

Proof. By Lemma 2.34 and the assumption, we see that ν∗E ∈ PΣ(C, Sp)
p
≥1.

By Lemma 2.35 (using that ν∗ is conservative, since it is fully faithful), we

conclude that E ∈ Sp(X )p≥1. Since by assumption E ∈ Sp(X )p♥, it follows that
E ∼= 0.

Lemma 4.48. Let E ∈ Sp(X )p♥. Then (ν∗E)
∧

p ∈ PΣ(C, Sp)
p
≥0 ∩ PΣ(C, Sp)

p
≤1.
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Proof. Note that E ∈ Sp(X )≤0 by Lemma 2.19. Thus, ν∗E ∈ PΣ(C, Sp)≤0

(since ν∗ is t-exact for the standard t-structures, see e.g. Lemma A.6). On the
other hand, E//p ∈ Sp(X )≥0 by Lemma 2.15. Thus, also ν∗E//p ∈ PΣ(C, Sp)≥0,
again by the t-exactness of ν∗. The lemma follows immediately from (1) and
(3) of Proposition 2.26.

Corollary 4.49. Let E ∈ Sp(X )p♥. Then πp
1(ν

∗E) = 0 if and only if (ν∗E)
∧

p ∈

PΣ(C, Sp)
p
≤0. In particular, in this case ν∗,p♥E ∼= (ν∗E)

∧

p .

Proof. The first part is immediate from Lemma 4.48. For the last statement,
note that

ν∗,p♥E = πp
0(ν

∗E) ∼= πp
0((ν

∗E)
∧

p ) = (ν∗E)
∧

p ,

where we used Corollary 2.21.

Definition 4.50. Let A ⊂ Sp(X )p♥ be the full subcategory spanned by objects
E such that πp

1(ν
∗E) ∼= 0.

Lemma 4.51. Let 0→ A→ B → C → 0 be a short exact sequence in Sp(X )p♥

such that C ∈ A. Then 0→ ν∗,p♥A→ ν∗,p♥B → ν∗,p♥C → 0 is exact.

Proof. We already know that ν∗,p♥ is right exact, see Lemma 4.46. Moreover,
ν∗,p♥ = πp

0 ◦ ν
∗. Thus, the result follows from the long exact sequence and the

assumption on C.

Lemma 4.52. Let E ∈ A ⊂ Sp(X )p♥. Then ν∗ν
∗,p♥E ∼= E.

Moreover, νp♥∗ ν∗,p♥E ∼= E. In particular, ν∗,p♥ is fully faithful on A.

Proof. We compute

ν∗ν
∗,p♥E ∼= ν∗(ν

∗E)
∧

p
∼= (ν∗ν

∗E)
∧

p
∼= E∧

p
∼= E,

where we used Corollary 4.49 in the first equivalence, Lemma 4.30 in the second
equivalence and the fully faithfulness of ν∗ in the third equivalence. The fourth
equivalence holds because E ∈ Sp(X )p♥ is p-complete, see Lemma 2.19.

For the last part, we note that νp♥∗ ν∗,p♥E = πp
0(ν∗ν

∗,p♥E) ∼= πp
0(E) = E,

which follows from the calculation above. Note that this equivalence is the
(inverse of the) unit of the adjunction ν∗,p♥ ⊣ νp♥∗ , therefore it follows that νp♥∗
is fully faithful on A.

Corollary 4.53. Let A ∈ PΣ(C, Sp)
p♥

. Suppose that A is in the essential image
of ν∗,p♥|A, i.e. there is an A′ ∈ A such that ν∗,p♥A′ ∼= A.

Then ν∗A ∼= A′, in particular ν∗A ∈ Sp(X )p♥ and ν∗,p♥ν∗A ∼= A.

Proof. This immediately from Lemma 4.52, because ν∗A ∼= ν∗ν
∗,p♥A′ ∼= A′ ∈ A,

and ν∗,p♥ν∗A ∼= ν∗,p♥A′ ∼= A.

Lemma 4.54. Let f : A → B be a morphism in Sp(X )p♥, such that A and B
are in A. Then also ker(f) ∈ A.
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Proof. Note that we have the following two fiber sequences in Sp(X ):

A
f
−→ B → cofib(f),

Σker(f)→ cofib(f)→ coker(f).

Applying the exact functor (ν∗(−))∧p and using the assumptions on A and B

(and Corollary 4.49), we conclude by the long exact sequence that (ν∗cofib(f))∧p
lives in p-adic degrees 0 and 1. We know from Lemma 4.48, that also (ν∗ coker(f))

∧

p

lives in p-adic degrees 0 and 1. Therefore, applying (ν∗(−))∧p to the second fiber

sequence, the long exact sequence implies that πp
1(ν

∗ ker(f)) ∼= πp
2((ν

∗Σker(f))
∧

p ) =
0, i.e. ker(f) ∈ A.

Lemma 4.55. Let 0 → A1
f
−→ A2

g
−→ A3 → 0 be a short exact sequence in

PΣ(C, Sp)
p♥

. Suppose that A3 and one out of A1 and A2 satisfy that they are
in the essential image of ν∗,p♥|A. Then this is also true for the third.

Proof. We choose A′
3 ∈ A such that ν∗,p♥A′

3
∼= A3. Note that the short exact

sequence in the p-adic heart gives a fiber sequence A1 → A2 → A3 in PΣ(C, Sp).
Applying the functor ν∗ yields the fiber sequence

ν∗A1 → ν∗A2 → A′
3, (1)

where we used Corollary 4.53.
We start with the case that the assumptions for A2 and A3 imply the state-

ment for A1. So choose A′
2 ∈ A such that ν∗,p♥A′

2
∼= A2. Since ν∗,p♥ is fully

faithful on A, we know that ν∗,p♥νp♥∗ g ∼= g (note that g is a morphism between
objects in the essential image of ν∗,p♥|A). Thus, again by Corollary 4.53, the
fiber sequence 1 is equivalent to the fiber sequence

ν∗A1 → νp♥∗ A2
νp♥
∗ g
−−−→ νp♥∗ A3.

By Lemma 2.34, ν∗A1 ∈ Sp(X )p≤0. Since νp♥∗ A2 and νp♥∗ A3 are living in

Sp(X )p♥, the long exact sequence show that ν∗A1 ∈ Sp(X )p≥−1, and that

πp
−1(ν∗A1) ∼= coker(νp♥∗ g). Note that ν∗,p♥ coker(νp♥∗ g) ∼= coker(ν∗,p♥νp♥∗ g) ∼=

coker(g) ∼= 0, where we used that ν∗,p♥ is left exact, see Lemma 4.46. Using

Lemma 4.47, we see that coker(νp♥∗ g) ∼= 0. This implies that ν∗A1 ∈ Sp(X )p♥,

in particular, ν∗A1
∼= ker(νp♥∗ g). Since we know by Lemma 4.54 that A is stable

under kernels, we conclude ν∗A1 ∈ A. Therefore, ν∗,p♥ν∗A1
∼= (ν∗ν∗A1)

∧

p
∼=

A1
∧
p
∼= A1, where we used Corollary 4.49, and the fact that A1 is p-complete

because it lives in the p-adic heart. This proves that A1 is in the essential image
of ν∗,p♥|A.

We continue with the case that the assumptions for A1 and A3 imply the
statement for A2. So choose A′

1 ∈ A such that ν∗,p♥A′
1
∼= A1. Then by Corol-

lary 4.53 the fiber sequence 1 is equivalent to the fiber sequence

A′
1 → ν∗A2 → A′

3.

47



Since the outer parts live in the p-adic heart, this is also true for ν∗A2. Now
define A′

2 := ν∗A2. We immediately see that A′
2 ∈ A because A′

1 and A′
2

are (apply ν∗ and use the long exact sequence for πp
n). But then ν∗,p♥A′

2
∼=

(ν∗ν∗A2)
∧

p
∼= A2

∧
p = A2, again by Corollary 4.49 and the fact that A2 lives in

the p-adic heart and is thus p-complete. This proves the lemma.

The following will be a useful criterion to determine when an object will be
in the essential image of ν∗,p♥|A:

Proposition 4.56. Let 0 → A
α
−→ B

β
−→ C

γ
−→ D be an exact sequence in

PΣ(C, Sp)
p♥

. Suppose that there are A′, C′ and D′ in A ⊂ Sp(X )p♥ such
that ν∗,p♥A′ ∼= A, ν∗,p♥C′ ∼= C and ν∗,p♥D′ ∼= D. Suppose moreover that
coker(νp♥∗ γ) ∈ A.

Then ν∗B ∈ A ⊂ Sp(X )p♥, and ν∗,p♥(ν∗B) ∼= B.

Proof. It suffices to prove that B is in the essential image of ν∗,p♥|A, the claim
then follows from Corollary 4.53.

Write K := ker(γ) ∼= im(β) and I := im(γ). We have exact sequences

0→ A
α
−→ B → K → 0,

0→ K → C → I → 0,

0→ I → D → coker(γ)→ 0.

By applying Lemma 4.55 three times, it suffices to show that coker(γ) is in the
essential image of ν∗,p♥|A.

Since ν∗,p♥ is fully faithful on A by Lemma 4.52, we see that there is a
morphism γ′ : C′ → D′ such that ν∗,p♥(γ′) ∼= γ. In particular, coker(γ′) ∼=
coker(νp♥∗ ν∗,p♥γ′) ∼= coker(νp♥∗ γ), which lives in A by assumption. Therefore,
we see that coker(γ) ∼= coker(ν∗,p♥γ′) ∼= ν∗,p♥ coker(γ′) is in the essential image
of ν∗,p♥|A. Here we used that ν∗,p♥ is right-exact, see Lemma 4.46.

We will also need the following lemma, which helps to determine when the
pushforward ν∗ of an object is actually in A:

Lemma 4.57. Suppose that A ∈ PΣ(C, Sp)
p♥

such that A//p is classical, and
such that ν∗A ∈ Sp(X )p♥. Then ν∗A ∈ A ⊂ Sp(X )p♥.

Proof. Using Corollary 4.49, we have to show that (ν∗ν∗A)
∧

p ∈ PΣ(C, Sp)
p
≤0.

Denote by ϕ : ν∗ν∗A → A the counit map. Since A is p-complete (see e.g.
Lemma 2.19), ϕ induces a map ψ : (ν∗ν∗A)

∧

p → A. Thus, if ψ is an equivalence,
we are done. For this, it suffices to show that ϕ is a p-equivalence. Thus, we are
reduced to show that ϕ//p : (ν∗ν∗A)//p→ A//p is an equivalence. By exactness,
the left term is equivalent to ν∗ν∗(A//p), and under this identification, the map
ϕ//p corresponds to the counit ν∗ν∗(A//p) → A//p. But this is an equivalence
since A//p is classical.
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4.5 A Short Exact Sequence for Zariski Sheaves

Let k be a field and denote by Smk the category of quasi-compact smooth k-
schemes. Let Shvzar(Smk) be the ∞-topos of sheaves on Smk with respect to
the Zariski topology, i.e. covers are given by fpqc covers {Ui → U}i such that
each Ui → U can be written as ⊔jUi,j → U such that each Ui,j → U is an open
immersion.

The following result is well-known:

Lemma 4.58. The topos Shvzar(Smk) is Postnikov-complete. In particular, it
is hypercomplete.

Proof. Let X ∈ Shvzar(Smk). We have to show that limk τ≤kXk
∼= X . For

U ∈ Smk, write Uzar for the small Zariski site over U (i.e. the poset of open
subsets). There is an evident functor fU : Shvzar(Smk)→ Shvzar(Uzar) given by
restriction.

Note that Shvzar(Uzar) is Postnikov-complete (and thus also hypercomplete):
It was proven in [Lur09, Corollary 7.2.4.17] that it is locally of homotopy di-
mension ≤ dim(U). Thus, the result follows from [Lur09, Proposition 7.2.1.10].

The functor fU commutes with limits because limits of sheaves can be com-
puted on sections. Moreover, fU commutes with truncations: This is clear,
since the topos Shvzar(Uzar) is hypercomplete and fU commutes with homotopy
objects. This fact follows because πn(fU (F )) is the Zariski sheafification of the
presheaf V 7→ πn(fU (F )(V )) = πn(F (V )). But on the other hand, πn(F ) is the
Zariski sheafification of the presheaf V 7→ πn(F (V )). Thus, the result follows
from the Postnikov-completeness of Shvzar(Uzar) for every U .

We now show, using the theory developed in Section 4.3, that for certain
nilpotent Zariski sheaves there is a short exact sequence

0→ L0πn(X)→ πp
n(X)→ L1πn−1(X)→ 0,

see Theorem 4.69 for the precise statement. Note that we have shown in Ap-
pendix B, particularly in Theorems B.23 and B.24 that there is a geometric
morphism

ν∗ : Shvzar(Smk) ⇄ Shvprozar(ProZar(Smk)) ∼= PΣ(W ) : ν∗,

whereW ⊂ ProZar(Smk) is the full subcategory of zw-contractible affine schemes,
see Definition B.20 Hence, we can apply the results from Section 4.3 to the (big)
Zariski ∞-topos.

Remark 4.59. At the end, we want to work with motivic spaces, which are
in particular Nisnevich sheaves. Note that one could define the pro-Nisnevich
topology, and prove that the Nisnevich topos on Smk embeds into PΣ(Wnis)
for a class Wnis of Nisnevich weakly contractible rings. But the pro-Nisnevich
topos has too many objects: Write µp∞ ⊂ Gm for the pro-Nisnevich sheaf of
p-power roots of unity (which is the left Kan extension of the Nisnevich sheaf
µp∞ |Smk

op). But then a calculation shows that (L1µp∞)//p is not classical (in
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the sense of Definition 4.35). Thus, we cannot apply Theorem 4.44. As we will
show below, this cannot happen if we work with the pro-Zariski topology.

Definition 4.60. Let F ∈ Shvzar(Smk, Sp)
♥. We say that F satisfies Gersten

injectivity if for every connected U ∈ Smk the canonical map Γ♥(U, F ) →
Γ♥(η, F ) is injective where η ∈ U is the generic point, and Γ♥(η, F ) is the stalk
of F at η, i.e. we define Γ♥(η, F ) := Γ♥(η, ν∗F ) ∼= colimη→V →U Γ♥(V, F ), where
the colimit runs over all Zariski morphisms V → U that fit into a factorization
η → V → U of the morphism η → U (see Corollary B.25 for the equivalence).

Note that since η ∈ ProZar(Smk) is zw-contractible (since it represents a
local ring of the Zariski topology, see Definition B.10 for the definition of zw-
contractible), we actually have Γ♥(η, ν∗F ) ∼= Γ(η, ν∗F ), see Lemma 4.20.

Lemma 4.61. Let n ≥ 1 be an integer and F ∈ Shvzar(Smk, Sp)
♥ such that

F/pn satisfies Gersten injectivity. Let U ∈ Smk a connected smooth scheme,
η ∈ U its generic point and x ∈ Γ♥(U, F ) a section. Suppose that there is
ỹ ∈ Γ♥(η, F ) such that pnỹ = x|η.

Then there is a Zariski cover V ։ U and a y ∈ Γ♥(V, F ) such that pny =
x|V .

Proof. By Gersten injectivity, the map Γ♥(U, F/pn)→ Γ♥(η, F/pn) is injective.
Note that x|η = 0 in Γ♥(η, F/pn). Thus, x = 0 in Γ♥(U, F/pn). This means that
there exists a Zariski cover V ։ U and a y ∈ Γ♥(V, F ) such that pny = x|V .

Definition 4.62. Let A ∈ Shvprozar(ProZar(Smk), Sp)
♥ be a sheaf of abelian

groups on the pro-Zariski site. We say that an element x ∈ Γ♥(U,A) is locally
pn-divisible if there is a pro-Zariski cover V ։ U and a y ∈ Γ♥(V,A) such that
pny = x|V , i.e. if x lies in the sheaf-theoretic image (calculated in the heart,
which is an abelian category) of the morphism pn : A→ A.

We say that x is locally arbitrary p-divisible if x is locally pn-divisible for all
n ≥ 1.

Lemma 4.63. Let A ∈ Shvprozar(ProZar(Smk), Sp)
♥ be a sheaf of abelian

groups on the pro-Zariski site. Define a subsheaf B ⊂ A via

B = A[p] ∩
⋂

n

im(A
pn

−→ A).

For U ∈ ProZar(Smk) we have

Γ♥(U,B) =
{

x ∈ Γ♥(U,A)
∣

∣ px = 0, x is locally arbitrary p divisible
}

.

If A is classical (i.e. A is in the essential image of ν∗, see Definition 4.35) and
(ν∗A)/p

n satisfies Gersten injectivity for every n, then B is also classical.

Proof. The description of the sections of B is clear, since limits of sheaves can be
computed on sections, and π0 : Sp → Ab commutes with limits of coconnective
spectra.
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Let U∞ := limi Ui be the cofiltered limit of smooth schemes Ui ∈ Smk where
the transition morphisms Ui → Uj are Zariski localizations. We need to show
that the canonical map ϕ : colimi Γ

♥(Ui, B) → Γ♥(U∞, B) is an isomorphism
(see Corollary B.25). Note that we have a commuting diagram

colimi Γ
♥(Ui, B) Γ♥(U∞, B)

colimi Γ
♥(Ui, A) Γ♥(U∞, A).

ϕ

∼=

The lower horizontal arrow is an isomorphism because A is classical, see Corol-
lary B.25. The left vertical arrow is injective since it is a filtered colimit of
injections. This shows that ϕ is injective. Let x ∈ Γ♥(U∞, B). In other words,
x ∈ Γ♥(U∞, A), px = 0 and for every n there is a pro-Zariski cover Vn ։ U∞

and a yn ∈ Γ♥(Vn, A) such that pnyn = x|Vn
. Since A is classical, we have

Γ♥(U∞, A) ∼= colimi Γ
♥(Ui, A). We conclude that there exists an i ∈ I and an

xi ∈ Γ♥(Ui, A) such that xi|U∞
= x. Ui is of finite type over Spec(k), hence we

can write Ui = ⊔jUi,j as a finite coproduct, with Ui,j the connected components
of Ui. Moreover, since Ui is smooth, we conclude that each Ui,j is irreducible.
For every j write ηj ∈ Ui,j for the generic point. Since ⊔jUi,j → Ui is a Zariski
cover, we conclude that Γ♥(⊔jUi,j , A) ∼=

∏

j Γ
♥(Ui,j , A). Thus, xi corresponds

to a tuple (xi,j)j . Consider the canonical morphism f : U∞ → Ui. Let j0 be an
index. If f does not hit Ui,j0 , i.e. im(f)∩Ui,j0 = ∅, we can replace xi by the tuple
(x̃i,j)j with x̃i,j = xi,j if j 6= j0 and x̃i,j0 = 0, this still yields the same element
x ∈ colimi Γ

♥(Ui, A). Note that 0 ∈ Γ♥(Ui,j0 , B). Thus, we may assume that
f hits Ui,j0 . Pro-Zariski morphisms are flat (see [Sta23, Tag 05UT] together
with [Sta23, Tag 00HT (1)]) and hence lift generalizations ([Sta23, Tag 03HV]).
Hence, there exists a point η∞ ∈ U∞ such that f(η∞) = ηj0 . Since pro-Zariski
morphisms identify local rings (see [Sta23, Tag 096T]), we conclude that η∞ is
a generic point, and that k(ηj0 )

∼= k(η∞). Now let n ∈ N. The same reasoning
applies to the pro-Zariski cover Vn → U∞, i.e. we find a generic point ηn ∈ Vn
mapping to η∞ such that k(ηn) ∼= k(η∞) ∼= k(ηj0 ). By assumption, there is
yn ∈ Γ♥(Vn, A) with p

nyn = xi|Vn
. Thus, pnyn|ηn

= xi,j0 |ηn
. Using the isomor-

phism k(ηn) ∼= k(ηj0) we thus find an element ỹn ∈ k(ηj0) with p
nỹn = xi,j0 |ηj0

.
Since (ν∗A)/p

n satisfies Gersten injectivity, we conclude by Lemma 4.61 that
there is a Zariski cover Ṽn,j0 ։ Ui,j0 such that xi,j0 |Ṽn,j0

is pn-divisible. Thus,

we proved that (xi,j)j is locally arbitrarily p-divisible, hence xi ∈ Γ♥(Ui, B).
This shows that ϕ is surjective.

Lemma 4.64. Let A ∈ Shvprozar(ProZar(Smk), Sp)
♥. There is an equiva-

lence (L1A)//p ∼= B, where B ∈ Shvprozar(ProZar(Smk), Sp)
♥

is defined as in
Lemma 4.63.

Proof. Consider the short exact sequence

0→ (L1A)//p→ A[p]→ π1((L0A)//p)→ 0
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from Lemma 2.28. In particular, (L1A)//p is inside the heart. Note that

since L1A ∈ Shvprozar(ProZar(Smk), Sp)
p♥ ⊂ Shvprozar(ProZar(Smk), Sp)

♥
(see

Lemma 4.24 for the inclusion), we see that (L1A)//p ∼= (L1A)/p, where (−)/p

is the endofunctor coker(−
p
−→ −) on the standard heart. We see that

(L1A)/p ∼= (π1(limk A//p
k))/p ∼= (lim♥

k A[p
k])/p ∼= B.

For the first equivalence, note that L1A ∼= πp
n(A)

∼= πp
n(A

∧
p )
∼= πn(A

∧
p ), where

the first equivalence is the definition, the second is Corollary 2.21, and the third
is Lemma 4.24.

For the last equivalence we used that an element x ∈ Γ♥(U,A) is locally
arbitrary p-divisible if and only if it is locally ∞-p-divisible, in the sense that
there exists a (pro-Zariski) cover V → U such that for every n there is a yn ∈
Γ♥(V,A) such that pnyn = x|V . To show this, suppose that x is locally arbitrary
p-divisible, and choose covers Vn → U and ỹn ∈ Γ♥(Vn, A) such that pnỹn =
x|Vn

. Then define V := limn V1 ×U · · · ×U Vn, this is a pro-Zariski cover of U .
Then define yn := ỹn|V , they satisfy pnyn = x|V . This shows that x is locally
∞-p-divisible.

Now note that (lim♥
k A[p

k])/p consists exactly of the p-torsion elements of
A that are locally ∞-p-divisible: By the above equivalences and short exact
sequence, (lim♥

k A[p
k])/p can be identified with a subsheaf of A[p], via the map

induced by the projection lim♥
k A[p

k] → A[p] (note that pA[p] = 0). Now,
an element of x ∈ Γ♥(U,A[p]) lies in the image of this map, if and only if
there is a cover V → U and a compatible sequence (yn)n ∈ lim♥

k Γ♥(V,A[pk])
such that x|V = y0. But such a compatible sequence in particular implies that
x|V = y0 = pkyk for all k, i.e. x is locally ∞-p-divisible. This concludes the
proof.

Corollary 4.65. Let A ∈ Shvzar(Smk, Sp)
♥, such that A/pn satisfies Gersten

injectivity for every n ≥ 1. Then (L1ν
∗A)//p is classical.

Proof. Combine Lemmas 4.63 and 4.64.

Definition 4.66. Let X ∈ Shvzar(Smk)∗ be a pointed sheaf. We define for
n ≥ 2 the p-completed homotopy groups via

πp
n(X) := ν∗πn((ν

∗X)∧p ) ∈ Shvzar(Smk, Sp),

and for n = 1 via

πp
1(X) := ν∗π1((ν

∗X)∧p ) ∈ Grp(Disc(Shvzar(Smk))),

where we view ν∗ as a functor

ν∗ : Grp(Disc(Shvprozar(ProZar(k))))→ Grp(Disc(Shvzar(Smk))).

Remark 4.67. The name ”p-completed homotopy group” instead of something
like ”p-completed homotopy spectrum” is justified: We will show in Theo-
rem 4.69 that at least in good cases πp

n(X) actually lives in the abelian category

Shvzar(Smk, Sp)
p♥

for all n ≥ 2.

52



Lemma 4.68. Let f : X → Y be a morphism of pointed Zariski sheaves. Sup-
pose that f is a p-equivalence. Then πp

n(f) : π
p
n(X) → πp

n(Y ) is an equivalence
for all n ≥ 1. In particular, πp

n(X) ∼= πp
n(X

∧
p ).

Proof. Since ν∗ preserves p-equivalences (see Lemma 3.11), and (−)∧p transforms
p-equivalences to equivalences, the result follows.

Theorem 4.69. Let X ∈ Shvzar(Smk)∗ be a pointed nilpotent sheaf, such that
πn(X)/pk satisfies Gersten injectivity for every k ≥ 1 and n ≥ 2. Suppose
moreover that either

• π1(X) is abelian and π1(X)/pk satisfies Gersten injectivity for every k ≥
1, or

• L1π1(X) ∈ Shvzar(Smk, Sp)
p♥, where we use Definition 4.40.

Then for n ≥ 2 there is a canonical short exact sequence in Shvzar(Smk, Sp)
p♥

(or a canonical short exact sequence in Grp(Disc(Shvzar(Smk))) if n = 1)

0→ L0πn(X)→ πp
n(X)→ L1πn−1(X)→ 0,

where we use Definition 4.40 for Liπ1(X). This distinction does not matter
if π1(X) is abelian, see Lemma 4.43. Here we use L1π0(X) = 0, since X is

connected. In particular, πp
n(X) ∈ Shvzar(Smk, Sp)

p♥
for n ≥ 2.

Proof. This follows immediately from Theorem 4.44 and Corollary 4.65.

Corollary 4.70. Let X ∈ Shvzar(Smk)∗ be a pointed nilpotent sheaf, satisfying
the assumptions of Theorem 4.69. Fix n ≥ 2. We have equivalences πp

n(X) ∼=
πp
n(τ≥kX) ∼= πp

n(τ≤lX) for all 0 ≤ k ≤ n− 1 and all l ≥ n.

Proof. This follows immediately from Theorem 4.69.

We can establish a partial converse to Lemma 4.68:

Proposition 4.71. Let f : X → Y ∈ Shvzar(Smk)∗ be a morphism of nilpotent
pointed sheaves with abelian fundamental group, and suppose that X and Y
satisfy the assumptions of Theorem 4.69. Suppose moreover that πp

n(f) is an
equivalence for all n ≥ 1. Then f is a p-equivalence.

Proof. Note that we have a commutative square

τ≥1ν∗((ν
∗X)

∧

p ) τ≥1ν∗((ν
∗Y )

∧

p )

X∧
p Y ∧

p ,

τ≥1ν∗((ν
∗f)∧p )

∼= ∼=

f∧
p
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where the downward arrows are the equivalences from Lemma 4.34 (a proof
that Shvzar(Smk) is locally of finite uniform homotopy dimension can be found
in Lemma 5.20), and the horizontal arrows are induced by f . Thus, the upper
horizontal arrow is an equivalence if and only if the lower horizontal arrow is
an equivalence. But f∧

p is an equivalence if and only if f is a p-equivalence, see

Lemma 3.8. Hence, in order to prove the lemma, it suffices to show that (ν∗f)
∧

p

is an equivalence. By hypercompleteness of PΣ(W ), it suffices to show that
πn((ν

∗f)
∧

p ) is an equivalence for all n ≥ 1 (note that ν∗X and ν∗Y are simply

connected). By assumption, we know that ν∗πn((ν
∗f)∧p ) is an equivalence for

all n ≥ 1. Note that we know from Theorem 4.44 and Corollary 4.65 that
πn((ν

∗X)
∧

p )//p and πn((ν
∗Y )

∧

p )//p are classical for n ≥ 2. We have also seen in

Theorem 4.69 that ν∗πn((ν
∗X)∧p ) and ν∗πn((ν

∗X)∧p ) live in Shvzar(Smk, Sp)
p♥

for n ≥ 2. Thus, (the proof of) Lemma 4.57 gives us a commuting square for
all n ≥ 2

(

ν∗ν∗πn((ν
∗X)

∧

p )
)∧

p

(

ν∗ν∗πn((ν
∗Y )

∧

p )
)∧

p

πn((ν
∗X)

∧

p ) πn((ν
∗Y )

∧

p ),

∼= ∼=

where the vertical arrows are equivalences and the horizontal arrows are induced
by f . By assumption, the upper arrow is an equivalence, therefore the same
holds for the lower arrow. Since π1(X) and π1(Y ) are abelian, the same proof
works for n = 1. This proves the proposition.

Remark 4.72. The assumption that π1 should be abelian in Proposition 4.71
is probably unnecessary, but a proof of this fact is unclear to the author. One
would have to analyze how far L0π1(ν

∗X) ∈ Grp(Disc(PΣ(C))) is from be-
ing classical (i.e. in the image of the functor ν∗ : Grp(Disc(Shvzar(Smk))) →
Grp(Disc(PΣ(C)))). Note that we cannot use the ”classical mod p“TODO
CHECK-techniques employed in the above proof because of the nonabelian na-
ture of the involved groups.

5 Completions of Motivic Spaces

Let k be a perfect field and denote by Smk the category of smooth k-schemes.
Let Shvnis(Smk) be the∞-topos of sheaves on Smk with respect to the Nisnevich
topology (see e.g. [MV99, Definition 3.1.2]). Note that a family of points of
this ∞-topos is given by evaluation on henselian local rings Sh

s , i.e. if F ∈
Shvnis(Smk), S ∈ Smk and s ∈ S, then s∗F := F(Sh

s ) := colim
s→U

et−→S
F(U) is

the stalk of F at Sh
s , see e.g. [BH17, Proposition A.3]. For a point Sh

s , write Is

for the filtered category of objects s → U
et
−→ S. Without loss of generality we

may assume that the scheme S defining a point Sh
s is connected. These points

form a conservative family of points (again [BH17, Proposition A.3]), hence it
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follows from [Lur09, Remark 6.5.4.7] that Shvnis(Smk) is hypercomplete. In
fact, the Nisnevich topos is moreover Postnikov-complete. As in the Zariski
case, this is essentially well-known.

Lemma 5.1. Shvnis(Smk) is Postnikov-complete.

Proof. One argues exactly as in Lemma 4.58. As geometric input, we use that
for every U ∈ Smk there is a functor fU : Shvnis(Smk) → Shvnis(Uet) given by
restriction, where Uet is the category of étale U -schemes, with coverings given
by Nisnevich coverings. As in the Zariski case, one argues that this functor com-
mutes with limits and truncations. Then we use that Shvnis(Uet) has homotopy
dimension ≤ dim(U), which was proven in [Lur18a, Theorem 3.7.7.1].

5.1 Generalities on Motivic Spaces

Recall the following definitions from [Mor12, Definition 0.7]:

Definition 5.2 (A1-invariance). 1. Let X ∈ Shvnis(Smk) be a Nisnevich

sheaf. We say that X is A1-invariant if X(S)
pr∗S−−→ X(S × A1) is an

equivalence of anima for all S ∈ Smk.

2. Similarly, we say that E ∈ Shvnis(Smk, Sp) is A1-invariant if E(S)
pr∗S−−→

E(S × A1) is an equivalence of spectra for all S.

3. If G ∈ Grp(Disc(Shvnis(Smk))) is a Nisnevich sheaf of groups, we say that

G is strongly A1-invariant if Hn
nis(X,A)

pr∗S−−→ Hn
nis(X × A1, A) is an iso-

morphism for all A and n = 0, 1. Write Grpstr(k) for the full subcategory
of strongly A1-invariant Nisnevich sheaves of groups.

Definition 5.3. We write Spc(k) ⊂ Shvnis(Smk) for the full subcategory of
A1-invariant Nisnevich sheaves, and call this category the category of motivic
spaces (over k).

We denote by SHS1

(k) := Sp(Spc(k)) the stabilization of the category of
motivic spaces, and call this category the category of motivic S1-spectra (over
k).

Lemma 5.4. The inclusion functor ιA1 : Spc(k) →֒ Shvnis(Smk) has a left ad-
joint LA1 , and Spc(k) is presentable.

We have an induced adjunction

LA1 : Shvnis(Smk, Sp) ⇄ SHS1

(k) : ιA1 ,

induced by the adjunction LA1 ⊣ ιA1 . The right adjoint ιA1 is fully faithful, with
essential image those sheaves of spectra which are A1-invariant.

Proof. The first statement is an application of [Lur09, Proposition 5.5.4.15],
noting that the A1-invariant sheaves are the local objects for the (small) set of
morphisms

{

prX : A1
X → X

∣

∣X ∈ Smk

}

.
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There is an induced adjunction on stabilizations with fully faithful right
adjoint, see Lemmas A.1 and A.2. For the statement about the essential image,
see [Mor04, Chapter 4.2].

Lemma 5.5. There is a t-structure on SHS1

(k) (called the standard (or homo-
topy) t-structure). This t-structure is uniquely characterized by the requirement

that ιA1 : SHS1

(k)→ Shvnis(Smk, Sp) is t-exact (for the standard t-structure on
the second category).

In particular, ι♥
A1 : SHS1

(k)♥ → Shvnis(Smk, Sp)
♥ is an exact fully faithful

functor of abelian categories given by restriction of ιA1 . Its essential image is the

intersection of SHS1

(k) with Shvnis(Smk, Sp)
♥. We will say that an element of

Shvnis(Smk, Sp)
♥ which lies in the essential image of ιA1 is strictly A1-invariant.

Proof. Since ιA1 is fully faithful, it is clear that t-exactness of this functor
uniquely determines the t-structure (i.e. the t-structure must be given by the

intersection of SHS1

(k) with the standard t-structure on Shvnis(Smk, Sp)). That
this actually defines a t-structure is [Mor04, Theorem 4.3.4 (2)].

Since ιA1 is fully faithful, exact and t-exact, it induces an exact embedding
of the hearts [BBD82, Proposition 1.3.17(i)]. The description of the essential
image is clear from the t-exactness of ιA1 .

Remark 5.6. Let A ∈ Shvnis(Smk, Sp)
♥. Then A is strictly A1-invariant, if

and only if the underlying sheaf of abelian groups Γ♥(−, A) is strictly A1-
invariant in the sense of [Mor12, Definition 0.7], i.e. the cohomology sheaves
Hi

nis(−,Γ
♥(−, A)) ∼= π−i(Γ(−, A)) are A1-invariant. Note that π−i(Γ(−, A)) is

clearly A1-invariant because A is.

Remark 5.7. Let n ≥ 2. By [Mor12, Corollary 5.2] and Remark 5.6, the func-

tor πn ◦ ιA1 : Spc(k)∗ → Shvnis(Smk, Sp)
♥

factors over the full subcategory
of A1-invariant sheaves of spectra. Thus, by Lemma 5.5 it induces a functor

πn : Spc(k)→ SHS1

(k)
♥

.

Remark 5.8. We can also look at the case n = 1: By [Mor12, Corollary 5.2],
the functor π1 ◦ ιA1 : Spc(k)∗ → Grp(Disc(Shvnis(Smk))) factors through the
category Grpstr(k). If X is a motivic space with abelian π1(ιA1X), then this
group is moreover strictly A1-invariant (see [Mor12, Theorem 4.46]). Therefore,

we get a well-defined functor π1 : Spc(k)ab → SHS1

(k)♥, where Spc(k)ab is the
category of motivic spaces with abelian fundamental group.

Definition 5.9. We also define the adjunctions

Lnis : Shvzar(Smk) ⇄ Shvnis(Smk) : ιnis,

given by sheafification and inclusion (i.e. induced by the canonical morphism of
sites), and

Lnis,A1 : Shvzar(Smk) ⇄ Spc(k) : ιnis,A1 ,
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given by Lnis,A1 := LA1 ◦ Lnis and the fully faithful functor ιnis,A1 := ιnis ◦ ιA1 .
Note that there are induced adjunctions (see Lemma A.1)

Lnis : Shvzar(Smk, Sp) ⇄ Shvnis(Smk, Sp): ιnis,

Lnis,A1 : Shvzar(Smk, Sp) ⇄ SHS1

(k) : ιnis,A1 ,

where the right adjoints are again fully faithful (see Lemma A.2).

We want to show now that ιnis,A1 is t-exact for the standard t-structures.
Note that this is rather surprising, as ιnis,A1 is defined as the composition of ιnis
and ιA1 , and the former is not t-exact! For this, we need the following general
proposition:

Proposition 5.10. Let D and E be stable categories equipped with t-structures
(D≥0,D≤0) and (E≥0, E≤0), and let F : D → E be an exact functor. Assume
moreover that

(1) F preserves limits,

(2) for all X ∈ D♥ we have that FX ∈ E♥,

(3) the t-structure on D is left-complete, and

(4) the t-structure on E is left-complete.

Then F is right t-exact.

Proof. We first show that F is t-exact on bounded objects, i.e. we show that
for all m,n ∈ Z and all X ∈ D≥m ∩ D≤n we have FX ∈ E≥m ∩ E≤n. Note that
by shifting, it suffices to consider the case m = 0 (and thus n ≥ 0, for n < 0 the
statement is vacuous).

We proceed by induction on n, the case n = 0 follows from assumption (2).
So suppose the statement is true for n ≥ 0, and let X ∈ D≥0∩D≤n+1. Consider
the fiber sequence Σn+1πn+1X → X → τ≤nX . Applying F yields the fiber
sequence Σn+1Fπn+1X → FX → Fτ≤nX . By induction, we see that Fτ≤nX ∈
E≥0 ∩ E≤n ⊂ E≥0 ∩ E≤n+1, and Σn+1Fπn+1X ∈ Σn+1E♥ ⊂ E≥0 ∩ E≤n+1 by
assumption (2). Thus, since E≥0 and E≤n+1 are stable under extensions, we get
that FX ∈ E≥0 ∩ E≤n+1.

Now, letX ∈ D≥0 be a general connective object. Then, since the t-structure
on D is left-complete by assumption (3), we can write X ∼= limn τ≤nX . Since F
commutes with limits (assumption (1)), we can thus write FX ∼= limn Fτ≤nX .

Using [Lur17, Proposition 1.2.1.17 (2)] and the left-completeness of E (assumption (4)),
it suffices to show that Fτ≤nX is connective for every n, and that τ≤nFτ≤n+1X ∼=
Fτ≤nX ; this then implies that limn Fτ≤nX is connective. We have seen above
that Fτ≤nX is connective for every n.

So suppose that n ≥ 0. Consider the fiber sequence

Σn+1πn+1Fτ≤n+1X → Fτ≤n+1X → τ≤nFτ≤n+1F.

Note that there is also a fiber sequence

Σn+1πn+1X → τ≤n+1X → τ≤nX,
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which after applying F yields

FΣn+1πn+1X → Fτ≤n+1X → Fτ≤nX.

Thus, in order to show that τ≤nFτ≤n+1X ∼= Fτ≤nX , it suffices to show that
Fπn+1X ∼= πn+1Fτ≤n+1X . This follows immediately from t-exactness on
bounded objects, i.e. we get (since τ≤n+1X is bounded) πn+1Fτ≤n+1X ∼=
πn+1τ≤n+1FX ∼= πn+1FX .

Lemma 5.11. The functor ιnis,A1 is t-exact for the standard t-structures.

In particular, ι♥nis,A1 : SHS1

(k)♥ → Shvzar(Smk, Sp)
♥
is an exact fully faithful

functor of abelian categories and given by restriction of ιnis,A1 .

Proof. We see that ιnis,A1 is left t-exact as the composition of a t-exact functor
(Lemma 5.5) and a left t-exact functor (note that ιnis is right adjoint to the
t-exact functor Lnis (see Lemma A.6 for the t-exactness), and use [BBD82,
Proposition 1.3.17 (iii)]). Thus, it suffices to see that the functor is right t-

exact. We first prove the following: If A ∈ SHS1

(k)♥, then also ιnis,A1A ∈
Shvzar(Smk, Sp)

♥. Write H : Ab(Disc(Shvnis(Smk))) ∼= Shvnis(Smk, Sp)
♥ (and

similar for Zariski sheaves). Since this is an equivalence, we know that there is
an A′ ∈ Ab(Disc(Shvnis(Smk))) with HA

′ ∼= ιA1A. Note that since ιA1A is A1-
invariant, we know that A′ is strictly A1-invariant, see Remark 5.6. It suffices
to show that ιnisHA

′ ∼= HιnisA
′, where ιnisA

′ ∈ Ab(Disc(Shvnis(Smk))) is the
application of the underived functor ιnis : Shvnis(Smk)→ Shvzar(Smk) with the
induced structure of an abelian group object. In order to prove this equivalence,
by Whitehead’s theorem it suffices to prove that for all n and all U ∈ Smk the
canonical map πn((ιnisHA

′)(U)) → πn((HιnisA
′)(U)) is an equivalence. But

note that we have equivalences

πn((ιnisHA
′)(U)) = πn((HA

′)(U)) ∼= H−n
nis (U,A

′)

and
πn((HιnisA

′)(U)) ∼= H−n
zar (U, ιnisA

′).

But the right-hand sides agree by [AD09, Theorem 4.5] (The reference uses that
k is an infinite field. If k is a finite field, we can argue as in the above reference,
using the Gabber presentation lemma for finite fields, see [HK20, Theorem 1.1]).

Thus, we can apply Proposition 5.10 with ιnis,A1 : Note that ιnis,A1 pre-
serves limits because it is a right adjoint, and that the standard t-structure
on Shvzar(Smk, Sp) is left-complete because Shvzar(Smk) is Postnikov-complete,
see Lemma 4.58 and the proof of [Lur18a, Corollary 1.3.3.11]. Note that also
Shvnis(Smk, Sp) is left-complete with respect to the standard t-structure, be-
cause Shvnis(Smk) is Postnikov-complete, see Lemma 5.1. Thus, it follows that

also SHS1

(k) ⊂ Shvnis(Smk, Sp) is left-complete, since the functor ιA1 is an
exact and t-exact fully faithful functor which commutes with limits (as a right-

adjoint): Indeed, if X ∈ SHS1

(k), then we have

ιA1X ∼= limk τ≤kιA1X ∼= ιA1 limk τ≤kX.
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Since ιA1 is fully faithful, it is in particular conservative, i.e. X ∼= limk τ≤kX ,
which is what we wanted to show. Hence, Proposition 5.10 implies that ιnis,A1

is right t-exact.

Lemma 5.12. Let A ∈ SHS1

(k)♥ and n ≥ 0. Then ιA1K(A, n) ∼= K(ι♥
A1A, n)

and ιnis,A1K(A, n) ∼= K(ι♥nis,A1A, n)

Proof. We calculate

K(ι♥
A1A, n) = Ω∞

∗ Σnι♥
A1A ∼= Ω∞

∗ ΣnιA1A ∼= ιA1Ω∞
∗ ΣnA = ιA1K(A, n),

where we used that ι♥
A1A ∼= ιA1A (because ιA1 is t-exact for the standard t-

structures, see Lemma 5.5), and Lemma A.1.
The same proof works for the second statement, using t-exactness of ιnis,A1

for the standard t-structures, see Lemma 5.11.

Lemma 5.13. For every n ≥ 0 the functor τ≥n : Shvnis(Smk)∗ → Shvnis(Smk)∗
restricts to a functor τ≥n : Spc(k)∗ → Spc(k)∗.

In other words, there is a functor τ≥n such that the following square com-
mutes:

Spc(k)∗ Spc(k)∗

Shvnis(Smk)∗ Shvnis(Smk)∗.

ι
A1

τ≥n

ι
A1

τ≥n

Proof. Let n ≥ 0, and fix a pointed motivic space X ∈ Spc(k)∗. It suffices to
show that τ≥nιA1X is again A1-invariant.

If n = 0 there is nothing to prove, so we can assume n ≥ 1. Using [Mor12,
Corollary 5.3], it suffices to prove that π1(τ≥nιA1X) is strongly A1-invariant and
πk(τ≥nιA1X) is strictly A1-invariant for all k ≥ 2. This is clear if n > k, since
0 is strictly A1-invariant. If n ≤ k, we use [Mor12, Corollary 5.2] to conclude
that πk(τ≥nιA1X) ∼= πk(ιA1X) is strictly A1-invariant. The same proof works
for π1 if n = 1, again using [Mor12, Corollary 5.2].

Lemma 5.14. Let X ∈ Spc(k)∗ be a pointed connected motivic space, i.e. it is
in the image of τ≥1 : Spc(k)∗ → Spc(k)∗ from Lemma 5.13. For all n ≥ 1 there
are equivalences

τ≤nιnis,A1X ∼= ιnisτ≤nιA1X.

Proof. Let k ≥ 1. Then there is a fiber sequence

K(πk(ιA1X), k)→ τ≤kιA1X → τ≤k−1ιA1X.

Thus, since ιnis preserves limits (it is a right adjoint), we get a fiber sequence

ιnisK(πk(ιA1X), k)→ ιnisτ≤kιA1X → ιnisτ≤k−1ιA1X.
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By definition, we have ιA1πk(X) = πk(ιA1X). Lemma 5.12 now gives us equiv-
alences

ιnisK(πk(ιA1X), k) ∼= ιnis,A1K(πk(X), k) ∼= K(ι♥nis,A1πk(X), k).

Moreover, limk ιnisτ≤kιA1X ∼= ιnislimk τ≤kιA1X ∼= ιnis,A1X , since ιnis pre-
serves limits and Shvnis(Smk) is Postnikov-complete (Lemma 5.1). Since ιnisτ≤kιA1X
is still k-truncated (as the right adjoint of a geometric morphism preserves trun-
cated objects, see [Lur09, Proposition 6.3.1.9]), and the fibers of ιnisτ≤kιA1X →
ιnisτ≤k−1ιA1X are Eilenberg-MacLane objects in degree k, we conclude by in-
duction on k that actually (ιnisτ≤kιA1X)k is the Postnikov tower of ιnis,A1X , i.e.
ιnisτ≤kιA1X ∼= τ≤kιnis,A1X .

Lemma 5.15. Let X ∈ Spc(k)∗ be a pointed motivic space. Then τ≥nιnis,A1X ∼=
ιnisτ≥nιA1X for all n ≥ 0.

Proof. If n = 0 then there is nothing to prove. So suppose that n ≥ 1.
Write Shvzar(Smk)≥n,∗ ⊂ Shvzar(Smk)∗ for the full subcategory of n-connective
pointed Zariski sheaves. We begin by showing that for every Y ∈ Shvnis(Smk),
the canonical map τ≥nιnisτ≥nY → τ≥nιnisY is an equivalence. Note that there
is a fiber sequence

τ≥nY → Y → τ≤n−1Y.

Applying the right adjoint ιnis yields the fiber sequence

ιnisτ≥nY → ιnisY → ιnisτ≤n−1Y.

Note that if we view τ≥n as a functor Shvzar(Smk)∗ → Shvzar(Smk)≥n,∗, then it
preserves limits because it is right adjoint to the inclusion. Therefore, applying
τ≥n yields a fiber sequence (in Shvzar(Smk)≥n,∗)

τ≥nιnisτ≥nY → τ≥nιnisY → τ≥nιnisτ≤n−1Y.

Since ιnis preserves (n − 1)-truncated objects (this is proven in [Lur09, Propo-
sition 6.3.1.9], since ιnis is the right adjoint of a geometric morphism), the right
term vanishes. Therefore we have an equivalence τ≥nιnisτ≥nY ∼= τ≥nιnisY in
Shvzar(Smk)≥n,∗, and therefore also in Shvzar(Smk)∗.

Therefore, it suffices to show that ιnisτ≥nιA1X is already n-connective for
every X ∈ Spc(k)∗. Note first that by Lemma 5.13, there is a pointed motivic
space Y := τ≥nX with τ≥nιA1X ∼= ιA1Y , and Y is a pointed, n-connective
motivic space. Note that ιnis,A1Y is n-connective if and only if τ≤nιnis,A1Y is
n-connective. We know from Lemma 5.14, that τ≤nιnis,A1Y ∼= ιnisτ≤nιA1Y .
Therefore, we may assume that ιA1Y is n-connective and n-truncated, i.e.

ιA1Y ∼= ιA1K(A, n) for some A ∈ SHS1

(k)♥. But now we have that ιnis,A1Y ∼=

ιnis,A1K(A, n) ∼= K(ι♥nis,A1 , n) by Lemma 5.12, which is in particular n-connective.
This proves the lemma.
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Corollary 5.16. Let X ∈ Spc(k)∗ be a pointed motivic space, i.e. If n ≥ 2,
there are equivalences

πn(ιnis,A1X) ∼= ι♥nisπn(ιA1X) ∼= ι♥nis,A1πn(X),

and if n = 1, we have an isomorphism

π1(ιnis,A1X) ∼= ιnisπ1(ιA1X),

where we view ιnis as a functor

Grp(Disc(Shvnis(Smk)))→ Grp(Disc(Shvzar(Smk))).

Proof. From Lemmas 5.14 and 5.15 we are immediately able to conclude that
πn(ιnis,A1X) ∼= ιnisπn(ιA1X). Moreover, by definition ιA1πn(X) = πn(ιA1X),
therefore we also get an equivalence πn(ιnis,A1X) ∼= ιnis,A1πn(X). Since every-
thing is in the heart of the standard t-structure, we get the desired equivalences.
If n = 1, then the same proof works, but we ignore the hearts and view ιnis as
a functor Grp(Disc(Shvnis(Smk)))→ Grp(Disc(Shvzar(Smk))).

Lemma 5.17. The functor ιnis,A1 : SHS1

(k) → Shvzar(Smk, Sp) is t-exact for
the p-adic t-structures.

In particular, it induces a fully faithful exact functor

ιp♥nis,A1 : SHS1

(k)p♥ → Shvzar(Smk, Sp)
p♥.

Proof. By Lemma 5.11, ιnis,A1 is t-exact for the standard t-structures. Therefore
Lnis,A1 is right t-exact for the standard t-structures by [BBD82, Proposition
1.3.17(iii)]. Now Lemma 2.34 applied to L = ιnis,A1 implies that ιnis,A1 is right
t-exact, whereas the same lemma applied to L = Lnis,A1 and R = ιnis,A1 implies
that ιnis,A1 is left t-exact. This proves the first part of the lemma.

The last part is [BBD82, Proposition 1.3.17(i)].

5.2 A1-Invariance of the p-Completion

The category of motivic spaces is not an∞-topos. Nonetheless, it is presentable
(see Lemma 5.4). Therefore, Section 3.1 applies and gives us a notion of p-
equivalence, and a p-completion functor (−)∧p : Spc(k)→ Spc(k). In this section
we prove that at least for nilpotent motivic spaces, the p-completion of the
underlying Nisnevich sheaf is still A1-invariant, and agrees with the p-completion
of X in the category of pointed connected motivic spaces, see Theorem 5.31.

Remark 5.18. We will also show in Theorem 5.34 that the p-completion of a
nilpotent motivic space agrees with the p-completion of the underlying Zariski
sheaf. This is unclear for arbitrary Nisnevich sheaves, even if we assume nilpo-
tence.

Recall that Asok-Fasel-Hopkins defined in [AFH22, Definition 3.3.1] what a
nilpotent motivic space is.
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Lemma 5.19. A pointed motivic space X ∈ Spc(k)∗ is nilpotent if and only if
ιA1X is nilpotent as a Nisnevich sheaf in the sense of Definition A.10.

Proof. One direction is clear from the definitions, since the homotopy groups
(and the action of π1) of a motivic space are the same as the homotopy groups
(and the action of π1) of the underlying Nisnevich sheaf of anima. For the
other direction one uses [AFH22, Proposition 3.2.3] (and its variant for actions
of π1 on πn) to conclude that every nilpotent Nisnevich sheaf of groups which
is strictly A1-invariant is already A1-nilpotent.

Lemma 5.20. Shvnis(Smk) and Shvzar(Smk) are locally of finite uniform ho-
motopy dimension.

Proof. Let S be the collection of all points of Shvnis(Smk), and htpydim: S → N

be the function Sh
s 7→ dim(S).

Let F ∈ Shvnis(Smk) be k-connective, Sh
s be a point and U ∈ Is. Then

U → S is an étale neighborhood of s, and thus dim(U) = dim(S) (by the
assumption on the connectedness of S). Denote by XU the category of sheaves
on the site of étale morphisms over U with Nisnevich covers. There is a functor
fU : Shvnis(Smk) → XU given by restriction. Note that F (U) ∼= (fUF )(U).
Since by [Lur18a, Theorem 3.7.7.1] XU has homotopy dimension ≤ dim(S),
we conclude that F (U) is k − htpydim(s)-connective (note that fUF is still k-
connective, as fU commutes with homotopy objects, to prove this, one argues
exactly as in the Zariski case, see the proof of Lemma 4.58).

For the Zariski ∞-topos one argues similar, noting that the points of the
Zariski∞-topos are given by the local schemes Ss. To see that the small Zariski
∞-topos over a smooth scheme U has homotopy dimension ≤ dim(U), one uses
[Lur09, Corollary 7.2.4.17].

Corollary 5.21. Let X ∈ Shvnis(Smk)∗ or X ∈ Shvzar(Smk)∗ be nilpotent.
Then X∧

p = limn (τ≤nX)∧p .

Proof. This is Theorem 3.27, together with Lemma 5.20. Here we use that
the Zariski and Nisnevich topoi are Postnikov-complete, see Lemma 4.58 and
Lemma 5.1.

Proposition 5.22. Let X ∈ Spc(k)∗ be nilpotent. Then the p-completion
(ιA1X)

∧

p is an A1-invariant sheaf.

Proof. By Corollary 5.21 there are equivalences (ιA1X)
∧

p
∼= (limn τ≤nιA1X)

∧

p
∼=

limn (τ≤nιA1X)
∧

p . Since the limit of A1-invariant sheaves is A1-invariant (as the

inclusion ιA1 is a right adjoint, i.e. commutes with limits), we can assume that
X is n-truncated (i.e. ιA1X is n-truncated). We proceed by induction on n, the
case n = 0 being trivial. Using [AFH22, Theorem 3.3.13] the Postnikov tower
of X has a principal refinement consisting of (nilpotent) motivic spaces Xn,k,

and sheaves of spectra An,k+1 ∈ SHS1

(k)♥, such that there are fiber sequences

Xn,k+1 → Xn,k → K(An,k+1, n+ 1)
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and equivalences Xn,0
∼= τ≤nX . Applying ιA1 to the fiber sequences gives the

fiber sequence

ιA1Xn,k+1 → ιA1Xn,k → K(ι♥
A1An,k+1, n+ 1),

where we used Lemma 5.12. Note that by Lemma 5.19, all of those sheaves are
nilpotent.

We can thus proceed by induction on 0 ≤ k ≤ mn. We know that (ιA1Xn,0)
∧

p
∼=

(τ≤nιA1X)
∧

p is A1-invariant by induction (on n). Thus suppose we have shown

that (ιA1Xn,k)
∧

p is A1-invariant, k < mn. Using the above fiber sequence, we
can compute the p-completion using Proposition 3.20:

(ιA1Xn,k+1)
∧

p = τ≥1fib

(

(ιA1Xn,k)
∧

p →
(

K(ι♥
A1An,k, n+ 1)

)∧

p

)

.

Since fibers and connected covers (Lemma 5.13) of A1-invariant sheaves are A1-

invariant, we can reduce to the case X = K(ι♥
A1A, n) for some A ∈ SHS1

(k)♥

and n ≥ 2.

But then X∧
p
∼= τ≥1Ω

∞
∗

(

(

Σnι♥
A1A

)∧

p

)

. Since connected covers of A1-

invariant sheaves are A1-invaraint (again by Lemma 5.13), it suffices to show

that
(

ι♥
A1A

)∧

p
is A1-invariant. But this is just a limit of A1-invariant sheaves of

spectra, and therefore A1-invariant (as ιA1 is a right adjoint).

Remark 5.23. We now want to show that the p-completion of a nilpotent mo-
tivic space is the same as the p-completion of the underlying Nisnevich sheaf.
In order to do this, one needs to show that the motivic space LA1((ιA1X)

∧

p )
is again p-complete. We would like to argue again using the principal refine-
ment of the Postnikov tower, and write this motivic space as a repeated limit
of p-completions of Eilenberg Mac-Lane spaces. Unfortunately, this approach
has a major drawback: By calculating p-completions on the Postnikov tower,
connective covers will appear. This introduces a problem: Since the category of
motivic spaces is not an∞-topos, we cannot use the arguments from Section 3.2
to conclude that the connective cover of a p-complete space is again p-complete,
since it is not at all clear that the p-completion of motivic spaces respects π0.
We can correct this error by working in the category of connected motivic spaces
(in particular, every nilpotent motivic space is connected). This also leads to
the following conjecture:

Conjecture 5.24. Let X ∈ Spc(k)∗ be a pointed motivic space. If X is p-
complete, then also τ≥1X is p-complete.

We now introduce the category of pointed connected motivic spaces:

Definition 5.25. Write Spc(k)≥1,∗ for the category of pointed connected motivic
spaces, i.e. the full subcategory of Spc(k)∗ spanned by objects X such that the
underlying Nisnevich sheaf ιA1X is connected (i.e. π0(ιA1X) = ∗).
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Remark 5.26. Note that we have homotopy sheaves πn : Spc(k)≥1,∗ → SHS1

(k)♥

for n ≥ 2, and π1 : Spc(k)≥1,∗ → Grpstr(k).

Remark 5.27. Note that Spc(k)≥1,∗ is presentable: It is stable under all colimits
in Spc(k)∗, and is the preimage of the terminal category ∗ under the accessible
functor π0 ◦ ιA1 : Spc(k)∗ → Disc(Shvnis(Smk)), thus also accessible by [Lur09,
Proposition 5.4.6.6]. Hence, we can apply Section 3.1 and get a p-completion
functor on this category.

Using the presentability of Spc(k)≥1,∗ and the observation that the inclu-
sion Spc(k)≥1,∗ → Spc(k)∗ preserves colimits (this follows from the fact that
LA1 preserves connected objects), the adjoint functor theorem gives us a right
adjoint.

Definition 5.28. Write ι≥1 : Spc(k)≥1,∗ ⇄ Spc(k)∗ : τ≥1 for the canonical ad-
junction. We define as shorthand the following notations:

ιA1,≥1 := ιA1ι≥1 : Spc(k)≥1,∗ → Shvnis(Smk)∗, and

ιnis,A1,≥1 := ιnisιA1ι≥1 : Spc(k)≥1,∗ → Shvzar(Smk)∗.

Lemma 5.29. We have an equivalence of categories SHS1

(k) ∼= Sp(Spc(k)≥1,∗).
In particular, we have a commuting diagram

Spc(k)≥1,∗ Spc(k)∗

SHS1

(k).

Σ∞

Σ∞

Thus, if f : X → Y is a morphism of connected pointed motivic spaces, then
it is a p-equivalence if and only if the underlying morphism of pointed motivic
spaces ι≥1f is a p-equivalence.

Proof. Recall from [Lur17, Remark 1.4.2.25] that there are equivalences of ∞-
categories

SHS1

(k) ∼= lim (. . .
Ω
−→ Spc(k)∗

Ω
−→ Spc(k)∗)

and
Sp(Spc(k)≥1,∗) ∼= lim (. . .

Ω
−→ Spc(k)≥1,∗

Ω
−→ Spc(k)≥1,∗).

The result follows by a cofinality argument, using that we have equivalences
Ωτ≥1X ∼= ΩX for every pointed motivic space X .

Using the last lemma, from now on we will identify the stabilization of

Spc(k)≥1,∗ with SHS1

(k).

Definition 5.30. Let X ∈ Spc(k)≥1,∗. We say that X is nilpotent if the
underlying motivic space is nilpotent.
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Theorem 5.31. Let X ∈ Spc(k)≥1,∗ be a nilpotent pointed motivic space
(note that every nilpotent space is connected). We have a canonical equiva-

lence ιA1,≥1(X
∧
p )
∼=

(

ιA1,≥1X
)∧

p
. In other words, the p-completion of a nilpotent

pointed connected motivic space can be computed on the underlying Nisnevich
sheaf.

Proof. Let ιA1,≥1X →
(

ιA1,≥1X
)∧

p
be the canonical p-equivalence. Applying

LA1 yields the p-equivalence (in Spc(k)∗)

ι≥1X ∼= LA1ιA1,≥1X → LA1

(

(

ιA1,≥1X
)∧

p

)

.

Note that ι≥1X is connected by assumption, and that the right-hand side is
connected because the p-completion in an ∞-topos preserves connected ob-
jects (see Lemma 3.12), and the same is true for LA1 , see [Mor04, Corol-
lary 3.2.5]. Thus, this is a morphism in Spc(k)≥1,∗, and hence we have a p-

equivalence X → τ≥1LA1(
(

ιA1,≥1X
)∧

p
), see Lemma 5.29. It suffices to show

that the right object is p-complete: Then p-completion induces an equivalence
X∧

p
∼= τ≥1LA1(

(

ιA1,≥1X
)∧

p
). Applying ιA1,≥1 then induces an equivalence

ιA1,≥1(X
∧
p )
∼= ιA1,≥1τ≥1LA1

(

(

ιA1,≥1X
)∧

p

)

∼=
(

ιA1,≥1X
)∧

p
,

where we used in the last equivalence that (ιA1X)
∧

p is already connected (by the

above discussion) and A1-invariant (see Proposition 5.22).

In order to see that τ≥1LA1

(

ιA1,≥1X
)∧

p
is p-complete, we first reduce to the

case that X is truncated: For this, we calculate

τ≥1LA1(
(

ιA1,≥1X
)∧

p
) ∼= τ≥1LA1 limn

(

τ≤nιA1,≥1X
)∧

p

∼= τ≥1LA1 limn ιA1LA1(
(

τ≤nιA1,≥1X
)∧

p
)

∼= τ≥1LA1ιA1 limn LA1(
(

τ≤nιA1,≥1X
)∧

p
)

∼= τ≥1limn LA1(
(

τ≤nιA1,≥1X
)∧

p
)

∼= limn τ≥1LA1(
(

τ≤nιA1,≥1X
)∧

p
),

where we used Corollary 5.21 for the first equivalence, and that
(

τ≤nιA1,≥1X
)∧

p
is

A1-invariant in the second equivalence (see Proposition 5.22, using that τ≤nιA1,≥1X
is nilpotent). The third equivalence holds because ιA1 commutes with limits,
the fourth equivalence is fully faithfulness of ιA1 , and the last equivalence uses
that τ≥1 is a right adjoint. Since limits of p-complete objects are p-complete, it
suffices to prove the statement for truncated nilpotent connected motivic spaces.

Proceeding as in the proof of the last proposition, we choose a principal
refinement of the Postnikov tower (note that all the Xn,k are automatically
connected since they are nilpotent), and do double induction on n and k (with
notation as in the proof of Proposition 5.22). Therefore, we assume that the
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statement is true for Xn,k (i.e. τ≥1LA1(
(

ιA1,≥1X
)∧

p
) is p-complete), and that

there is a fiber sequence

ιA1,≥1Xn,k+1 → ιA1,≥1Xn,k → K(ι♥
A1An,k+1, n+ 1).

Using the above fiber sequence, we can compute the p-completion using Propo-
sition 3.20. Applying τ≥1LA1 , we calculate

τ≥1LA1

(

(

ιA1,≥1Xn,k+1

)∧

p

)

∼= τ≥1LA1τ≥1fib

(

(

ιA1,≥1Xn,k

)∧

p
→

(

K(ι♥
A1An,k, n+ 1)

)∧

p

)

∼= τ≥1LA1τ≥1fib

(

ιA1LA1

(

(

ιA1,≥1Xn,k

)∧

p

)

→ ιA1LA1

(

(

K(ι♥
A1An,k, n+ 1)

)∧

p

))

∼= τ≥1LA1τ≥1ιA1fib

(

LA1

(

(

ιA1,≥1Xn,k

)∧

p

)

→ LA1

(

(

K(ι♥
A1An,k, n+ 1)

)∧

p

))

∼= τ≥1LA1ιA1,≥1τ≥1fib

(

LA1

(

(

ιA1,≥1Xn,k

)∧

p

)

→ LA1

(

(

K(ι♥
A1An,k, n+ 1)

)∧

p

))

∼= τ≥1ι≥1τ≥1fib

(

LA1

(

(ιA1Xn,k)
∧

p

)

→ LA1

(

(

K(ι♥
A1An,k, n+ 1)

)∧

p

))

∼= τ≥1fib

(

LA1

(

(

ιA1,≥1Xn,k

)∧

p

)

→ LA1

(

(

K(ι♥
A1An,k, n+ 1)

)∧

p

))

∼= fib

(

τ≥1LA1

(

(

ιA1,≥1Xn,k

)∧

p

)

→ τ≥1LA1

(

(

K(ι♥
A1An,k, n+ 1)

)∧

p

))

,

Here, the second equivalence holds because both p-completions on the right are
actually A1-invariant, see again Proposition 5.22. The third, fourth and fifth
equivalences hold because ιA1 commutes with limits and the connective cover
(Lemma 5.13), and is fully faithful. The sixth equivalence is fully faithfulness
of ι≥1, and the last equivalence holds because τ≥1 commutes with limits. By

induction, τ≥1LA1

(

(

ιA1,≥1Xn,k

)∧

p

)

is p-complete. Since fibers of p-complete

objects are p-complete, we have reduced to the case of an Eilenberg-MacLane
space.

So suppose that n ≥ 2 and A ∈ SHS1

(k)♥ is strictly A1-invariant. We

need to show that τ≥1LA1

(

(

K(ι♥
A1A, n)

)∧

p

)

is p-complete (in connected motivic
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spaces). We compute

τ≥1LA1

(

(

K(ι♥
A1A, n)

)∧

p

)

∼= τ≥1LA1τ≥1Ω
∞
∗

(

(

Σnι♥
A1A

)∧

p

)

∼= τ≥1LA1τ≥1Ω
∞
∗

(

(ΣnιA1A)
∧

p

)

∼= τ≥1LA1τ≥1Ω
∞
∗ ιA1

(

(ΣnA)
∧

p

)

∼= τ≥1LA1τ≥1ιA1Ω∞
∗

(

(ΣnA)∧p

)

∼= τ≥1LA1ιA1,≥1τ≥1Ω
∞
∗

(

(ΣnA)
∧

p

)

∼= τ≥1ι≥1τ≥1Ω
∞
∗

(

(ΣnA)
∧

p

)

∼= τ≥1Ω
∞
∗

(

(ΣnA)∧p

)

,

where we used Corollary 3.18 in the first equivalence, and t-exactness of ιA1

(Lemma 5.5) in the second equivalence. The third equivalence holds because
ιA1 commutes with limits, the fourth equivalence is Lemma A.1, and the fifth
is Lemma 5.13. The last two equivalences use fully faithfulness of ιA1 and ι≥1.
The theorem follows because τ≥1Ω

∞
∗ preserves p-complete objects (as its left

adjoint Σ∞ : Spc(k)≥1,∗ → SHS1

(k) preserves p-equivalences by definition).

Remark 5.32. Note that if Conjecture 5.24 is true, then the same reasoning
allows us to prove the following result: If X ∈ Spc(k)∗ is a pointed nilpotent
space, then (ιA1X)

∧

p
∼= ιA1X∧

p .

The same technique allows us to prove a related result: The p-completion
of the underlying Nisnevich sheaf of a nilpotent motivic space is also the p-
completion of the underlying Zariski sheaf. For this, we need the following
lemma:

Lemma 5.33. Let A ∈ SHS1

(k)♥ and n ≥ 2.
There is an equivalence ιnis(K(ι♥

A1A, n)∧p )
∼= K(ι♥nis,A1A, n)∧p .

Proof. Note that since ιA1 and ιnis,A1 are t-exact for the standard t-structures

(see Lemmas 5.5 and 5.11), we see that ι♥
A1A ∼= ιA1A, and similarly, ι♥nis,A1A ∼=

ιnis,A1A. Therefore, we see that K(ι♥
A1A, n) ∼= Ω∞

∗ ΣnιA1A, and K(ι♥nis,A1A, n) ∼=
Ω∞

∗ Σnιnis,A1A. Thus, it suffices to show that there is an equivalence

ιnis((Ω
∞
∗ ΣnιA1A)∧p )

∼=
(

Ω∞
∗ Σnιnis,A1A

)∧

p
.

67



We now calculate

ιnis

(

(Ω∞
∗ ΣnιA1A)

∧

p

)

∼= ιnisΩ
∞
∗ τ≥1

(

(ΣnιA1A)
∧

p

)

∼= Ω∞
∗ ιnisτ≥1

(

(ΣnιA1A)∧p

)

∼= Ω∞
∗ ιnisτ≥1ιA1

(

(ΣnA)
∧

p

)

∼= Ω∞
∗ τ≥1ιnis,A1

(

(ΣnA)
∧

p

)

∼= Ω∞
∗ τ≥1

(

(

Σnιnis,A1A
)∧

p

)

∼=
(

Ω∞
∗ Σnιnis,A1A

)∧

p
.

Here, the first and last equivalences are Corollary 3.18, the second equivalence
is Lemma A.1, the third and fifth equivalences follow from Lemma 2.32 and the
exactness of ιA1 and ιnis,A1 , and the fourth equivalence is Lemma 5.15.

Theorem 5.34. Let X ∈ Spc(k)∗ be nilpotent. Then ιnis((ιA1X)
∧

p )
∼=

(

ιnis,A1X
)∧

p
.

In particular, if we regard X as an object of Spc(k)≥1,∗ we get an equivalence

ιnis,A1,≥1(X
∧
p )
∼=

(

ιnis,A1,≥1X
)∧

p
by combining this result with Theorem 5.31.

Proof. First, assume that X is n-truncated for some n. As above, we choose
a principal refinement of the Postnikov tower of X , with Xn,k ∈ Spc(k)∗ and

An,k ∈ SHS1

(k)♥. We proceed by double induction on n and k, the case n = 0
being trivial. As above, we have a fiber sequence

ιA1Xn,k+1 → ιA1Xn,k → K(ι♥
A1An,k+1, n+ 1).

Applying ιnis, we get a fiber sequence

ιnisιA1Xn,k+1 → ιnisιA1Xn,k → K(ι♥nisι
♥
A1An,k+1, n+ 1),

where we used Lemma 5.12. We now compute

(ιnisιA1Xn,k+1)
∧

p
∼= τ≥1fib

(

(ιnisιA1Xn,k)
∧

p → K(ι♥nisι
♥
A1An,k+1, n+ 1)∧p

)

∼= τ≥1fib
(

ιnis((ιA1Xn,k)
∧

p )→ ιnis(K(ι♥
A1An,k+1, n+ 1)∧p )

)

∼= τ≥1ιnisfib
(

(ιA1Xn,k)
∧

p → K(ι♥
A1An,k+1, n+ 1)∧p

)

∼= ιnisτ≥1fib
(

(ιA1Xn,k)
∧

p → K(ι♥
A1An,k+1, n+ 1)∧p

)

∼= ιnis((ιA1Xn,k+1)
∧

p ).

Here, the first and last equivalences are Proposition 3.20, the second equivalence
follows from induction and Lemma 5.33, the third equivalence exists because
ιnis commutes with limits (as a right adjoint), and the fourth equivalence is
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Lemma 5.15 (noting that the fiber is A1-invariant as a limit of A1-invariant
sheaves). This proves the claim.

We will now deduce the general case. We have the following chain of equiv-
alences:

ιnis

(

(ιA1X)
∧
p

)

∼= ιnislimn (τ≤nιA1X)
∧

p

∼= limn ιnis

(

(τ≤nιA1X)
∧

p

)

∼= limn (ιnisτ≤nιA1X)∧p

∼= limn

(

τ≤nιnis,A1X
)∧

p

∼=
(

ιnis,A1X
)∧

p
.

The first and last equivalences are Corollary 5.21. The second equivalence holds
because ι commutes with limits (as a right adjoint). The third equivalence was
proven above, since τ≤nX is n-truncated. The fourth equivalence is Lemma 5.14
(note that X is connected because it is nilpotent). This proves the theorem.

Remark 5.35. Again, if Conjecture 5.24 is true, then we get the following: If
X ∈ Spc(k)∗ is a pointed nilpotent space, then

(

ιnis,A1X
)∧

p
∼= ιnis,A1X∧

p .

5.3 A Short Exact Sequence for Motivic Spaces

We want to establish a short exact sequence for the homotopy objects of the
p-completion of motivic spaces, similar to the one for Zariski sheaves from The-
orem 4.69.

Lemma 5.36. Let A ∈ SHS1

(k)♥. Then ι♥nis,A1A satisfies Gersten injectivity

(Definition 4.60).

Proof. This is proven in [AD09, Lemma 4.6], if k is an infinite field. If k is a
finite field, we can argue as in the above reference, using the Gabber presentation
lemma for finite fields, see [HK20, Theorem 1.1].

Lemma 5.37. Let A ∈ SHS1

(k)♥. Then ιnis,A1LiA ∼= Liι
♥
nis,A1A.

Proof. Since ιnis,A1 is t-exact for the standard t-structures (Lemma 5.11), we

see that ι♥nis,A1A ∼= ιnis,A1A. Moreover, the same functor is also t-exact for the

p-adic t-structures (Lemma 5.17). Therefore, we compute

ιnis,A1LiA = ιnis,A1πp
iA
∼= πp

i ιnis,A1A = Liι
♥
nis,A1A.

Note that Li is just given by the functor πp
i restricted to the standard heart.

Corollary 5.38. Let X ∈ Spc(k)∗ be a pointed motivic space. We have canon-
ical equivalences Liπn(ιnis,A1X) ∼= ιnis,A1Liπn(X) and Lnis,A1Liπn(ιnis,A1X) ∼=
Liπn(X) for all i and n ≥ 2. If π1(X) is abelian, then the same is true for
n = 1.
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Proof. We have the following sequence of equivalences:

Liπn(ιnis,A1X) ∼= Liι
♥
nis,A1πn(X) ∼= ιnis,A1Liπn(X),

where the first equivalence is given by Corollary 5.16, and the second equivalence
by Lemma 5.37. Applying Lnis,A1 we arrive at the equivalence

Lnis,A1Liπn(ιnis,A1X) ∼= Lnis,A1ιnis,A1Liπn(X) ∼= Liπn(X),

where the second equivalence used the fully faithfulness of ιnis,A1 . If π1(X) is

abelian, then we can regard it as an object of SHS1

(k)♥ (see Remark 5.8). In
this case, the same proof works.

Lemma 5.39. Let X ∈ Spc(k)∗ be a pointed motivic space. Then πn(ιnis,A1X)/pk

satisfies Gersten injectivity for all k ≥ 1 and n ≥ 2. If π1(X) is abelian, then
the result also holds for n = 1.

Proof. Fix n ≥ 2 and k ≥ 1. We have equivalences

πn(ιnis,A1X)/pk ∼= (ι♥nis,A1πn(X))/pk ∼= ι♥nis,A1(πn(X)/pk),

where we used Corollary 5.16 in the first equivalence and exactness of ι♥nis,A1

in the second equivalence, see Lemma 5.11. Thus, we conclude by Lemma 5.36
that πn(ιnis,A1X)/pk satisfies Gersten injectivity.

If π1(X) is abelian, then we can regard it as an object of SHS1

(k)♥ (see
Remark 5.8). In this case, the same proof works.

Lemma 5.40. Let A ∈ SHS1

(k)♥. Then ν∗Liν
∗ι♥nis,A1A ∼= Liι

♥
nis,A1A for all i.

In particular, ν∗Liν
∗ι♥nis,A1A ∈ Shvzar(Smk, Sp)

p♥
for all i. Moreover, we

have that ν∗Liν
∗ι♥nis,A1A ∈ A, where A is the subcategory of Shvzar(Smk, Sp)

p♥

from Definition 4.50.

Proof. By exactness of ι♥nis,A1 (see Lemma 5.11), for every k ≥ 1 there are

equivalences (ι♥nis,A1A)/p
k ∼= ι♥nis,A1(A/p

k). Thus, by Lemma 5.36, (ι♥nis,A1A)/p
k

satisfies Gersten injectivity for all k. This implies that (L1ν
∗ι♥nis,A1A)//p is

classical, see Corollary 4.65. Thus, the equivalence is provided by Lemma 4.39.
Note that the same lemma shows that also (L1ν

∗ι♥nis,A1A)//p is classical for all
i. Thus, the statement about A follows immediately from Lemma 4.57.

We will need a non-abelian variant of Lemma 5.12:

Lemma 5.41. Suppose G ∈ Grp(Disc(Shvnis(Smk))) is strongly A1-invariant.
Then BιnisG ∼= ιnisBG.

Proof. Since both objects are Zariski sheaves, it suffices to prove that for all
T = Spec(OU,u) the spectra of the local rings of a scheme U ∈ Smk with point
u ∈ U , the canonical map (BιnisG)(T )→ (ιnisBG)(T ) is an equivalence. Here,
for a Zariski sheaf F we define F (T ) := (ν∗F )(T ) ∼= colimT→V ⊂U F (V ), where
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the colimit runs over all open neighborhoods of T in U . By Whitehead’s theorem
and the fact that both anima are 1-truncated, we can reduce to showing that
the canonical map induces an equivalence πk((BιnisG)(T )) ∼= πk((ιnisBG)(T ))
for k = 0, 1 and all choices of basepoints. Note that both sheaves have a
canonical basepoint ∗, and that we have πk((BιnisG)(U), ∗) ∼= H1−k(U, ιnisG)
and πk((ιnisBG)(U), ∗) = πk((BG)(U)) ∼= H1−k(U,G) for all U ∈ Smk, see
[MV99, Proposition 4.1.16]. Note that we have isomorphisms of cohomology
groups H1−k(U, ιnisG) ∼= H1−k(U,G) for all k and U by [AD09, Theorem 4.5]
(The reference uses that k is an infinite field. If k is a finite field, we can argue
as in the above reference, using the Gabber presentation lemma for finite fields,
see [HK20, Theorem 1.1]).

In particular, since homotopy groups and cohomology are compatible with
filtered colimits, we get π0((BιnisG)(T )) ∼= H1(T, ιnisG) = 0, since Zariski co-
homology is Zariski-locally trivial.

Thus, we immediately see that both anima in question are connected, and
we have to prove the equivalence on π1 only over the canonical basepoint, which
we have seen above.

Recall the category A from Definition 4.50.

Lemma 5.42. Let C ∈ SHS1

(k)p♥. Then ιp♥nis,A1 ∈ A ⊂ Shvnis(Smk, Sp)
p♥.

Proof. Write C′ := ιp♥nis,A1C ∼= ιnis,A1C (see Lemma 5.17 for the equivalence).

We have to show that πp
1(ν

∗C′) ∼= 0. Note that by Lemma 2.29 there is a short
exact sequence

0→ L0π1(ν
∗C′)→ πp

1(ν
∗C′)→ L1π0(ν

∗C′)→ 0.

By Lemma 2.19, we know that C′ ∈ Shvzar(Smk, Sp)≤0. Thus, π1(ν
∗C′) ∼=

ν∗π1(C
′) ∼= 0. Hence, it suffices to prove that L1π0(ν

∗C′) ∼= L1ν
∗π0(C

′) = 0.
But note that π0(C

′) = π0(ιnis,A1C) ∼= ιnis,A1π0(C) by Lemma 5.11. Since
L1ν

∗ιnis,A1π0(C) is p-complete (e.g. by Lemma 2.19), it suffices to show that
(L1ν

∗ιnis,A1π0(C))//p = 0. Note that this sheaf is classical by Corollary 4.65,
where we used that (ιnis,A1π0(C))/p

n ∼= ιnis,A1(π0(C)/p
n) satisfies Gersten in-

jectivity (see Lemma 5.11 for the first equivalence, and Lemma 5.36 for the
claim about the Gersten injectivity). Thus, we calculate

(L1ν
∗ιnis,A1π0(C))//p ∼= ν∗ν∗((L1ν

∗ιnis,A1π0(C))//p)
∼= ν∗((ν∗L1ν

∗ιnis,A1π0(C))//p)
∼= ν∗((L1ιnis,A1π0(C))//p)
∼= ν∗((L1π0(ιnis,A1C))//p),

where we used that the sheaf is classical in the first equivalence, exactness of ν∗
in the second equivalence, Lemma 4.39 in the third equivalence, and Lemma 5.11
in the last equivalence. Therefore, it suffices to prove that L1π0(ιnis,A1C) = 0.
Again, Lemma 2.29 supplies us with a short exact sequence

0→ L0π1(ιnis,A1C)→ πp
1(ιnis,A1C)→ L1π0(ιnis,A1C)→ 0.
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But we have πp
1(ιnis,A1C) ∼= ιnis,A1πp

1(C)
∼= 0, where we used Lemma 5.17 in

the first equivalence and the assumption that C ∈ SHS1

(k)p♥ in the second
equivalence. This proves the lemma.

Lemma 5.43. Let G ∈ Grp(Disc(Shvnis(Smk))) be a nilpotent sheaf of groups,

which is strongly A1-invariant. Then L1ιnisG ∈ Shvzar(Smk, Sp)
p♥

, where we
use Definition 4.40.

Proof. Using [AFH22, Proposition 3.2.3], we see that G is in particular A1-
nilpotent, in the sense of [AFH22, Definition 3.2.1 (3)]. Thus, there is a G-
central series G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = 1 (i.e. the Gi are sheaves of
normal subgroups and the quotients Ai := Gi/Gi+1 have trivial G action (via
conjugation)), such that the Ai are again strongly A1-invariant. Moreover,
the Gi are strongly A1-invariant ([AFH22, Remark 3.2.2 (1)]). Since the Ai are
abelian ([AFH22, Remark 3.2.2 (3)]) and strongly A1-invariant, they are strictly
A1-invariant by [Mor12, Theorem 4.46]. Note that we have central extensions
of groups

1→ Ai → G/Gi+1 → G/Gi → 1,

see [AFH22, Remark 3.2.2 (3)]. This extension is classified by a fiber sequence

B(G/Gi+1)→ B(G/Gi)→ K(ι♥
A1Ãi, 2),

where Ãi ∈ SHS1

(k)♥ corresponds to the strictly A1-invariant sheaf of abelian
groups Ai. Thus, we can proceed by induction. Recall the definition of the full
subcategory A ⊂ Shvzar(Smk, Sp)

p♥ from Definition 4.50. We will inductively

prove that L1ιnis(G/Gi) ∈ A ⊂ Shvzar(Smk, Sp)
p♥, and that L1ιnis(G/Gi) is

actually an A1-invariant Nisnevich sheaf of spectra living in the p-adic heart,

i.e. there is a B ∈ SHS1

(k)p♥ with ιnis,A1B ∼= L1ιnis(G/Gi). The base case
G/G0 = G/G = 1 is trivial.

So suppose the statement holds for G/Gi. Since ιnis preserves limits (as a
right adjoint) and ν∗ preserves finite limits (as the left adjoint of a geometric
morphism), we get a fiber sequence

ν∗ιnisB(G/Gi+1)→ ν∗ιnisB(G/Gi)→ ν∗ιnisK(ι♥
A1Ãi, 2).

Since all involved groups are strongly A1-invariant and nilpotent, this fiber
sequence is equivalent to the fiber sequence

ν∗B(ιnis(G/Gi+1))→ ν∗B(ιnis(G/Gi))→ ν∗K(ι♥nis,A1Ãi, 2),

see Lemmas 5.12 and 5.41. Now Proposition 3.19 implies that we have a fiber
sequence

τ≥1(ν
∗B(ιnis(G/Gi+1)))

∧
p → (ν∗B(ιnis(G/Gi)))

∧
p →

(

ν∗K(ι♥nis,A1Ãi, 2)
)∧

p
.
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But (ν∗B(ιnis(G/Gi+1)))
∧

p is already connected, see Lemma 4.19. Thus, we
arrive at the fiber sequence

(ν∗Bιnis(G/Gi+1))
∧

p → (ν∗Bιnis(G/Gi))
∧

p →
(

ν∗K(ι♥nis,A1Ãi, 2)
)∧

p
.

Thus, using the long exact sequence and the fact that the p-completion of a
k-truncated object is (k + 1)-truncated (see Proposition 3.21), we get an exact

sequence in PΣ(W, Sp)
♥

0→ π3

(

ν∗K(ι♥nis,A1Ãi, 2)
)∧

p
→ L1ν

∗ιnis(G/Gi+1)→ L1ν
∗ιnis(G/Gi)→ π2

(

ν∗K(ι♥nis,A1Ãi, 2)
)∧

p
,

where we use Definition 4.25 for L1. Using Proposition 4.28, we can identify

πk

(

(

ν∗K(ι♥nis,A1Ãi, 2)
)∧

p

)

∼= Lk−2ν
∗ι♥nis,A1Ãi

for k = 2, 3. Thus, we arrive at the exact sequence in PΣ(W, Sp)
p♥

:

0→ L1ν
∗ι♥nis,A1Ãi → L1ν

∗ιnis(G/Gi+1)→ L1ν
∗ιnis(G/Gi)→ L0ν

∗ι♥nis,A1Ãi.

We want to apply Proposition 4.56 to this exact sequence. We first check the
assumptions on the outer two terms involving Ãi. We know that ν∗Lkν

∗ι♥nis,A1Ãi
∼=

Lkι
♥
nis,A1Ãi for all k, and that it lives in A, see Lemma 5.40 Therefore, we also

get ν∗,p♥Lkι
♥
nis,A1Ãi

∼= ν∗,p♥ν∗Lkν
∗ι♥nis,A1Ãi

∼= Lkν
∗ι♥nis,A1Ãi for all k, see Corol-

lary 4.53 for the second equivalence.
By induction, L1ιnis(G/Gi) ∼= ν∗L1ν

∗ιnis(G/Gi) ∈ A ⊂ Shvzar(Smk, Sp)
p♥

.
In particular, ν∗,p♥L1ιnis(G/Gi) ∼= ν∗,p♥ν∗L1ν

∗ιnis(G/Gi) ∼= L1ν
∗ιnis(G/Gi),

where we also used Corollary 4.53 for the second equivalence.
Thus, we are left to show that coker(L1ιnis(G/Gi) → L0ι

♥
nis,A1Ãi) ∈ A:

First note that L0ι
♥
nis,A1Ãi

∼= πp
0(ιnis,A1Ãi) ∼= ιnis,A1πp

0(Ãi) ∼= ιp♥nis,A1π
p
0(Ãi) by

t-exactness for the standard and p-adic t-structures of ιnis,A1 , see Lemmas 5.11

and 5.17. By induction, there is a B ∈ SHS1

(k)p♥ with ιp♥nis,A1B ∼= L1ιnis(G/Gi).

Therefore, again by exactness and fully faithfulness of ιp♥nis,A1 , the cokernel is

also of the form ιp♥nis,A1C for some C ∈ SHS1

(k)p♥. Thus, we immediately get
that the cokernel is in A, see Lemma 5.42.

We can now apply Proposition 4.56, which allows us to deduce that also
L1ιnis(G/Gi+1) = ν∗L1ν

∗ιnis(G/Gi+1) ∈ A ⊂ Shvzar(Smk, Sp)
♥.

Moreover, there is now an exact sequence

0→ L1ι
♥
nis,A1Ãi → L1ιnis(G/Gi+1)→ K → 0,

whereK := ker(L1ιnis(G/Gi)→ L0ι
♥
nis,A1Ãi). We have seen above that Lkι

♥
nis,A1Ãi

is in fact an A1-invariant Nisnevich sheaf of spectra, living in the p-adic heart
(for k = 0, 1). By induction, the same is true for L1ιnis(G/Gi). Exactness of
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ιp♥nis,A1 implies that this also holds for the kernel K. Thus, L1ιnis(G/Gi+1) sits in

a short exact sequence where the outer terms are A1-invariant Nisnevich sheaves
of spectra, living in the p-adic heart. From this we deduce immediately that the
same is true for L1ιnis(G/Gi+1). This concludes the induction.

Definition 5.44. Let X ∈ Spc(k)∗ be a pointed motivic space. For every n ≥ 2
we define the p-completed homotopy groups of X via

πp
n(X) := Lnis,A1πp

n(ιnis,A1X) ∈ SHS1

(k),

and for n = 1 via

πp
1(X) := Lnisπ

p
1(ιnis,A1X) ∈ Grp(Disc(Shvnis(Smk))).

(Recall Definition 4.66 for the p-completed homotopy groups of ιnis,A1X .)

Remark 5.45. Let X ∈ Spc(k)∗ be a pointed space. We will show in Theo-

rem 5.49 that if X is nilpotent, then actually πp
n(X) ∈ SHS1

(k)
p♥

if n ≥ 2.
Thus, the name p-completed homotopy group is justified.

Lemma 5.46. Let X ∈ Spc(k)∗ be nilpotent. Then the canonical map induces
an equivalence πp

n(X)→ πp
n(ι≥1((τ≥1X)

∧

p )) for all n ≥ 1.

Proof. We know ιnis,A1,≥1((τ≥1X)
∧

p )
∼=

(

ιnis,A1,≥1τ≥1X
)∧

p
∼=

(

ιnis,A1X
)∧

p
from

Theorem 5.34 and the fact that X is connected because it is nilpotent. There-
fore, the map ιnis,A1X → ιnis,A1,≥1((τ≥1X)

∧

p ) is a p-equivalence. Thus, we con-

clude from Lemma 4.68 that πp
n(X) → πp

n(ι≥1((τ≥1X)
∧

p )) is an equivalence

(note that by definition πp
n(X) = Lnis,A1πp

n(ιnis,A1X) and πp
n(ι≥1((τ≥1X)

∧

p )) =

Lnis,A1πp
n(ιnis,A1,≥1((τ≥1X)

∧

p )) if n ≥ 2, and similarly for n = 1).

Proposition 5.47. Let f : X → Y be a morphism in Spc(k)∗ of pointed nilpo-
tent spaces, and n ≥ 1. If f is a p-equivalence, then πp

n(f) is an equivalence.

Proof. Note that we can regard f as a morphism in Spc(k)≥1,∗ since nilpotent
spaces are connected. In particular, it is also a p-equivalence in this category,
see Lemma 5.29. Thus, we can assume that f is a p-equivalence in Spc(k)≥1,∗,
and we want to prove that πp

n(ι≥1(f)) is an equivalence.
By p-completing, we get a commutative square

X Y

X∧
p Y ∧

p

f

f∧
p

where the downwards arrows are the canonical p-equivalences. Applying the
functor πp

n(ι≥1(−)) for n ≥ 1, we arrive at the square
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πp
n(ι≥1(X)) πp

n(ι≥1(Y ))

πp
n(ι≥1(X

∧
p )) πp

n(ι≥1(Y
∧
p )).

πp
n(ι≥1(f))

πp
n(ι≥1(f

∧
p ))

Since f is a p-equivalence, we know that f∧
p is an equivalence. In particu-

lar, πp
n(ι≥1(f

∧
p )) is an equivalence. The two vertical maps are equivalences by

Lemma 5.46. From this we conclude that also πp
n(ι≥1(f)) is an equivalence.

Definition 5.48. Let G ∈ Grpstr(Disc(Shvnis(Smk))) be a strictly A1-invariant
nilpotent sheaf of groups. We define

L1G := LnisL1ιnisG ∈ Shvnis(Smk, Sp),

where we use Definition 4.40, and

L0G := LnisL0ιnisG ∈ Grp(Shvnis(Smk)).

Theorem 5.49. Let X ∈ Spc(k)∗ be a pointed nilpotent motivic space. Then

for every n ≥ 2, there is a canonical short exact sequence in SHS1

(k)p♥ (or a
short exact sequence in Grpstr(Disc(Shvnis(k))) if n = 1)

0→ L0πn(X)→ πp
n(X)→ L1πn−1(X)→ 0,

where we use Definition 5.48 for Liπ1(X). In particular, πp
n(X) ∈ SHS1

(k)p♥.
Here we set L1π0(X) = 0 since X is connected.

Moreover, for n ≥ 2 the unit map induces an equivalence

ιnis,A1πp
n(X) = ιnis,A1Lnis,A1πp

n(ιnis,A1X) ∼= πp
n(ιnis,A1X),

i.e. πp
n(ιnis,A1X) is already an A1-invariant Nisnevich sheaf of spectra. If π1(X)

is abelian, the same is true for πp
1(ιnis,A1X).

Proof. Note that πn(ιnis,A1X)/pk satisfies Gersten injectivity for all n ≥ 2 and
all k ≥ 1, see Lemma 5.39. By this lemma, the same is true if π1(X) is
abelian. If not, then we can still conclude by Lemma 5.43 that L1π1(ιnis,A1X) ∈

Shvzar(Smk, Sp)
p♥

(note that π1(ιA1X) is strongly A1-invariant by [Mor12,
Corollary 5.2], and that π1(ιnis,A1X) = ιnisπ1(ιA1X) by Corollary 5.16).

Thus, for n ≥ 2 we have a short exact sequence

0→ L0πn(ιnis,A1X)→ πp
n(ιnis,A1X)→ L1πn−1(ιnis,A1X)→ 0

in Shvzar(Smk, Sp)
p♥

by Theorem 4.69. Applying Lnis,A1 we get a fiber sequence

Lnis,A1L0πn(ιnis,A1X)→ Lnis,A1πp
n(ιnis,A1X)→ Lnis,A1L1πn−1(ιnis,A1X).

Using Corollary 5.38, we compute that Lnis,A1Liπk(ιnis,A1X) ∼= Liπk(X) (if
k = 1, then this is just the definition). Moreover, Lnis,A1πp

n(ιnis,A1X) = πp
n(X)

by Definition 5.44. Thus, we get a fiber sequence

L0πn(X)→ πp
n(X)→ L1πn−1(X).
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Note that the outer terms are in Shvnis(Smk, Sp)
p♥

by definition. Thus, using

the long exact sequence, we conclude that also πp
n(X) ∈ Shvnis(Smk, Sp)

p♥
and

the fiber sequence yields an exact sequence

0→ L0πn(X)→ πp
n(X)→ L1πn−1(X)→ 0.

The last statement follows since we have (again by Corollary 5.38)

Liπk(ιnis,A1X) ∼= ιnis,A1Liπk(X),

i.e. the Liπk(ιnis,A1X) are A1-invariant Nisnevich sheaves (of spectra), and thus
πp
n(ιnis,A1X) sits in the middle of an exact sequence, where the outer terms are

in SHS1

(k)p♥ ⊂ SHS1

(k) →֒ Shvzar(Smk, Sp). Thus, since stable subcategories
are stable under extensions, the result follows. If π1(X) is abelian, the same
proof works.

If n = 1, Theorem 4.69 instead supplies us with a short exact sequence

0→ L0π1(ιnis,A1X)→ πp
1(ιnis,A1X)→ L1π0(ιnis,A1X)→ 0

in Grp(Disc(Shvzar(Smk))), where L1π0(ιnis,A1X) = 0, i.e. this is an equivalence

L0π1(ιnis,A1X) ∼= πp
1(ιnis,A1X).

Applying Lnis, we get an equivalence

LnisL0π1(ιnis,A1X) ∼= Lnisπ
p
1(ιnis,A1X)

in Grp(Disc(Shvnis(Smk))). Note that by definition, the right-hand side is
πp
1(X), and the left-hand side is L0π1(X). We thus get the required short

exact sequence.

Corollary 5.50. Let X ∈ Spc(k)∗ be nilpotent. Then for n ≥ 2 there is a

canonical short exact sequence in SHS1

(k)p♥ (or in Grp(Shvnis(Smk)) if n = 1)

0→ L0πn(X)→ πp
n(ι≥1((τ≥1X)

∧

p ))→ L1πn−1(X)→ 0.

Proof. This follows immediately from Theorem 5.49 and Lemma 5.46.

Remark 5.51. Let X ∈ Spc(k)∗ be nilpotent and n ≥ 1. If Conjecture 5.24 is
true, then we get moreover a short exact sequence

0→ L0πn(X)→ πp
n(X

∧
p )→ L1πn−1(X)→ 0.

We can now also establish a (partial) converse to Proposition 5.47:

Proposition 5.52. Let f : X → Y ∈ Spc(k)∗ be a morphism of pointed nilpo-
tent spaces with abelian fundamental groups. Assume that πp

n(f) is an isomor-
phism for all n ≥ 1. Then f is a p-equivalence.
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Proof. It follows from Theorem 4.69 that πp
n(ιnis,A1X) and πp

n(ιnis,A1Y ) are al-
ready A1-invariant Nisnevich sheaves for all n ≥ 1. Therefore, we conclude that
πp
n(ιnis,A1f) is an isomorphism for all n ≥ 1 (note that Lnis,A1πp

n(ιnis,A1f) =
πp
n(f) are isomorphisms by assumption).
Note that by the proof of Theorem 5.49 we conclude that ιnis,A1X and

ιnis,A1Y satisfy the conditions of Theorem 4.69. Therefore, Proposition 4.71
implies that ιnis,A1f is a p-equivalence. Hence, also f ∼= Lnis,A1ιnis,A1f is a p-
equivalence. Here, we used that ιnis,A1 is fully faithful and Lemma 3.11. This
proves the proposition.

Remark 5.53. As in the case of Proposition 4.71, the assumptions that π1(X)
and π1(Y ) are abelian can probably be relaxed, but a proof of this statement is
unclear to the author, see also Remark 4.72
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A Background Material

A.1 Stabilization

We prove some basic results about the stabilization of adjoint functors of pre-
sentable ∞-categories. All the results are well-known, but hard to track down
in the literature.

Lemma A.1. Let f∗ : X ⇄ Y : f∗ be an adjunction of presentable∞-categories.
Then f∗ and f∗ induce an adjunction

f∗ : Sp(X ) ⇄ Sp(Y) : f∗

of exact functors such that the following diagrams of functors commute (up to
homotopy):

Sp(X ) Sp(Y)

X∗ Y∗

f∗

Σ∞

f∗

Σ∞

Sp(X ) Sp(Y)

X∗ Y∗.

Ω∞
∗ Ω∞

∗

f∗

f∗

Proof. [Lur17, Propositions 1.4.2.22 and 1.4.4.4] imply the existence of a limit-
preserving exact functor f∗ : Sp(Y) → Sp(X ) that fits into the right diagram
(see also the proof of [Lur17, Corollary 1.4.4.5]). Using [Lur17, Proposition
1.4.4.4 (3)], we see that this functor admits a left adjoint f∗. By uniqueness of
adjoints, we conclude that the left diagram is commutative.

Lemma A.2. In the situation of Lemma A.1, assume moreover that f∗ : Y → X
is fully faithful. Then also f∗ : Sp(Y)→ Sp(X ) is fully faithful.

Proof. The category Sp(X ) can be defined as the category of excisive functors
from finite anima to X , see [Lur17, Definition 1.4.2.8]. Note that the functor f∗
is given by postcomposing with the functor f∗ : Y → X . Thus, the result follows,
since postcomposition with a fully faithful functor is already fully faithful on
functor categories.

Lemma A.3. In the situation of Lemma A.1, assume moreover that f∗ is left
exact. Then we have canonical equivalences

f∗Ω∞(−) ∼= Ω∞f∗(−)

and
f∗Ω∞

∗ (−) ∼= Ω∞
∗ f

∗(−).

Moreover, if f∗ : X → Y is conservative, so is f∗ : Sp(X )→ Sp(Y).

Proof. The category Sp(X ) can be defined as the category of excisive functors
from finite anima to X , see [Lur17, Definition 1.4.2.8]. Note that the functor
Ω∞ is given by evaluating at the finite anima S0, see [Lur17, Notation 1.4.2.20].
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In contrast, the functor f∗ is given by postcomposing excisive functors with
f∗ : X → Y. It is therefore clear that f∗Ω∞(−) ∼= Ω∞f∗(−).

Suppose now that f∗ : X → Y is conservative. Let g : E → F be a mor-
phism in Sp(X ) such that f∗g is an equivalence. In order to show that g is an
equivalence, it suffices to show that Ω∞

∗ Σng is an equivalence for all n. Since
f∗ : X → Y is conservative, it thus suffices to show that f∗Ω∞

∗ Σng is an equiv-
alence. But we have

f∗Ω∞
∗ Σng ∼= Ω∞

∗ f
∗Σng ∼= Ω∞

∗ Σnf∗g,

which is an equivalence by assumption.

Lemma A.4. In the situation of Lemma A.1, assume moreover that f∗ : X → Y
is fully faithful and left exact. Then f∗ : Sp(X )→ Sp(Y) is fully faithful.

Proof. We need to show that f∗f
∗ ∼= idSp(X ). So let E ∈ Sp(X ). In order to

show that f∗f
∗E ∼= E, it suffices to show that for all n, Ω∞Σnf∗f

∗E ∼= Ω∞ΣnE.
But we have

Ω∞Σnf∗f
∗E ∼= Ω∞f∗f

∗ΣnE
∼= f∗f

∗Ω∞ΣnE
∼= Ω∞ΣnE.

The first equivalence is clear because f∗ and f∗ are exact. The second equiva-
lence uses Lemma A.3. The last equivalence follows because f∗ : X → Y is fully
faithful.

The stabilization of a presentable∞-category X has a canonical t-structure,
which we call the standard t-structure:

Lemma A.5. The category Sp(X ) has an accessible t-structure (the standard
(or homotopy) t-structure), given by Sp(X )≤−1 = {E ∈ Sp(X ) |Ω∞E ∼= ∗ }.
This t-structure is right-separated (i.e.

⋂

n Sp(X )≤n = 0).

Proof. The existence of the t-structure is [Lur17, Proposition 1.4.3.4].
For the other statement, we essentially copy the proof of [Lur18a, Proposition

1.3.2.7 (3)]. Let F ∈
⋂

n Sp(X )≤n. By definition, this says that Ω∞
∗ ΣnF ∼= ∗

for every n. Since the functors Ω∞
∗ Σn are jointly conservative and preserve final

objects (as they commute with limits), it follows that F = 0, i.e. the t-structure
is right-separated.

Lemma A.6. In the situation of Lemma A.1, assume moreover that X and Y
are ∞-topoi, and that f∗ is left exact (i.e. (f∗, f∗) is a geometric morphism).

Let A ∈ Sp(X )♥ be in the heart of the standard t-structure. Then f∗A ∼= f∗,♥A.
Similarly, if E ∈ Sp(X ), then πn(f∗E) ∼= f∗πn(E).

Proof. [Lur18a, Remark 1.3.2.8] shows that f∗ is t-exact with respect to the
standard t-structures.
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Lemma A.7. Let (C, τ) be a site. Write Shvτ (C,V) for the category of sheaves
on C (in the τ-topology) with values in a presentable ∞-category V. Then there
is an equivalence

Sp(Shvτ (C,An)) ∼= Shvτ (C, Sp).

Proof. This is [Lur18a, Remark 1.3.2.2], together with [Lur18a, Proposition
1.3.1.7].

A.2 Nilpotent Objects

Let X be a hypercomplete ∞-topos. Recall the following definition:

Definition A.8. Let G and H be group objects in Disc(X ), with an action of G
onH . A G-central series is a finite decreasing filtrationH = H0 ⊃ · · · ⊃ Hn = 1
such that Hi is normal and G-stable, Hi/Hi+1 is abelian and the induced action
of G on Hi/Hi+1 is trivial.

The action of G on H is called nilpotent if there exists a G-central series of
H .

We say that G is nilpotent if the action of G on itself via conjugation is
nilpotent.

Lemma A.9. Let G be a group object in Disc(X ). If G is abelian then G is
nilpotent.

Proof. One can choose the G-central series G ⊃ 1, since the conjugation action
is trivial.

Definition A.10. Let X ∈ X∗ be a pointed object. We say that X is nilpotent
if X is connected, π1(X) is a nilpotent group object and the action of π1(X) on
πn(X) is nilpotent for all n ≥ 2.

Lemma A.11. Let X ∈ X∗ be a pointed object. Then τ≥1ΩX is nilpotent.

Proof. Note that τ≥1ΩX ∼= Ωτ≥2X . Since τ≥2X is simply connected, it is
in particular nilpotent. Now note that Ωτ≥2X = fib(∗ → τ≥2X). Thus, we
conclude by [AFH22, Proposition 2.2.4] that τ≥1ΩX is nilpotent.

Lemma A.12. Let f : X → Y be a morphism of pointed nilpotent objects in
X∗. Then τ≥1fib(f) is nilpotent.

Proof. Following the proof in [AFH22, Proposition 2.2.4], we see that π1(fib(f))
is a nilpotent group, with a nilpotent action on πn(fib(f)) for all n ≥ 2. Thus,
τ≥1fib(f) is nilpotent.

Lemma A.13. Let X ∈ X∗ be a pointed object. Suppose that τ≤nX is nilpotent
for every n. Then X is nilpotent.

Proof. Since τ≤1X is connected, also X is connected. Since the action of π1(X)
on πn(X) is the same as the action of π1(τ≤nX) on πn(τ≤nX), the lemma
follows.
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Definition A.14. Let X ∈ X∗ be a connected space. Consider the Postnikov
tower of X given by

· · · → τ≤nX
pn
−→ τ≤n−1X → · · · → τ≤0X = ∗.

We say that the Postnikov tower of X admits a principal refinement if for each
n ≥ 1 there exists a factorization of pn as

τ≤nX = Xn,mn

pn,mn−−−−→ Xn,mn−1 → · · · → Xn,1
pn,1
−−→ Xn,0 = τ≤n−1X,

with mn ≥ 1, such that each pn,k fits into a fiber sequence

Xn,k
pn,k
−−−→ Xn,k−1 → K(An,k, n+ 1)

with An,k an abelian group object in Disc(X ).

Lemma A.15. Let X ∈ X∗ be a pointed object. Then X is nilpotent if and
only if the Postnikov tower of X admits a principal refinement.

Proof. The proof is analogous to the proof of [AFH22, Theorem 3.3.13], applied
to the morphism f : X → ∗.

A.3 Completions of Anima

In this section, we collect some results about the p-completion of anima. Essen-
tially everything in this section already appeared in [BK72].

Definition A.16. Let f : X → Y be a morphism of anima. We say that f is

an Fp-equivalence if f induces an isomorphism of homology f∗ : H∗(X,Fp)
≃
−→

H∗(Y,Fp).

Lemma A.17. Let f : X → Y be a morphism of anima. Then f is a p-
equivalence if and only if f is an Fp-equivalence.

Proof. See e.g. [BB19, Theorem 2.6]. Note that Σ∞
+ f is a morphism of connec-

tive spectra.

The following results are from [MP11]. We will use without comment that
a p-equivalence is the same as an Fp-equivalence, see Lemma A.17.

Lemma A.18. Let X be an n-connective pointed anima for some n ≥ 0. Then
X∧

p is n-connective.

Proof. For n = 0 the result is vacuous, and for n = 1 the result directly follows
from Lemma 3.12. If n > 1 then X is simply connected and thus nilpotent.
We conclude by using the short exact sequence from [MP11, Theorem 11.1.2
(ii)].

Lemma A.19. Let F → X → Y be a fiber sequence of pointed anima, with X
and Y nilpotent. Then (τ≥1F )

∧

p = τ≥1fib
(

X∧
p → Y ∧

p

)

.
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Proof. This was proven in [MP11, Proposition 11.2.5], under the additional
assumption that the involved spaces have finitely generated homotopy groups.
The original reference, without the finiteness assumptions, is [BK72, Lemma
4.8].

Lemma A.20. Suppose that there is a commutative diagram of fiber sequences
of pointed anima

F X Y

F ′ X ′ Y ′,

fF fX fY

such that X,Y,X ′ and Y ′ are nilpotent and fX and fY are p-equivalences. Then

τ≥1F
τ≥1fF
−−−−→ τ≥1F

′ is a p-equivalence.

Proof. By Lemma A.19, we conclude that (τ≥1F )
∧

p
∼= τ≥1fib

(

X∧
p → Y ∧

p

)

, and

similarly (τ≥1F
′)
∧

p
∼= τ≥1fib

(

X ′∧
p → Y ′∧

p

)

. Since fX and fY are p-equivalences,

it follows that X∧
p
∼= X ′∧

p and Y ∧
p
∼= Y ′∧

p . Thus, we have (τ≥1F )
∧

p
∼= (τ≥1F

′)
∧

p ,
i.e. τ≥1fF is a p-equivalence.

Definition A.21. For each i write

Li : Ab
(−)[0]
−−−−→ D(Z)

limn (−)//pn

−−−−−−−−→ D(Z)
πi(−)
−−−−→ Ab.

We call these functors the derived p-completion functors on the category of
abelian groups.

Lemma A.22. Recall the p-adic t-structure from Definition 2.13, now applied
to the category of spectra. Then

(1) Spp♥ ⊂ Sp♥,

(2) if E is a p-complete spectrum, then πn(E) = πp
n(E), and

(3) there are canonical isomorphisms Li
∼= Li

Proof. We first prove (1). By definition and Lemma 2.19, we see that E ∈ Spp♥

if and only if πi(E) is uniquely p-divisible for all i < −1, π−1(E) is p-divisible,
π0(E) has bounded p-divisibility, and E = E∧

p = τ≤0E. The conditions on the
negative homotopy groups imply that E∧

p is connective: Indeed, from [BB19,
Theorem 2.6], we have for every n ∈ Z the following short exact sequence:

0→ L0πn(E)→ πn(E
∧
p )→ L1πn−1(E)→ 0.

If πn−1(E) is uniquely p-divisible, it has in particular no p-torsion. Thus, fol-
lowing [MP11, Corollary 10.1.15] (using that Hp

∼= L1, see [MP11, Proposition
10.1.17]), we see that L1πn−1(E) = 0. On the other hand, if πn(E) is p-divisible,
we see that L0(πn(E)) = 0 following (the proof of the abelian case of) [MP11,
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Proposition 10.4.7 (iii)] (using that Ep
∼= L0, see [MP11, Proposition 10.1.17]).

Thus, E = E∧
p is connective. Hence, E = π0(E) is in Sp♥.

In order to prove (2), suppose now that E is p-complete. Let n ∈ Z be
arbitrary. There is a fiber sequence

τp≥nE → E → τp≤n−1E.

From the discussion directly above, we see that τp≥nE is in fact n-connective.

On the other hand, it is immediate from Lemma 2.19 that τp≤n−1E is actually
(n− 1)-truncated. Thus, by the uniqueness of a decomposition in n-connective
and (n − 1)-coconnective parts in a t-structure, we see that actually τp≥nE

∼=
τ≥nE and τp≤n−1E

∼= τ≤n−1E for all n ∈ Z. This immediately implies that
πp
n(E) ∼= πn(E) for all n ∈ Z.
It remains to show (3). This follows directly from the fact that D(Ab) ∼=

ModHZ → Sp is a limit-preserving exact and t-exact functor, and that LiA =
πp
n(A)

∼= πp
n(A

∧
p )
∼= πn(A

∧
p ) (using (2), since A∧

p is p-complete).

Definition A.23. Let G be a nilpotent group. We define LiG := πi+1((BG)
∧
p ).

Lemma A.24. Let A be an abelian group, and let G be the underlying nilpotent
group (i.e. we forget that A is abelian). Then LiA ∼= LiG for all i ≥ 0.

Proof. This follows for example from [MP11, Theorem 10.3.2].

Lemma A.25. Let X be a nilpotent, pointed anima. For every n ≥ 1 there is
a short exact sequence (functorial in X)

0→ L0πnX → πnX
∧
p → L1πn−1X → 0,

where we use Definition A.23 for Liπ1(X). Note that this distinction does not
matter if π1(X) is abelian, see Lemma A.24. Note that we use the definition
L1π0X = 0.

Proof. [MP11, Theorem 11.1.2 (ii)] provides a short exact sequence

0→ L0πn(X)→ πn(X
∧
p )→ L1πn−1(X)→ 0.

The lemma follows from Lemma A.22, and the fact that our definition of LiG is
the same as the definition of LiG in [MP11, Section 10.4] for nilpotent groups
G (note that they use the notation Ep and Hp for what we call L0 and L1, see
[MP11, Proposition 10.1.17]).

Lemma A.26. Let E be a 1-connective spectrum. Then Ω∞
∗ (E∧

p ) = (Ω∞
∗ E)

∧

p .

Proof. Using the short exact sequence from Lemma A.25, we conclude that the
homotopy groups of (Ω∞

∗ E)∧p fit into short exact sequences

0→ L0πn(Ω
∞
∗ E)→ πn((Ω

∞
∗ E)

∧

p )→ L1πn−1(Ω
∞
∗ E)→ 0.
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By Lemma 2.29, the homotopy groups of E∧
p fit into a short exact sequence

0→ L0πn(E)→ πp
n(E

∧
p )→ L1πn−1(E)→ 0.

Thus, the lemma follows fromWhitehead’s theorem and the fact that πn(Ω
∞
∗ E) ∼=

πn(E) and πp
n(E

∧
p )
∼= πn(E

∧
p )
∼= πn(Ω

∞
∗ (E∧

p )) (see Lemma A.22).

Lemma A.27. Let E → F be a p-equivalence of 1-connective spectra. Then
Ω∞

∗ E → Ω∞
∗ F is a p-equivalence.

Proof. Since E∧
p
∼= F∧

p is an equivalence by assumption, we conclude by the

last Lemma A.26 that also (Ω∞
∗ E)

∧

p
∼= (Ω∞

∗ F )
∧

p , i.e. that Ω∞
∗ E → Ω∞

∗ F is a
p-equivalence.

Definition A.28. Let Xk be an N-indexed inverse system of pointed connected
anima. We say that it is a weak Postnikov tower of anima if τ≤kXk+1

∼= τ≤kXk

for all k ≥ 0 (i.e. the maps Xk+1 → Xk are k-connective for all k).

We want to prove that the suspension spectrum commutes with the limit of
weak Postnikov towers. For this, we need the following well-known statement:

Lemma A.29. Let f : X → Y be a morphism of pointed anima. Suppose that
f is k-connective for some k. Then Σ∞f : Σ∞X → Σ∞Y is k-connective.

Proof. Let F := fib(f) be the fiber. By assumption, we have that F is k-
connective. Let C := cofib(f) be the cofiber. By the Blakers-Massy Theorem
(see e.g. [tD08, Theorem 6.4.1]) that C is (k+1)-connective. Since Σ∞ preserves
colimits (as it is a left adjoint), we get a cofiber sequence of spectra Σ∞X →
Σ∞Y → Σ∞C. Again by Blakers-Massey (or it’s corollary, the Freudenthal
Suspension Theorem), we conclude that Σ∞C is (k+1)-connective. Thus, since
Sp is stable, we see that there is a fiber sequence ΩΣ∞C → Σ∞X → Σ∞Y .
Note that ΩΣ∞C is k-connective. This proves that Σ∞f is k-connective.

Lemma A.30. Let Xk be a weak Postnikov tower of anima. Then

Σ∞limkXk
∼= limk Σ

∞Xk.

Proof. By assumption, each of the morphisms Xk+1 → Xk is k-connective. By
Lemma A.29 we see that Σ∞Xk+1 → Σ∞Xk is k-connective.

Since by assumption the homotopy groups of the system Xk stabilize, we
see by [MP11, Proposition 2.2.9] that limnXn → Xk is k-connective for every
k. Therefore, again by Lemma A.29 also the morphism Σ∞limnXn → Σ∞Xk

is k-connective.
Note that the k-connectivity of Σ∞Xk+1 → Σ∞Xk implies that the projec-

tion limn Σ
∞Xn → Σ∞Xk is k-connective for every k.

Thus, we see that πk(limn Σ
∞Xn) ∼= πk(Σ

∞Xk) ∼= πk(Σ
∞limnXn). We

conclude by Whitehead’s theorem.
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The above statement about weak Postnikov towers now allows us to conclude
that p-equivalences of weak Postnikov towers induce p-equivalences on the limits
of the towers:

Lemma A.31. Suppose there are N-indexed inverse systems of pointed con-
nected anima Xk and Yk, and for any n ≥ 0 there exists a kn ≥ 0 such that
πn(Xk) ∼= πn(Xkn

) and πn(Yk) ∼= πn(Ykn
) for all k ≥ kn. Suppose further that

there is a morphism of systems fk : Xk → Yk such that each fk is a p-equivalence.
Then f : limkXk → limk Yk is a p-equivalence.

Proof. Up to replacing N by a cofinal subset, we may assume that kn = n for
each n. Note that we have equivalences τ≤n−1Xn

∼= τ≤n−1Xn−1 by assumption.
Thus, the system Xk is a weak Postnikov tower. This allows us to conclude from
Lemma A.30, that Σ∞limkXk

∼= limk Σ
∞Xk and Σ∞limk Yk ∼= limk Σ

∞Yk.
Thus, Σ∞f ∼= Σ∞limk fk ∼= limk Σ

∞fk. We now conclude that f is a p-
equivalence because Σ∞f//p ∼= (limk Σ

∞fk)//p ∼= limk ((Σ
∞fk)//p) is a limit

of equivalences.

A.4 Conservativity of the Free Sheaf Functor

Let X be a 1-topos, i.e. the category of sheaves of sets on some site (C, τ). Let R
be a ring, this defines a presentable 1-category ModR,X of R-modules internal
to X , together with a conservative forgetful functor ι : ModR,X → X . This
forgetful functor commutes with limits and filtered colimits, and thus has a left
adjoint R[−] : X → ModR,X by presentability. Note that for X ∈ X , the value
R[X ] is given by the sheafification of the presheaf of R-modules U 7→ R[X(U)],
where R[X(U)] is the free R-module on generators X(U). This can be seen
by comparing right adjoints. Our goal in this section is to prove that R[−] is
conservative.

Definition A.32. Let C be a 1-category, and f : X → Y a morphism in C.
Then f is called an extremal monomorphism if f is a monomorphism and for
all factorizations f = i ◦ p with p an epimorphism, we already have that p is an
isomorphism.

The following is (the dual of) a well-known result in category theory:

Lemma A.33. Let L : C ⇄ D : R be an adjunction of 1-categories, and write
η : id → RL for the unit map. Suppose moreover that ηX : X → RLX is an
extremal monomorphism for all X ∈ C. Then L is conservative.

Proof. Let f : X → Y be a morphism in C such that Lf is an isomorphism. We
have to show that f is an isomorphism. By naturality of η, we get a commutative
square

X RLX

Y RLY.

f

ηX

RLf

ηY
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Note that the right vertical map is an isomorphism, and the horizontal maps are
extremal monomorphisms. Thus, by the definition of extremal monomorphism,
it suffices to show that f is an epimorphism.

So suppose that there is T ∈ C and h1, h2 : Y → T such that h1f = h2f . We
need to show that h1 = h2. By functoriality, we haveRLh1◦RLf = RLh2◦RLf .
Since RLf is an isomorphism, we conclude that RLh1 = RLh2. By naturality
of η, we thus get the following equality:

ηT ◦ h1 = RLh1 ◦ ηY = RLh2 ◦ ηY = ηT ◦ h2.

We conclude that h1 = h2 because ηT is a monomorphism by assumption.

In order to apply the above, we need the following two lemmas:

Lemma A.34. Suppose that C is a balanced category (i.e. every morphism f
which is both monic and epic is already an isomorphism), and that f : X → Y
in C is a monomorphism. Then f is an extremal monomorphism.

Proof. Suppose that we have a factorization f = i ◦ p with p an epimorphism.
We need to show that p is an isomorphism. Since C is balanced, it suffices to
show that p is a monomorphism, which follows immediately from the assumption
that f is a monomorphism.

Lemma A.35. For every X ∈ X , the unit X → ιR[X ] is a monomorphism.

Proof. Write F for the presheaf (of R-modules) U 7→ R[X(U)], such that R[X ]
is the sheafification of F . Note that the map X → F is clearly a monomorphism,
because on each level it is just the canonical mapX(U)→ R[X(U)], which maps
an element x ∈ X(U) to the corresponding basis element of R[X(U)]. Now
observe that sheafification preserves monomorphisms: Indeed, monomorphisms
f : A→ B can be characterized as the existence of pullback squares of the form

A A

A B,

f

f

which are preserved because sheafification is left exact. But since X is already
a sheaf by assumption, we conclude that X → R[X ] is a monomorphism.

This allows us to conclude:

Proposition A.36. The functor R[−] : X → ModR,X is conservative.

Proof. Since every 1-topos is a balanced category, it follows from Lemmas A.34
and A.35 that the unit X → ιR[X ] is an extremal monomorphism for all X ∈ X .
Thus, we conclude from Lemma A.33 that R[−] is conservative.
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B The Pro-Zariski Topology

Let k be a field and denote by Smk the category of quasi-compact smooth k-
schemes. Let Shvzar(Smk) be the ∞-topos of sheaves on Smk with respect to
the Zariski topology, i.e. covers are given by fpqc covers {Ui → U}i such that
each Ui → U can be written as ⊔jUi,j → U such that each Ui,j → U is an
open immersion. In this section, we develop an analog of the pro-étale topology
from [BS14], adapted for the Zariski topology. We use this pro-Zariski topology
to show that Shvzar(Smk) can be embedded into a topos of the form PΣ(W ),
where the category W will be realized by zw-contractible rings, an analog of
w-contractible rings from [BS14]. We will begin with a general discussion with
categories of sheaves on locally weakly contractible sites, and then specialize
this discussion to the pro-Zariski topos.

B.1 Locally Weakly Contractible ∞-Topoi

The goal of this section is to prove that the topos of hypercomplete sheaves
on a locally weakly contractible site (C, τ) (see Definition B.3) is always of the
form PΣ(W ) for a suitable subcategory W ⊂ C of weakly contractible objects.
Since we will deal with hypercomplete and non-hypercomplete sheaves, if (C, τ)
is a site, then denote the categories of sheaves on this site (resp. hypercom-
plete sheaves on this site) by Shvnhτ (C) (resp. Shvhτ (C)). Moreover, denote the
sheafification adjunction by

Lnh : P(C) ⇄ Shvnhτ (C) : ιnh

and
Lh : P(C) ⇄ Shvhτ (C) : ιh,

respectively. Note that Lh factors over Lnh, write

Lhyp : Shvnhτ (C) ⇄ Shvhτ (C) : ιhyp

for the geometric morphism corresponding to this factorization.

Definition B.1. Let (C, τ) be a site which admits finite coproducts. We say
that the topology τ is a Σ-topology if every finite collection of morphisms {Ui →
U}i such that ⊔iUi → U is an isomorphism is a cover in the τ -topology.

Definition B.2. Let (C, τ) be a site. We say that an object w ∈ C is weakly
contractible if every cover by a single morphism U ։ w has a splitting.

Definition B.3. Let (C, τ) be a site. We say that C is locally weakly contractible,
if there is a subcategory W ⊂ C such that

(LWC 1) C has finite coproducts, and finite coproducts distribute over all
pullbacks that exist in C, i.e. if (Ui)i is a family of objects in C,
f : X → Y a morphism in C, and gi : Ui → Y morphisms, then
(⊔iUi)×Y X ∼= ⊔i(Ui ×Y X),
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(LWC 2) every object w ∈W is weakly contractible (Definition B.2),

(LWC 3) W is closed under finite coproducts in C,

(LWC 4) every object w ∈W is quasi-compact, i.e. every cover of w can be
refined by a finite cover,

(LWC 5) the topology is a Σ-topology (Definition B.1),

(LWC 6) every object X ∈ C has a cover w ։ X by a weakly contractible
object w ∈ W , and

(LWC 7) the category W is extensive, see Definition 4.11.

Suppose from now on that (C, τ) is a locally weakly contractible site. Since
by assumption (LWC 7) the category W is extensive, we see that PΣ(W ) is an
∞-topos, see Lemma 4.12. In particular, we have a geometric morphism

LΣ : P(W ) ⇄ PΣ(W ) : ιΣ.

The fully faithful inclusion W → C induces an adjunction of presheaf categories

j∗ : P(W ) ⇄ P(C) : j∗,

where j∗ is given by restriction, and j∗ is given by left Kan extension (see [Lur09,
Corollary 4.3.2.14] for the existence of left Kan extensions of presheaves, and
[Lur09, Corollary 4.3.2.16 and Proposition 4.3.2.17] for a proof that the left Kan
extension functor exists and is left adjoint to the restriction functor). Write
πpre
n for the homotopy objects in a presheaf category, i.e. the functor given by

postcomposing with the functor πn : An→ Set.

Lemma B.4. Let F ∈ Disc(P(C)) be a 0-truncated presheaf (i.e. a presheaf of
sets), such that j∗F = ιΣLΣj∗F ∈ P(W ). Then the canonical map Lnhj

∗j∗F →
LnhF is an equivalence, and for all w ∈W we have an equivalence (LnhF )(w) ∼=
F (w).

Proof. Since everything is 0-truncated, this is a statement about sheaves of
sets. In particular, LnhG ∼= G++, where (−)+ is the plus construction, see e.g.
[Sta23, Tag 00W1]. Since the w ∈ W generate the topos Disc(Shvnhτ (C)) (this
follows from assumption (LWC 6)), it suffices to prove that (Lnhj

∗j∗F )(w) →
(LnhF )(w) is an equivalence for all w ∈ W . Moreover, since (j∗j∗F )(w) ∼=
(j∗F )(w) ∼= F (w), it suffices to prove that (LnhG)(w) = G(w) for every presheaf
G ∈ Disc(P(C)) with j∗G ∼= ιΣLΣj∗G and w ∈ W . Thus, it suffices to show that
G+(w) = G(w). Let {Ui → w}i be a cover of w. We can refine this cover by a
cover {wi → w}i with wi ∈ W , by assumption (LWC 6). We may assume that
this cover is finite since w is quasi-compact, see assumption (LWC 4). Thus,
by the definition of G+(w) = colimU∈Jop

w
H0(U , G) (see the discussion right

before [Sta23, Tag 00W4] for the notation), we can run the colimit only over
covers {wi → w} with wi ∈ W . But now since j∗G ∼= ιΣLΣj∗G, we know
that

∏

iG(wi) ∼= G(⊔iwi). Thus, since coproducts distribute over pullbacks
in C by assumption (LWC 1), we see that the Čech-nerves of {wi → w}i and
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{⊔iwi → w} agree. Therefore, we may assume that the cover is in fact a
single morphism U = {v → w}, with v = ⊔iwi ∈ W because objects in W are
stable under coproducts by assumption (LWC 3). This morphism has a split
by assumption (LWC 2). Hence, the Čech nerve is homotopy equivalent to (the
constant simplicial object) w, see (the dual version of) [Sta23, Tag 019Z]. Thus,
H0(U , G) = G(w). Since this is true for a cofinal family of covers, we conclude
G+(w) = G(w).

Lemma B.5. Let F ∈ P(C) be a presheaf, such that j∗F = ιΣLΣj∗F ∈ P(W ).
Then the canonical map Lhj

∗j∗F → LhF is an equivalence, and for all w ∈ W ,
we have an equivalence (LhF )(w) ∼= F (w).

Proof. Write ǫ : j∗j∗F → F for the counit of the adjunction j∗ ⊣ j∗. For the first
statement, by hypercompleteness it suffices to show that for each n, each U ∈
Shvhτ (C) and each morphism x : U → Lhj

∗j∗F (i.e. each choice of basepoint in
the overtopos Shvhτ (C)/U ) the morphism πn((Lhj

∗j∗F )|U , x)→ πn((LhF )|U , ǫ ◦
x) induced by ǫ is an equivalence for all n ≥ 0 (in the case n = 0, we can do
the same calculations as below, but do it without the choice of a basepoint).
But for every presheaf G ∈ P(C) (and object U and basepoint x : U → LhG),
we have a chain of equivalences πn((LhG)|U , x) ∼= πn((LnhG)|ιhypU , ιhyp(x))

∼=
Lnhπ

pre
n (G|ιhU , ιhx), where the first equivalence follows since Lh factors over

Lnh, and this factorization is the universal functor out of Shvnhτ (C) that inverts
π∗-isomorphisms (i.e. morphisms f such that πk(f) is an isomorphism for all
k). Thus, it suffices to prove that the canonical morphism

Lnhπ
pre
n ((j∗j∗F )|ιhU , ιh(x))

−◦ǫ
−−→ Lnhπ

pre
n (F |ιhU , ǫ ◦ ιh(x))

is an equivalence. We know that πpre
n ((j∗j∗F )|ιhU , ιh(x))

∼= j∗j∗π
pre
n (F |ιhU , ǫ ◦

ιh(x)), since j
∗ is a geometric morphism and thus commutes with homotopy

objects, and j∗ is just the restriction of functors. Thus, the result follows from
Lemma B.4, if j∗π

pre
n (F |ιhU , ǫ ◦ ιh(x))

∼= ιΣLΣj∗π
pre
n (F |ιhU , ǫ ◦ ιh(x)). But

this is clear since j∗π
pre
n (F |ιhU , ǫ◦ ιh(x))

∼= πpre
n (j∗F |j∗ιhU , j∗ιh(x)) (again since

j∗ is just the restriction of functors), since j∗F ∼= ιΣLΣj∗F by assumption
and since the homotopy presheaf πpre

n ((j∗F )|j∗ιhU , j∗ιh(x)) is the homotopy ob-
ject of (j∗F )|j∗ιhU in PΣ(W )/j∗ιhU with respect to the given basepoint, see
Lemma 4.15.

For the second point, choose again a U and x as above. Note that by the
above and Lemma B.4, we get

(πn((LhF )|U , x))(w) ∼= (Lnhπ
pre
n (F |ιhU , ιh(x)))(w)

∼= (πpre
n (F |ιhU , ιh(x)))(w)

= πn(F |ιhU (w), ιh(x)(w)).

On the other hand, since j∗π
pre
n ((LhF )|U , x) ∼= ιΣLΣj∗π

pre
n ((LhF )|U , x), we

again conclude by Lemma B.4 that

(πpre
n ((LhF )|U , x))(w) ∼= (Lnhπ

pre
n ((LhF )|U , x))(w) = (πn((LhF )|U , x))(w).
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Thus, we conclude that for all n, U and x we have an isomorphism

πn(F |ιhU (w), ιh(x)(w))
∼= (πn((LhF )|U , x))(w)
∼= (πpre

n ((LhF )|U , x))(w)

= πn((LhF )|U (w), x(w)).

By Whitehead’s lemma, we conclude that F (w) ∼= LhF (w).

Lemma B.6. The unit j∗ιh → ιΣLΣj∗ιh is an equivalence. In particular, for
every sheaf F ∈ Shvhτ (C), there is a canonical equivalence j∗ιhF ∼= ιΣLΣj∗ιhF .

Proof. Fix F ∈ Shvhτ (C). Since W is extensive by assumption (LWC 7), using
Lemma 4.12 it suffices to show that j∗ιhF has descent for disjoint union covers
in W . But those covers are in particular in τ by assumption (LWC 5). Thus,
we conclude since F is a τ -sheaf.

Lemma B.7. The adjunction j∗ : P(W ) ⇄ P(C) : j∗ induces an adjunction

p∗ : PΣ(W ) ⇄ Shvhτ (C) : p∗,

where the left adjoint is given by p∗ := Lhj
∗ιΣ, and the right adjoint is given by

p∗ := LΣj∗ιh. Moreover, this adjunction is an equivalence.

Proof. We first show that there is an adjunction p∗ ⊣ p∗: We construct the unit
as the composition

id ∼= LΣιΣ → LΣj∗j
∗ιΣ → LΣj∗ιhLhj

∗ιΣ = p∗p
∗.

Here, the first arrow is the inverse of the counit of the adjunction LΣ ⊣ ιΣ, note
that it is invertible because ιΣ is fully faithful. The next two arrows are the units
of the adjunctions j∗ ⊣ j∗ and Lh ⊣ ιh. The last equality are the definitions of
p∗ and p∗. It is now clear that this defines the unit of an adjunction, because it
is equivalent to the composition of the units of two adjunctions. Thus, we get
the required adjunction via [Lur09, Proposition 5.2.2.8]. We need to show that
the counit and unit maps are equivalences.

So let F ∈ Shvhτ (C). Then p∗p∗F = Lhj
∗ιΣLΣj∗ιhF . Since we know that

j∗ιhF ∼= ιΣLΣj∗ιhF from Lemma B.6, we conclude that Lhj
∗ιΣLΣj∗ιhF ∼=

Lhj
∗j∗ιhF ∼= LhιhF ∼= F , where we used Lemma B.5 for the middle equivalence.
On the other hand, let F ∈ PΣ(W ). We want to prove that for all w ∈ W ,

we have (p∗p
∗F )(w) ∼= F (w). We compute

(p∗p
∗F )(w) = (LΣj∗ιhLhj

∗ιΣF )(w)

= (ιΣLΣj∗ιhLhj
∗ιΣF )(w)

∼= (j∗ιhLhj
∗ιΣF )(w)

= (Lhj
∗ιΣF )(w)

∼= (j∗ιΣF )(w)
∼= (ιΣF )(w)

= F (w),

where we use the last conclusion from Lemma B.5 in the fifth equivalence.
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In the last part of this section, we want to establish a condition which allows
us to conclude that an inclusion of sites actually induces a fully faithful geometric
morphism of (hypercomplete) ∞-topoi.

Proposition B.8. Let (C′, τ ′) ⊆ (C, τ) be a full subcategory such that any τ ′-
cover {Ui → U}i is also a τ-cover. Suppose that Shvhτ (C) and Shvhτ ′(C′) are
Postnikov-complete. Write

Lh : P(C) ⇄ Shvhτ (C) : ιh

L′
h : P(C

′) ⇄ Shvhτ ′(C′) : ι′h

for the sheafification adjunctions.
Write k : C′ →֒ C for the inclusion. This induces an adjoint pair

k∗ : P(C′) ⇄ P(C) : k∗,

where k∗ is restriction and k∗ is left Kan extension. Then we have the following:

• These functors then induce an adjoint pair

j∗ : Shvhτ ′(C′) ⇄ Shvhτ (C) : j∗,

where j∗ is given by Lhk
∗ι′h and j∗ is given by L′

hk∗ιh.

• This adjoint pair is a geometric morphism of ∞-topoi.

• We have a natural equivalence ι′hj∗
∼= k∗ιh (i.e. the restriction of a τ-

hypersheaf to C′ is a τ ′-hypersheaf).

Assume moreover that if F ∈ Shvhτ ′(C′) is n-truncated for some n, then
ιhj

∗F ∼= k∗ι′hF (i.e. the left Kan extension of an n-truncated τ ′-hypersheaf is
already a τ-hypersheaf).

Then j∗ is fully faithful.

Proof. We first prove that there is an equivalence ι′hj∗
∼= k∗ιh. This follows im-

mediately from the fact that every τ ′-hypercover is in particular a τ -hypercover,
thus every τ -hypersheaf is automatically a τ ′-hypersheaf.

We now prove that there is an adjunction j∗ ⊣ j∗: We construct the unit as
the composition

id ∼= Lh′ιh′ → Lh′k∗k
∗ιh′ → Lh′k∗ιhLhk

∗ιh′ = j∗j
∗.

Here, the first arrow is the inverse of the counit of the adjunction Lh′ ⊣ ιh′ , note
that it is invertible because ιh′ is fully faithful. The next two arrows are the
units of the adjunctions k∗ ⊣ k∗ and Lh ⊣ ιh. The last equality is the definition
of j∗ and j∗. It is now clear that this defines the unit of an adjunction, because
it is equivalent to the composition of the units of two adjunctions. Thus, we get
the required adjunction via [Lur09, Proposition 5.2.2.8].

In particular, we see that j∗ is (the left adjoint of) a geometric morphism,
because it has a right adjoint and preserves finite limits (since ι′h preserves limits
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as a right adjoint, and k∗ and Lh preserve finite limits as the left adjoints of
geometric morphisms).

Assume from now on that if F ∈ Shvhτ ′(C′) is n-truncated for some n, then
ιhj

∗F ∼= k∗ι′hF . In order to show that j∗ is fully faithful, we first show that it is
fully faithful on n-truncated objects. For this, it suffices to show that for every
n-truncated F ∈ Shvhτ ′(C′), the natural map F → j∗j

∗F is an equivalence. But
we compute

j∗j
∗F ∼= L′

hk∗ιhj
∗F ∼= L′

hk∗k
∗ι′hF

∼= L′
hι

′
hF
∼= F,

where we used for the first equivalence the definition of j∗, in the second equiv-
alence that ιhj

∗F ∼= k∗ι′hF since F is n-truncated, in the third equivalence that
k∗ is fully faithful, and in the last equivalence that ι′h is fully faithful.

We now want to show that j∗ is fully faithful. Again, it therefore suffices
that the canonical morphism F → j∗j

∗F is an equivalence for all F ∈ Shvhτ ′(C′).
We have a chain of equivalences

j∗j
∗F ∼= j∗limn τ≤nj

∗F
∼= limn j∗j

∗τ≤nF
∼= limn τ≤nF
∼= F.

Here, the first equivalence uses Postnikov-completeness of Shvhτ ′(C′), the second
equivalence uses that j∗ commutes with limits (it is right adjoint to j∗) and
that j∗ commutes with truncations (see [Lur09, Proposition 6.3.1.9]), the third
equivalence holds because we have seen that j∗ is fully faithful on n-truncated
objects, and the last equivalence uses Postnikov-completeness of Shvhτ (C). This
finishes the proposition.

B.2 The Pro-Zariski Topos

Recall the following definition from [Sta23, Tag 0965]:

Definition B.9. Let f : A→ B be a ring map. We say that

(1) f is a local isomorphism if for every prime q ⊂ B there exists a g ∈ B,
g /∈ q such that A→ Bg induces an open immersion Spec(Bg)→ Spec(A),

(2) f is an ind-Zariski map if f is a filtered colimit of local isomorphisms,

(3) f is an ind-Zariski cover if f is a faithfully flat ind-Zariski map.

Definition B.10. A ring A is called zw-contractible if it satisfies the equivalent
conditions from [Sta23, Tag 09AZ], i.e. if any faithfully flat ind-Zariski map
A→ B has a retraction.

Lemma B.11. Let A be a ring. Then there exists an ind-Zariski cover A→ A
such that A is zw-contractible.
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Proof. This is [Sta23, Tag 09B0].

Definition B.12. Let f : X → Y be a morphism of schemes. We say that f
is a Zariski localization if f is isomorphic to ∐i∈IUi → Y with I a finite set
and Ui → Y open immersions. We say that f is a pro-Zariski localization if
f is isomorphic to a cofiltered limit limi fi : limiXi → Y such that each fi is
a Zariski localization (and hence all transition maps Xi → Xj are also Zariski
localizations).

Definition B.13. Write ProZar(Smk) for the full subcategory of schemes over
k consisting of pro-Zariski schemes over Smk, i.e. morphisms X → Spec(k)
such that X can be written as a cofiltered limit X = limiXi with Xi → Spec(k)
smooth such that all transition morphisms Xi → Xj are Zariski localizations.
Write ProZarAff(Smk) ⊂ ProZar(Smk) for the full subcategory consisting of
affine schemes.

Lemma B.14. The category ProZar(Smk) has finite coproducts and the inclu-
sion into Schk preserves them.

Similarly, ProZar(Smk) has pullbacks along pro-Zariski localization and the
inclusion into Schk preserves those pullbacks.

Proof. For the first part, let I be a finite set, and (Xi)i∈I be a family of schemes
Xi ∈ ProZar(Smk). Write Xi

∼= limj∈Ji
Xi,j as a cofiltered limit with Xi,j →

Spec(k) smooth such that the transition morphisms are Zariski localizations.
We get

⊔iXi
∼= ⊔ilimj∈Ji

Xi,j
∼= lim(ji)i∈

∏
i
Ji
⊔i Xi,ji ,

where the second isomorphism exists because cofiltered limits commute with
finite colimits and a cofinality argument. Hence, the coproduct is again in
ProZar(Smk).

We now prove the second part. So suppose thatX,U and V are in ProZar(Smk),
and that there are morphisms f : X → U and g : V → U with g a pro-Zariski
morphism. Since all limits are cofiltered, we can choose a common filtered
category I and presentations X = limiXi, U = limi Ui and V = limi Vi,
with Xi, Ui and Vi in Smk, with Zariski localizations as transition maps,
and such that gi : Vi → Ui is a Zariski localization, i.e. gi is of the form
∐j∈JVi,j → Ui for some finite set J , such that Vi,j → Ui is an open immer-
sion. Then Xi ×Ui

Vi ∈ Smk: Indeed, it suffices to show that Xi ×Ui
Vi,j is

smooth for every j ∈ J , but this is just an open subscheme of Xi. Note that the
transition morphisms Xi×Ui

Vi → Xj×Uj
Vj are Zariski localizations (as a com-

position of basechanges of Zariski localizations). Thus, X×U V ∼= limiXi×Ui
Vi

is again in ProZar(Smk).

Definition B.15. Let U := {fi : Ui → U}i∈I be a family of morphisms in
ProZar(Smk). We say that U is a pro-Zariski cover if and only if fi is pro-
Zariski for all i and the fi form an fpqc-cover.
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Remark B.16. Let Spec(f) : Spec(B)→ Spec(A) be a morphism of schemes in
ProZarAff(Smk). Then {Spec(f)} is a pro-Zariski cover if and only if f : A→ B
is an ind-Zariski cover. To see this, it suffices to show that Spec(f) is a Zariski-
localization if and only if f is a local isomorphism. This follows from [Sta23,
Tag 096J].

Lemma B.17. The categories ProZar(Smk) and ProZarAff(Smk) together with
the class of pro-Zariski covers form sites in the sense of [Sta23, Tag 00VH].
Moreover, the natural inclusion ProZarAff(Smk) ⊂ ProZar(Smk) is a morphism
of sites in the sense of [Sta23, Tag 00X1].

Proof. For the first statement, the only nontrivial part is the existence of pull-
backs of covers, which was proven in Lemma B.14. The last assertion is clear
from [Sta23, Tag 00X6], since the inclusion commutes with limits (as limits of
affine schemes are affine).

Definition B.18. Let (ProZar(Smk), prozar) and (ProZarAff(Smk), prozar) be
the sites from Lemma B.17.

Lemma B.19. The geometric morphisms

Shvnhprozar(ProZarAff(Smk)) ⇄ Shvnhprozar(ProZar(Smk))

and
Shvhprozar(ProZarAff(Smk)) ⇄ Shvhprozar(ProZar(Smk))

induced by the morphism of sites are equivalences.

Proof. The first morphism is an equivalence by [Hoy15, Lemma C.3]. Thus, it
also induces an equivalence after hypercompletion.

Definition B.20. Let W ⊂ ProZarAff(Smk) be the full subcategory spanned
by the (spectra of) zw-contractible rings (see Definition B.10).

Lemma B.21. W is an extensive category and PΣ(W ) is an ∞-topos given by
sheaves on W with respect to the disjoint union topology.

Proof. The category of schemes is extensive, and W is a full subcategory stable
under summands and finite products. From this we immediately conclude that
W is extensive. The last statement is Lemma 4.12.

Lemma B.22. The site (ProZarAff(Smk), prozar) is locally weakly contractible.

Proof. The pro-Zariski topology is a Σ-topology, since a clopen immersion is in
particular a pro-Zariski morphism. The pro-Zariski topology on ProZarAff(Smk)
is finitary (cf. [Lur18a, Definition A.3.1.1]) by definition, so every object is quasi-
compact. The categoryW is exactly the subcategory of weakly contractible ob-
jects by definition. Every element in ProZarAff(Smk) has a cover by a weakly
contractible object, this is the content of Lemma B.11. We have seen that W
is extensive, see Lemma B.21. This proves the lemma.
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Theorem B.23. We have an equivalence of categories

Shvhprozar(ProZar(Smk)) ∼= PΣ(W ).

Proof. There is a chain of equivalences

Shvhprozar(ProZar(Smk)) ∼= Shvhprozar(ProZarAff(Smk)) ∼= PΣ(W ),

where the equivalences are supplied by Lemmas B.7 and B.19. Here we used that
the affine pro-Zariski site is locally weakly contractible, see Lemma B.22.

We now want to embed the category of Zariski sheaves on Smk into the
category of hypercomplete pro-Zariski sheaves on ProZar(Smk).

Theorem B.24. There is a geometric morphism

ν∗ : Shvhzar(Smk) ⇄ Shvhprozar(ProZar(Smk)) ∼= PΣ(W ) : ν∗,

where the right adjoint is given by restriction, and the left adjoint is fully faithful.
Moreover, an n-truncated sheaf F ∈ Shvhprozar(ProZar(Smk)) is in the es-

sential image of ν∗ (i.e. it is classical in the notation of Definition 4.35) if and
only if for all U ∈ ProZar(Smk) and all presentations of U as cofiltered limit
U ∼= limi Ui (with the Ui ∈ Smk such that the transition morphisms Ui → Uj

are Zariski) the canonical map colimi F (Ui)→ F (U) is an equivalence.

Proof. We want to apply Proposition B.8 with C = ProZar(Smk) with the pro-
Zariski topology and C′ = Smk with the Zariski topology, where we use the
notation from Proposition B.8.

We have seen in Lemma 4.58 that Shvhzar(Smk) ∼= Shvnhzar(Smk) is Postnikov-
complete. Note that Shvhprozar(ProZar(Smk)) ∼= PΣ(W ) by Theorem B.23, thus
this ∞-topos is also Postnikov-complete, see Lemma 4.13.

It remains to prove that ιhj
∗F ∼= k∗ι′hF for every n-truncated Zariski sheaf

F ∈ Shvhzar(Smk), i.e. we have to show that the presheaf k∗ι′hF is already a pro-

Zariski hypersheaf. But note that Shvhzar(Smk)≤n
∼= Shvnhzar(Smk)≤n (since every

∞-connective object in Shvnhzar(Smk) which is also n-truncated is automatically
0), so it suffices to proof that k∗ι′hF is a pro-Zariski sheaf. Note that by definition
if U ∈ ProZar(Smk) is a scheme with presentation as a cofiltered limit U =
limi Ui with Ui ∈ Smk, (k

∗ι′hF )(U) ∼= colimi F (Ui).
Using Lemma B.19, it suffices to show that k∗ι′hF has descent for all pro-

Zariski covers {Vj → V }j with Vj and V in ProZarAff(Smk), i.e. all schemes are
affine. First note that k∗ι′hF is a Zariski sheaf: If Spec(B) =

⋃

j Uj is a finite
union of affine open subschemes, and B is a filtered colimit of smooth algebras
Bi (where the transition maps are Zariski), then this union is pulled back from
some Bi (since open immersions are of finite presentation). But F is a Zariski
sheaf on Smk by assumption. Now let {Vj → V }j be some pro-Zariski cover.
Note that {Vj → ⊔kVk} is a Zariski cover. Thus, since k∗ι′hF satisfies Zariski
descent, we can reduce to the case that the cover is of the form {Spec(f)} for
a single ind-Zariski cover f : B → C. Write C = colimi Ci as a filtered colimit
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of Zariski covers B → Ci. Again, since k
∗ι′hF satisfies Zariski descent, we have

descent for these covers. Thus, the claim follows by taking filtered colimits (note
that filtered colimits commute with finite limits, and since k∗ι′hF is n-truncated,
the sheaf axiom is actually a finite limit). This proves the theorem.

Corollary B.25. Let A ∈ Shvprozar(ProZar(Smk), Sp)
♥. Then A is in the es-

sential image of ν∗ if and only if for all U ∈ ProZar(Smk) and all presentations
of U as cofiltered limit U ∼= limi Ui (with the Ui ∈ Smk such that the transi-
tion morphisms Ui → Uj are Zariski) the canonical map colimi Γ

♥(Ui, A) →
Γ♥(U,A) is an equivalence.

Proof. Recall that the equivalence of abelian categories

Shvprozar(ProZar(Smk), Sp)
♥ ∼=
−→ Ab(Disc(Shvprozar(ProZar(Smk))))

is given by A 7→ Γ♥(−, A). Note that the sheaf Γ♥(−, A) is 0-truncated. Thus,
the result follows immediately from Theorem B.24.
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pervers. Astérisque, 100(1), 1982.

[BH17] Tom Bachmann and Marc Hoyois. Norms in motivic homotopy theory.
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